
Chapter 10

Hypothesis Testing

We previously examined how the parameters for a probability distribution
can be estimated using a random sample and maximum likelihood (Chapter
8), as then showed how confidence intervals provide a measure of the relia-
bility of these estimates (Chapter 9). In hypothesis testing, the subject of
this chapter, we examine the consistency of observed data sets with a null
hypothesis, commonly a statement about the parameter values within a sta-
tistical model. We conduct a statistical test of this null hypothesis, with
the result being a decision to accept or reject the null hypothesis based on
the magnitude of a quantity called a P value. Small values of P indicate a
test result inconsistent with the null hypothesis, suggesting it might be false
and some alternative hypothesis more valid. In the following, we discuss the
different components and steps of hypothesis testing.

10.1 The null and alternative hypotheses

As an example of hypothesis testing, suppose that we rear n tilapia on a
commercial diet, and want to compare their body size with ones reared using
a natural diet. Fish reared on natural food are already known to have a
weight of 500 g at a certain age, and weight is normally distributed. We
could test whether the fish reared on the commercial diet have the same mean
weight as ones reared on natural food (500 g) using the null hypothesis that
µ = 500 g, where µ is the mean parameter for the normal distribution. This
can be written as H0 : µ = 500 g, where H0 stands for null hypothesis. Null
hypotheses of this type can be written more generally as H0 : µ = µ0, where
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µ0 is the hypothesized mean of the distribution. For the tilapia problem, we
would have µ0 = 500 g.

An alternative hypothesis for this example is that the mean weight of
tilapia on commercial diet is different from 500 g. This can be written as
H1 : µ 6= 500 g, where H1 stands for the alternative hypothesis. Alternative
hypotheses of this type are written generally as H1 : µ 6= µ0. We may also be
interested in particular values of the alternative mean, such as H1 : µ = 490
g or H1 : µ = 530 g, or more generally H1 : µ = µ1.

10.2 Test statistics

A test statistic is a quantity that measures the consistency of the
observed data with the null hypothesis. Test statistics are usually
chosen so that large values occur when the data are inconsistent with H0.
What would be a suitable test statistic for the tilapia problem, using H0 :
µ = µ0 as the null hypothesis? Suppose we rear n fish on the commercial
diet, and then calculate the sample mean Ȳ of their weights. The statistic
Ȳ is an estimator of the true mean µ for this statistical population, which
may or may not be equal to the µ0 under the null hypothesis. A value of
Ȳ substantially greater than µ0, or smaller than µ0, would be inconsistent
with H0. This suggests using the quantity Ȳ −µ0 as the test statistic for the
problem. What about the other parameter for the normal distribution, σ2 or
σ? For simplicity, we will assume that it is a known quantity, although this
is rare in practice. We will then employ the test statistic

Zs =
Ȳ − µ0

σ/
√
n

(10.1)

to test H0 : µ = µ0 (Bickel & Doksum 1977). We use this statistic because
it has a standard normal distribution under H0 (Zs ∼ N(0, 1), see Chapter
9) which makes it straightforward to employ the test. Note that Zs becomes
large (positive or negative) if the sample mean Ȳ differs greatly from µ0.
Tests based on the standard normal distribution are called Z tests.
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10.3 Acceptance and rejection regions – Type

I error

Given a suitable test statistic, how large must it be before we decide the
data are inconsistent with H0? This is determined by finding an interval
that defines an acceptance region for the test, and its complement, called
the rejection or critical region (Bickel & Doksum 1977). We then accept
H0 if the test statistic falls within the acceptance region, and reject H0 if it
falls outside or lies on its boundary. The boundaries of the acceptance and
rejection regions are determined by setting the probability of a Type I error.
A Type I error is defined as the test rejecting H0 when H0 is true.
The probability of committing a Type I error is called the Type I
error rate, usually denoted with the symbol α. It is common practice
to set α = 0.05, meaning there is a 1 in 20 chance that the test will reject
H0 even when it is true. It follows that the probability of the test accepting
H0 if it is true is 1− α. For α = 0.05, we have 1− α = 1− 0.05 = 0.95.

The acceptance region is determined as follows. Suppose that H0 : µ = µ0

is true. Because the test statistic Zs ∼ N(0, 1) under H0, the following is a
true statement:

P [−cα < Zs < cα] = P [−cα <
Ȳ − µ0

σ/
√
n
< cα] = 1− α. (10.2)

The quantity cα would be chosen using Table Z to satisfy this equation (for
details see Chapter 9). The interval (−cα, cα) is the acceptance region of a
test with a Type I error rate of α. Under H0, the test statistic Zs would
lie within this interval with probability 1 − α and outside this region with
probability α, which is the required Type I error rate. The rejection region
would be the complement of the acceptance region, i.e., all values on the
boundary or outside of (−cα, cα).

For example, with α = 0.05 we find that c0.05 = 1.96, and so we would
accept H0 if Zs lies within (−1.96, 1.96) and reject H0 if it lies outside this
interval or exactly on the boundary (see Fig. 10.1). The acceptance region
for this test can also be expressed using absolute values - we would accept
H0 if |Zs| < 1.96 and reject it if |Zs| ≥ 1.96.

The acceptance region becomes larger (and the rejection region smaller)
for smaller α values. For α = 0.01, we find that c0.01 = 2.576 and so the
acceptance region is (−2.576, 2.576) (Fig. 10.2). Using absolute values, we
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would accept H0 if |Zs| < 2.576 and reject it otherwise. Using a smaller
value of α indicates we are more concerned about making a Type I error.
For α = 0.01 there is only a 1 in 100 chance we would reject H0 if H0 were
true, but this also reduces the power of the test (see below) to detect whether
H0 is false.

The acceptance and rejection regions we just developed are for a two-
tailed test, which tests the null hypothesis H0 : µ = µ0 with H1 : µ 6= µ0

the alternative hypothesis. This test statistic will reject H0 for either large
and small values of the test statistic Zs, which occurs when Ȳ is greater than
µ0 or less than µ0. We will later examine the behavior of one-tailed tests,
where the null is H0 : µ = µ0 while the alternative is of the form H1 : µ > µ0,
or H1 : µ < µ0. Note that the two alternative hypotheses here specify that
µ is either greater or less than µ0.
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Figure 10.1: Acceptance and rejection regions for a one-sample Z test, α =
0.05. Also shown is the distribution of Zs under H0.

Figure 10.2: Acceptance and rejection regions for a one-sample Z test, α =
0.01. Also shown is the distribution of Zs under H0.
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10.3.1 One-sample Z test - sample calculation

We will now do an example of this test, known as a one-sample Z test. Recall
the tilapia diet example, where it is known that fish reared on natural food
have a mean weight of 500 g. We rear n = 10 fish on a commercial diet, and
want to compare the weight of fish on the commercial diet with ones reared
on natural food. In particular, we want to test H0 : µ = 500 g. We find that
Ȳ = 495 g for the fish reared on the commercial diet, and already know that
σ2 = 49 g2, so σ = 7 g. Because Ȳ = 495 g is less than 500 g, it already
appears that the commercial diet produces smaller fish than natural food,
but a statistical test is still needed to provide convincing evidence against
H0. For the test statistic, we have

Zs =
Ȳ − µ0

σ/
√
n

=
495− 500

7/
√

10
=
−5

2.214
= −2.258 (10.3)

For a Type I error rate of α = 0.05, the acceptance region for Zs is (−1.96, 1.96).
Z = −2.258 lies outside this interval, so we would reject H0 at the α = 0.05
level. For α = 0.01 the acceptance region is (−2.576, 2.576). Because Zs lies
within this interval, we would accept H0 at this α level. Thus, the decision
to accept or reject H0 depends on both the test statistic value and the value
of α.

10.4 P values

As noted above, the value of α can affect whether we accept or reject H0.
Rather than force a particular α on the analyst, the test results can also be
presented in the form of a P value. A P value is defined as the smallest
value of α for which one can just reject H0 (Bickel & Doksum 1977).
It is calculated by finding an α such that the test statistic Zs is equal to cα.

Recall from Chapter 9 that cα is defined so that the following equation is
true:

P [Z < cα] = 1− α/2. (10.4)

To find the P value for the tilapia example, we substitute the test statistic
value Zs for cα in the above equation, ignoring the fact that Zs is negative.
We have

P [Z < Zs] = P [Z < 2.258] = 1− α/2. (10.5)
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From Table Z, we see that P [Z < 2.258] ≈ 0.9881. We then solve the
equation

0.9881 = 1− α/2 (10.6)

for α to obtain the P value. We have α = 2(1 − 0.9881) = 0.0238. This
is the P value for the test, reported as P = 0.0238. Given the P value,
the analyst or other interested parties can decide for themselves whether to
reject or accept H0.

A P value can also be thought of as the probability of obtaining
a test statistic equal to or more extreme than the observed one,
under the null hypothesis. We can see this from a graph of the accep-
tance and rejection regions for the tilapia example, where Zs = −2.258 and
P = 0.0238 (Fig. 10.3). The probabilities outside the acceptance region cor-
respond to P [Zs ≤ −2.258] and P [Zs ≥ 2.258], which are the probabilities
of observing values of Zs equal to or more extreme than the observed value
of Zs = −2.258. The two definitions of a P value are equivalent.

A P value is also a measure of the consistency of the observed
data with the null hypothesis. If the P value is large, say P > 0.05, then
the observed data generated a test statistic value that is fairly likely under
the null hypothesis. On the other hand, if P is small then the observed data
has generated a test statistic that is unlikely under the null hypothesis. This
suggests the observed data are inconsistent with the null hypothesis, and the
null may be false.

There are specific phrases generally used to describe the significance of
a statistical test result. If a test yields P ≤ 0.05, it is described as being
significant, while if P ≤ 0.01 it is highly significantly. If P > 0.05 the test
is described as nonsignificant. The tilapia example with P = 0.0272 would
be described as significant because 0.0272 < 0.05, but not highly significant.
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Figure 10.3: Acceptance-rejection region for a one-sample Z test, exact P =
0.0238
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10.5 Type II error and power

Suppose now that H0 is actually false and some alternative hypothesis H1 is
true. A Type II error is defined as failing to reject H0 when H0 is
false. The probability of committing a Type II error is called the Type II
error rate, usually denoted by the symbol β. It follows that the probability
of the test rejecting H0 if it is false is 1 − β, and this quantity is called the
power of the test (Bickel & Doksum 1977). High power values indicate the
test is capable of detecting departures from the null hypothesis.

The power and Type II error rate of a statistical test depends on the
sample size n of the test, the standard deviation of the observations σ, the
Type I error rate α, and the particular alternative hypothesis chosen. An
analyst interested in determining the power of a test will fix some of these
values, often α and σ, and then examine how changes in n and the alternative
hypothesis affect power. This procedure is called a power analysis. A power
value of 0.8 is believed to be adequate in most situations (Cohen 1988). This
implies that a statistical test will reject H0 when it is false 80% of the time.

It is relatively easy to calculate the power for a one-sample Z test, using
the distribution of Zs under H1. Suppose that we choose α = 0.05, so that
the acceptance region is the interval (−1.96, 1.96), and that the alternative
hypothesis is H1 : µ = µ1 for some µ1. Under H0 : µ = µ0 the test statistic
has a standard normal distribution, implying Zs ∼ N(0, 1), but what is
its distribution under H1? Using the expected value and variance rules in
Chapter 7, one can show that

E[Zs] =
µ1 − µ0

σ/
√
n

= φ (10.7)

and also that V ar[Zs] = 1. So, Zs has the same variance under both H1 and
H0, but the mean under H1 is equal to φ, not zero as under H0. It follows
that under H1 the test statistic Zs ∼ N(φ, 1). The probability of rejecting
H0 when H1 is true, the power of the test, is the probability that Zs lies
outside the interval (−1.96, 1.96), or

power = P [Zs ≤ −1.96] + P [Zs ≥ 1.96]. (10.8)

The Type II error rate β can be calculated as 1−power, or directly by finding

β = P [−1.96 < Zs < 1.96] (10.9)
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when H1 is true.
Fig. 10.4 shows the power and Type II error for the tilapia example with

H0 : µ = 500 vs. a particular alternative hypothesis, H1 : µ = 495. We
assume σ = 7 as before, with n = 10 and α = 0.05. For this alternative
hypothesis, we have

φ =
µ1 − µ0

σ/
√

10
=

(495− 500)

7/
√

10
= −2.26. (10.10)

Thus, under H1 we have Zs ∼ N(−2.26, 1), and this distribution is shown
as well as the distribution of Zs under H0 and the acceptance and rejection
regions for the test. The power is the area Zs under H1 outside the acceptance
region, while β is the area in the region.

What happens to the power as we vary µ1? Suppose now that H1 : µ1 =
490 is the alternative hypothesis. As we can see from Fig. 10.5, in this case
the power is substantially higher and β is lower. Fig. 10.6 shows how power
changes as we vary µ1 across a range of values. Power is quite high (nearly
1) for µ1 far from µ0, but approaches a minimum value of α for µ1 near µ0.
The minimum power is α, not zero, because the test will reject H0 even if it
is true (µ1 = µ0) at this rate.

Power is also affected by sample size. If we use H1 : µ = 495 and increase
the sample size from n = 10 to n = 20, this also increases the power (Fig.
10.7). However, an increase in the standard deviation from σ = 7 to σ = 10
lowers the power (Fig. 10.8).
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Figure 10.4: Distribution of Zs under H1 : µ = 495, with σ = 7, n = 10
(φ = −2.26). Almost all of the power occurs to the left of the acceptance
region, but there is also a small amount to the right. Also shown is the
distribution of Zs under H0.

Figure 10.5: Distribution of Zs under H1 : µ = 490, with σ = 7, n = 10
(φ = −4.52).
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Figure 10.6: Power across a range of µ1 values, for H0 : µ = 500, σ = 7, and
n = 10
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Figure 10.7: Distribution of Zs under H1 : µ = 495, with σ = 7, n = 20
(φ = −3.19).

Figure 10.8: Distribution of Zs under H1 : µ = 495, with σ = 10, n = 10
(φ = −1.58).
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Table 10.1: Effects on power and the Type II error rate β of changes in
various parameters. The arrows indicate if a particular quantity increases or
decreases.

Parameter Direction φ power β
|µ1 − µ0| ↑ ↑ ↑ ↓

n ↑ ↑ ↑ ↓
σ ↑ ↓ ↓ ↑
α ↑ no change ↑ ↓

All of these effects on power can be understood through their influence
on φ. Any change in a parameter value that makes φ larger increases power
and reduces β, because it shifts the distribution of Zs under H1 away from
the acceptance and into the rejection region. Thus, large differences between
µ1 and µ0, large n, and small σ will all increase power because they increase
φ. Conversely, similar values of µ1 and µ0, small n, and large σ would all
reduce power. Table 10.1 summarizes how the different parameter values
influence φ, power, and the Type II error rate β. Also shown is the effect of
the Type I error rate α on power. If an investigator can accept a larger value
of α, so that Type I errors are more common, this reduces the acceptance
and increases the rejection region size, and thus increases power.

Note that a sufficiently large value of n can generate a large value of φ,
even when µ1 and µ0 are close or σ is large. Thus, large sample sizes can
yield adequate power even when the data are noisy, or the two means are
similar in value. This basically arises from the inverse relationship between
the variance of Ȳ and n, i.e., V ar[Ȳ ] = σ2/n, which is incorporated in the
test statistic Zs (see Eqn. 10.1).

10.6 Summary table

A common way of summarizing the different outcomes in hypothesis testing
is the table below. The null hypothesis H0 can be either true or false. If H0

is true, then the test may accept H0 and make a correct decision, or reject it
and make a Type I error, with a Type I error rate of α. If H0 is false, then
the test may accept H0 and make a Type II error with an error rate of β, or
reject it and make a correct decision.
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Table 10.2: Table summarizing the different outcomes in hypothesis testing,
with the corresponding Type I (α) and Type II (β) error rates.

Accept H0 Reject H0

H0 true
Correct Type I error

1-α α

H0 false
Type II error Correct

β 1-β = power

10.7 One-sample t test

In the preceding, we used the test statistic Zs to test H0 : µ = µ0 vs.
H1 : µ 6= µ0, for the case where σ2 or σ was known. Although this simplifies
the statistics, in most cases we will need to estimate σ2 and σ from the data
using the sample variance s2 and standard deviation s. We then use the test
statistic

Ts =
Ȳ − µ0

s/
√
n

(10.11)

to conduct the test (Bickel & Doksum 1977). Ts has a t distribution with
n−1 degrees of freedom under H0 (see Chapter 9). The following is therefore
a true statement:

P [−cα,n−1 < Ts < cα,n−1] = P [−cα,n−1 <
Ȳ − µ0

s/
√
n

< cα,n−1] = 1−α. (10.12)

The quantity cα,n−1 would be chosen using Table T, using the entry for 2(1−p)
corresponding to α and the appropriate degrees of freedom (see Chapter 9).
The interval (−cα,n−1, cα,n−1) is the acceptance region of a test with a Type
I error rate of α, while the rejection region is its complement.

For example, with α = 0.05 and n = 10, we have c0.05,9 = 2.262. We
would therefore accept H0 if Ts lies within (−2.262, 2.262), and reject it if
Ts lies outside this interval (see Fig. 10.9). Using absolute values, we would
accept H0 if |Ts| < 2.262 and reject it otherwise. For α = 0.01 and n = 10,
we have c0.01,9 = 3.250, and would accept H0 if Ts lies within (−3.250, 3.250)
and reject it otherwise.
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Figure 10.9: Acceptance and rejection regions for a one-sample t test, α =
0.05, n = 10. The distribution shown is for the t distribution with n− 1 = 9
degrees of freedom.

10.7.1 One-sample t test - sample calculation

Recall the tilapia example, and suppose that Ȳ = 493 g and s2 = 48.2 g2,
so that s = 6.94 g, with n = 10. We wish to test H0 : µ = 500 g vs.
H1 : µ 6= 500 g. For the test statistic, we have

Ts =
Ȳ − µ0

s/
√
n

=
493− 500

6.94/
√

10
=
−7

2.19
= −3.196 (10.13)

For α = 0.05, the acceptance region for Ts is (−2.262, 2.262) with n − 1 =
10 − 1 = 9 degrees of freedom (Fig. 10.9). Ts = −3.196 lies outside this
interval, so we would reject H0 at the α = 0.05 level. For α = 0.01 the
acceptance region is (−3.250, 3.250). Because Ts lies within this interval, we
would accept H0 at this α level. We can also determine a P value for this test
using Table T. The P value is found by scanning along the row in the table
corresponding to 9 degrees of freedom, looking for two values that bracket
Ts while ignoring its sign. We see that the values 2.821 and 3.250 bracket
Ts = −3.196. Looking at the values for 2(1 − p), which correspond to α,
this implies that 0.010 < P < 0.020. This is the best accuracy that can be
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accomplished using Table T, and to obtain an exact P value would require
the use of SAS.

10.7.2 Hypothesis testing - SAS demo

We will use a small subset of our larger data set on elytra length (of the
predatory beetle Thanasimus dubius) to illustrate hypothesis testing using
SAS. The data are from a rearing study of insects reared on an artificial diet,
and we want to compare their size to wild individuals. The subset data are
for eight female T. dubius and are listed below:

5.2 4.2 5.7 5.4 4.0 4.5 5.2 4.2

Suppose that wild predators have an elytral length of 5.2 mm. This suggests
testing H0 : µ = 5.2 mm vs. H1 : µ 6= 5.2 mm. We can conduct a one-sample
t test for this null hypothesis using proc univariate, by adding the option
mu0=5.2 as an option. See SAS program and output listed below. The test
statistic Ts and its P value are listed on one line in SAS output:

Student’s t t -1.74574 Pr > |t| 0.1244

We see that Ts = −1.75 for this test. What is its P value? The notation
Pr > |t| in the printout is shorthand for the P [Ts < −1.75]+P [Ts > 1.75], the
P value for this two-tailed test. We thus have P = 0.1244, a non-significant
test result because P > 0.05. The degrees of freedom for the test are not
reported by SAS, but are equal to n− 1 = 8− 1 = 7. A sentence reporting
this test result in a scientific journal would be something like ‘A one-sample
t test comparing the elytra length of individuals reared on artificial diet vs.
wild individuals was non-significant (t7 = −1.75, P = 0.1244).’ Note that
the degrees of freedom are reported as a subscript on the test statistic.
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SAS Program

* one-sample_t_test.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’One-sample t-test for elytra data’;

data elytra;

input sex $ length;

datalines;

F 5.2

F 4.2

F 5.7

F 5.4

F 4.0

F 4.5

F 5.2

F 4.2

;

run;

* Generate t test and plots;

proc univariate mu0=5.2 data=elytra;

var length;

histogram length / vscale=count normal(w=3) wbarline=3 waxis=3 height=4;

qqplot length / normal waxis=3 height=4;

symbol1 h=3;

run;

quit;

SAS Output

One-sample t-test for elytra data 1

13:34 Wednesday, June 23, 2010

The UNIVARIATE Procedure

Variable: length

Moments

N 8 Sum Weights 8

Mean 4.8 Sum Observations 38.4

Std Deviation 0.64807407 Variance 0.42

Skewness 0.07137842 Kurtosis -1.9577259

Uncorrected SS 187.26 Corrected SS 2.94

Coeff Variation 13.5015431 Std Error Mean 0.22912878
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Basic Statistical Measures

Location Variability

Mean 4.800000 Std Deviation 0.64807

Median 4.850000 Variance 0.42000

Mode 4.200000 Range 1.70000

Interquartile Range 1.10000

Note: The mode displayed is the smallest of 2 modes with a count of 2.

Tests for Location: Mu0=5.2

Test -Statistic- -----p Value------

Student’s t t -1.74574 Pr > |t| 0.1244

Sign M -1 Pr >= |M| 0.6875

Signed Rank S -7.5 Pr >= |S| 0.1563

Quantiles (Definition 5)

Quantile Estimate

100% Max 5.70

99% 5.70

95% 5.70

90% 5.70

75% Q3 5.30

50% Median 4.85

25% Q1 4.20

10% 4.00

5% 4.00

1% 4.00

0% Min 4.00
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10.7.3 Power analysis for one-sample t tests - SAS demo

A power analysis can be used to determine an adequate sample size n for
a one-sample t test, as well as many other statistical tests. To conduct a
power analysis, you need to specify a null and alternative hypothesis, a Type
I error rate α, and have some estimate of the standard deviation σ of the
population in question. The analysis then calculates the power for a range
of n values. The idea is to choose a value of n that gives power close
to 0.8, often regarded as an adequate level of power (Cohen 1988).
The power analysis for a one-sample t test involves the same quantity

φ =
µ1 − µ0

σ/
√
n

(10.14)

as for the one-sample Z test, and its power is influenced by the same factors
(see Table 10.1). The power calculation involves the non-central t distri-
bution with a non-centrality parameter of φ. One subtle difference is that
acceptance and rejection regions for the t test depends on n through the de-
grees of freedom, unlike the Z test. Larger values of n lead to smaller values
of cα,n−1, shrinking the acceptance region and affecting the power calculation
in this way.

Returning to the elytra example, suppose we want to test if the length
of predators reared on an artificial diet differs from wild individuals, which
have a length of 5.2 mm. This implies H0 : µ = 5.2 mm. For biological
reasons, we are interested in detecting an decrease or increase in length of
approximately 10% on the artificial diet, about 0.5 mm. This suggests an
alternative hypothesis of the form H1 : µ = 5.2− 0.5 = 4.7 mm (or H1 : µ =
5.2 + 0.5 = 5.7 mm). How many predators need to be reared on artificial
diet to give a power of at least 0.8? Assume we already have an estimate of
σ from another study, say s = 0.6 mm, and let α = 0.05.

We can use proc power to find the sample size n that gives this power (SAS
Institute Inc. 2014). See program and output below. We first specify a one-
sample t test using the onesamplemeans option, followed by values for µ under
H0 (nullmean = 5.2), σ (stddev = 0.6), and µ under H1 (mean = 4.7). The de-
fault value of α is 0.05. We then specify a range of sample sizes (n) for which
we want the power to be calculated, using the option ntotal = 2 to 20 by 1.
This finds the power for n = 2, 3, . . . , 20. The power = . option tells SAS
solve for power (there are other possibilities, like finding n for a given power
value). The option plot x=n generates a low quality plot of power vs. n. We
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can generate a better plot by sending the results of proc power to gplot, using
an ods output option. We see that a sample size of n = 14 gives power > 0.8
for this scenario. While power increases rapidly for small sample sizes, there
are diminishing returns once the power exceeds about 0.8. In other words,
obtaining higher power values requires many more observations.

SAS Program

* One-sample_t_test_power2.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Power analysis for one-sample t test’;

proc power;

ods output Plotcontent=plotdata;

onesamplemeans

nullmean = 5.2

stddev = 0.6

mean = 4.7

ntotal = 2 to 20 by 1

power = . ;

plot x=n;

run;

* Plot power vs. sample size in a nicer graph;

proc gplot data=plotall;

plot power*ntotal=1 / vaxis=axis1 haxis=axis1 overlay;

symbol1 i=join v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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Figure 10.10: Power vs. n for a one-sample t test, for H0 : µ = 5.2 vs.
H1 : µ = 4.7, with σ = 0.6 and α = 0.05.
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SAS Output

Power analysis for one-sample t test 1

13:34 Wednesday, June 23, 2010

The POWER Procedure

One-sample t Test for Mean

Fixed Scenario Elements

Distribution Normal

Method Exact

Null Mean 5.2

Mean 4.7

Standard Deviation 0.6

Number of Sides 2

Alpha 0.05

Computed Power

N

Index Total Power

1 2 0.081

2 3 0.142

3 4 0.218

4 5 0.300

5 6 0.381

6 7 0.457

7 8 0.528

8 9 0.593

9 10 0.651

10 11 0.703

11 12 0.748

12 13 0.788

13 14 0.822

14 15 0.851

15 16 0.876

16 17 0.897

17 18 0.915

18 19 0.930

19 20 0.942
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10.8 One-tailed t test

The tests we have examined so far are known as two-tailed tests. They
are called this because the test statistic Zs or Ts can detect departures from
H0 : µ = µ0 in both directions, for H1 : µ > µ0 and H1 : µ < µ0, although the
alternative for these tests is usually written more compactly as H1 : µ 6= µ0.
We will now examine one-tailed tests, which have the same null hypothesis
but the alternative is one direction or the other.

Suppose we are interested in testing H0 : µ = µ0 vs. H1 : µ > µ0. We
can use the same test statistic as before, namely

Ts =
Ȳ − µ0

s/
√
n
. (10.15)

If H1 is true, we would expect to see Ȳ values larger than µ0, and so Ts
would be positive. We would reject H0 if Ts was sufficiently positive, with
the acceptance and rejection regions determined as before by controlling the
Type I error rate. Therefore, if the Type I error rate is α we want to determine
a constant c′α,n−1 such that the following statement is true:

P [Ts < c′α,n−1] = 1− α (10.16)

The quantity c′α,n−1 would be chosen using Table T, using the entry for p
corresponding to 1 − α. We would accept H0 if Ts < c′α,n−1 and reject it if
Ts ≥ c′α,n−1.

For example, with α = 0.05 so that p = 0.95, and n = 10 (degrees of
freedom = n− 1 = 10− 1 = 9), we have c′0.05,9 = 1.833. We would therefore
accept H0 if Ts < 1.833 and reject it if Ts ≥ 1.833 (see Fig. 10.11). For
α = 0.01 and n = 10, we have c′0.01,9 = 2.822, and would accept H0 if
Ts < 2.822 and reject it otherwise.

If we now wish to test H0 : µ = µ0 vs. H1 : µ < µ0, we would use the
same test statistic as above. However, if H1 is true we would expect Ȳ to be
smaller than µ0, and so Ts would be negative. To determine the acceptance
and rejection regions we would find c′α,n−1 in the same way as above, except
we would use its negative. We would accept H0 if Ts > −c′α,n−1 and reject it
if Ts ≤ −c′α,n−1. For example, if α = 0.05 and n = 10, we would accept H0

if Ts > −1.833 and reject it if Ts ≤ −1.833 (Fig. 10.12). For α = 0.01, we
would accept H0 if Ts > −2.822 and reject it otherwise.
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Figure 10.11: Acceptance and rejection regions for one-tailed t test, H0 : µ =
µ0 vs. H1 : µ > µ0, for α = 0.05 and n = 10.

Figure 10.12: Acceptance and rejection regions for a one-tailed t test, H0 :
µ = µ0 vs. H1 : µ < µ0, for α = 0.05 and n = 10.
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10.8.1 One-tailed t test - sample calculation

Recall the tilapia example, with Ȳ = 493 g, s2 = 48.2 g2, s = 6.94 g, and
n = 10. Suppose we are only interested in detecting diets that produce fish
of lower weight than natural food, implying we wish to test H0 : µ = 500 g
vs. H1 : µ < 500 g. The test statistic value is again

Ts =
Ȳ − µ0

s/
√
n

=
493− 500

6.94/
√

10
=
−7

2.19
= −3.196 (10.17)

For α = 0.05 and n− 1 = 10− 1 = 9 degrees of freedom, we have −c′0.05,9 =
−1.833. Because Ts = −3.916 < −1.833, we would reject H0 at the α = 0.05
level. For α = 0.01, we have −c′0.01,9 = −2.821, and again Ts = −3.196 <
−2.821. Thus, we can also reject H0 at the α = 0.01 level. We could
continue this process with successively smaller values of α by scanning the
row corresponding to 9 degrees of freedom in Table T, but cannot reject H0

for smaller ones. Therefore, we have P < 0.01 for this test.
Suppose we had wanted to test H0 : µ = 500 g vs. H1 : µ > 500 g using

the same data and test statistic value, namely Ts = −3.196. The scenario
here could be that we want a commercial diet that actually increases the
weight of tilapia over natural food, and are not interested in ones that yield
lower weights. In this case, for α = 0.05 we would not reject H0, because
Ts = −3.196 < 1.833. The test is non-significant, with P > 0.05.

10.8.2 One-tailed t test - SAS demo

Recall the elytra length example, where we tested H0 : µ = 5.2 mm vs.
H1 : µ 6= 5.2 mm using SAS. While there is no option for one-tailed tests in
proc univariate, we can reinterpret the output and so derive a P value for a
one-tailed test.

Suppose we want to test H0 : µ = 5.2 mm vs. H1 : µ < 5.2 mm. This
implies we want to test whether predators reared on artificial diet are smaller
than those reared on natural food, which have a length of 5.2 mm. This would
be reasonable if we want to detect diets that are deficient in some manner.
If H1 were true we would expect to see a negative value of Ts, because Ȳ
would likely be smaller than µ0. This is what occurred in the SAS output,
because Ȳ = 4.8 < 5.2 mm and Ts = −1.75:

Student’s t t -1.74574 Pr > |t| 0.1244
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The one-tailed P value in this case is simply half the two-tailed P value,
or P (one-tailed) = P (two-tailed)/2= 0.1244/2 = 0.0622. This is because
the two-tailed test gives the P value for both tails (see Fig. 10.9), but for
this one-tailed test we only need the probability for the left tail of the t
distribution (Fig. 10.12).

Now suppose we want to test H0 : µ = 5.2 mm vs. H1 : µ > 5.2 mm.
This implies we want to test whether predators reared on artificial diet are
larger than those reared on natural food. If H1 were true we would expect
to see a positive value of Ts, because Ȳ would likely be greater than µ0. This
is not what occurred in the SAS output, because Ȳ = 4.8 < 5.2 mm and
Ts = −1.75. The P value should therefore be large in this case, and in fact
the one-tailed P value is 1− P (two-tailed) = 1− 0.1244/2 = 0.9378. This is
the probability for the right tail of the t distribution, which is large because
Ts is negative.

We can distill the above procedures to a simple rule that will convert
the SAS two-tailed P value to the appropriate one-tailed one. Assume
H0 : µ = µ0 is the null hypothesis. If the test statistic favors the alter-
native hypothesis, then the one-tailed P value is P (two-tailed)/2,
otherwise it is 1− P (two-tailed)/2. For example, if we have H1 : µ > µ0

and Ts > 0, the test statistic favors H1 and the P value is P (two-tailed)/2.
This procedure also works for tests calculated by hand. You first find the P
value for the two-tailed test, then convert it to a one-tailed P value using
the same rule.

10.8.3 One-tailed tests - a warning

As discussed above, the P value for a one-tailed test may sometimes be half
the two-tailed P value. This makes it tempting to employ a one-tailed test
after a two-tailed test yields a nonsignificant result. However, the proper
procedure is to determine whether a one-tailed alternative hypothesis and
test is appropriate for the situation before conducting the test. For example,
artificial diets for insects are unlikely to yield larger insects than natural
diets, and so it seems reasonable to use an alternative hypothesis of the form
H1 : µ < µ0, where µ0 is the size of insects reared on natural foods. This
choice of an alternative hypothesis can be justified based on prior knowledge
of the system.
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10.9 Confidence intervals and hypothesis test-

ing

Confidence intervals are typically used as measures of the accuracy or reli-
ability of parameter estimates, but can also be used for hypothesis testing.
Why might you do this? There are cases where the statistical software only
provides confidence intervals for a parameter, but a test can still be devel-
oped using these intervals. Also, a publication may only provide confidence
intervals for a parameter, but the reader can still conduct a test if required
using these intervals. Some statisticians argue that this makes confidence
intervals more useful than hypothesis testing, because they also provide in-
formation on the magnitude of a population parameter, and how reliably it
is estimated (see Yaccoz 1991).

We will now demonstrate how a confidence interval for µ is equivalent to
a one-sample t test. Recall that a 100(1− α)% confidence interval for µ has
the form (

Ȳ − cα,n−1
s√
n
, Ȳ + cα,n−1

s√
n

)
(10.18)

(see Chapter 9). Suppose that we want to test H0 : µ = µ0. If we accept H0

when this confidence interval includes µ0, and reject it if the interval does not
include µ0, this is an α level test of H0, equivalent to running a one-sample
t test.

To see this connection, note that we would accept H0 if µ0 was inside this
interval, or

Ȳ − cα,n−1
s√
n
< µ0 < Ȳ + cα,n−1

s√
n
. (10.19)

Rearranging these inequalities, we see it is equivalent to saying

−cα,n−1 <
Ȳ − µ0

s/
√
n

< cα,n−1, (10.20)

or

−cα,n−1 < Ts < cα,n−1, (10.21)

where Ts is the test statistic for a one-sample t test. We would reject H0

if Ts falls outside this interval. Note that this acceptance region is exactly
the same as for the t test with Type I error rate of α, which is of the form
(−cα,n−1, cα,n−1). Thus, the test based on a 100(1− α)% confidence interval
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is equivalent to an α level test. In particular, a 95% confidence interval is
equivalent to an α = 0.05 test.

Conversely, it is often possible to reverse this process and obtain a confi-
dence interval from a statistical test. The procedure is called ‘inverting the
test’ (Bickel & Doksum 1977).

10.10 Likelihood ratio tests

We saw earlier how statisticians use the concept of maximum likelihood to es-
timate population parameters (Chapter 8). The maximum likelihood method
begins by constructing a likelihood function based on the distribution of the
data (Poisson, normal, etc.) and the observed data. We then maximize the
likelihood as a function of the parameters of the distribution (µ, σ2, etc).
The values of the parameters that maximize the likelihood are the maximum
likelihood estimates of the parameters. The likelihood function is not a fixed
quantity but instead varies with the observed data, so that different data
sets yield different estimates of the population parameters. Maximum likeli-
hood estimators have desirable statistical properties and in many cases yield
estimators that seem reasonable (like using Ȳ to estimate µ).

Likelihood methods can also be used to develop statistical tests called
likelihood ratio tests. These tests also have desirable statistical proper-
ties and in many cases are identical to classical statistical tests. Likelihood
methods thus provide a theoretical framework for many statistical problems,
including parameter estimation, confidence intervals, and hypothesis testing.
The main drawback of these methods is that one must be willing to specify
the distribution of the data, be it Poisson, binomial, normal, or more exotic
distributions.

10.10.1 Example of a likelihood ratio test

We will now develop a likelihood ratio test that leads to the familiar one-
sample t test (Mood et al. 1974) . We suppose that the data are normally
distributed and we wish to test H0 : µ = µ0 vs. H1 : µ 6= µ0. A random
sample with n observations has been obtained.

We can think of H0 and H1 as two different statistical models for the data.
Under H0, the data are assumed to be normally distributed with µ = µ0, but
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can have any value of σ2 because this parameter is left unspecified. Under
H1, the data are permitted to have any value of µ and σ2.

The first step in constructing a likelihood ratio test is to find the maxi-
mum likelihood estimates of the parameters for each of these two statistical
models. We have already dealt with this problem for the model specified by
H1 – this is just maximum likelihood estimation of µ and σ2 for the normal
distribution. The same methods can be used to estimate σ2 under H0, but
we will not go into the details.

This process can be illustrated by plotting the likelihood function as a
function of µ and σ2. To make things more concrete, we show the likelihood
function for a data set with three data points (Y1 = 4.5, Y2 = 5.3, and
Y3 = 5.4). Also shown is a possible null hypothesis for these data, such as
H0 : µ = 4.7. See figure below.

The maximum likelihood estimates of µ and σ2 under H1 are the values
of µ and σ2 found at the peak of the likelihood function. However, the
maximum likelihood estimate of σ2 under H0 occurs at a different location.
Because µ is fixed at 4.7 under H0, σ2 is only free to vary along the vertical
line shown in the figure. The maximum likelihood estimate of σ2 under H0

is the value of σ2 that maximizes the likelihood along this line.

Figure 10.13: Likelihood ratio test for H0 : µ = 4.7

We are now ready to construct the likelihood ratio test statistic. Let LH0
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be the maximum height of the likelihood surface under H0, which occurs at
the maximum likelihood estimate of σ2 under H0. Similarly, let let LH1 be
the maximum height under H1, which occurs at the estimates of µ and σ2

under H1. The test statistic λ is just the ratio of these two quantities:

λ =
LH0

LH1

. (10.22)

How does this statistic behave? If H0 is true, the peak of the likelihood
function will be near the vertical line, and the height of the likelihood function
will be similar at the two locations. This implies a value of λ ≈ 1 because
LH0 ≈ LH1 . If H0 is false and H1 true, however, we would expect to see
LH0 < LH1 and so λ < 1. We would therefore reject H0 for sufficiently small
values of λ.

More formally, we reject H0 if λ < c and accept H0 otherwise. The value
of c is determined using the Type I error rate α and the distribution of λ
under H0.

An alternate form of the test uses −2 ln(λ) rather than λ itself, and rejects
H0 for values of −2 ln(λ) > d, where d is a constant that controls the Type I
error rate. This form of the test rejects for large values of the test statistic,
similar to other tests we have developed. Note that

−2 ln(λ) = 2 ln(LH1)− 2 ln(LH0) (10.23)

by the properties of logarithms, and is a positive quantity. SAS provides
values of the likelihood function in this format for some statistical procedures,
and these can be used to construct likelihood ratio tests.

How is the likelihood ratio test related to a t test? It can be shown
mathematically that the value of the test statistic

Ts =
Ȳ − µ0

s/
√
n

(10.24)

is directly proportional to −2 ln(λ), the likelihood ratio test statistic (Mood
et al. 1974). The figure below plots the value of −2 ln(λ) vs. Ts for a scenario
matching our example data set. We observe there is a one-to-one correspon-
dence between the two test statistics. When such a correspondence occurs
between two test statistics, the tests are considered to be statistically equiv-
alent. We will later see that many statistical tests are in fact likelihood ratio
tests. These include tests in analysis of variance, regression, and methods
for categorical data such as χ2 tests.
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Figure 10.14: Likelihood ratio vs. t test statistics.
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10.12 Problems

1. A company that rears beneficial insects produces lacewings (Chrysop-
idae: Neuroptera) whose mean length is 10 mm. A new method of
rearing is being tested and the company wants to determine if the new
method changes lacewing length. A sample of 10 insects is collected
for the new method, yielding the following lengths:

10.3 14.1 11.5 9.9 12.6 9.7 11.0 9.5 12.4 13.5

(a) Test whether the lacewings produced using the new method have
the same length as before (H0 : µ = 10 vs. H1 : µ 6= 10), using
a two-tailed test and Table T. Provide a P value and discuss the
significance of the test. Show your calculations.

(b) Suppose the company is only interested in rearing methods that
yield larger lacewing lengths, because bigger is better with benefi-
cial insects. Test H0 : µ = 10 vs. H1 : µ > 10. Provide a P value
and discuss the significance of the test.

(c) Use SAS and proc univariate to carry out the same two tests.
What are the exact P values for these tests? Attach your SAS
program and printout.

2. A study is done to measure the concentration of a particular chemical
(ppm) in drinking water, with samples taken at eight locations. The
samples were analyzed and the following results obtained:

23 20 24 20 23 24 21 22

(a) Test whether the concentration of the chemical is significantly
different from 20 ppm, the level set by the EPA, using a two-tailed
test and Table T. Provide a P value and discuss the significance
of the test. Show your calculations.

(b) The EPA actually requires that the concentration of the chemical
be equal to or below 20 ppm. Test whether the chemical concen-
tration exceeds this level using a one-tailed test and Table T. In
particular, test H0 : µ = 20 vs. H1 : µ > 20. Provide a P value
and discuss the significance of the test.
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(c) Use SAS and proc univariate to carry out the same two tests.
What are the exact P values for these tests? Attach your SAS
program and printout.
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