
Chapter 16

Nonparametric Tests

The statistical tests we have examined so far are called parametric tests,
because they assume the data have a known distribution, such as the normal,
and test hypotheses about the parameters of this distribution. Examples
of such tests are the F test in ANOVA, and one- or two-sample t tests.
Parametric tests can also be constructed for other distributions, such as the
Poisson and binomial.

While ANOVA and other procedures are derived assuming the data are
normal, they can also be validly applied to non-normal data provided sample
sizes are large, due to the central limit theorem (Glass et al. 1972). For
example, the means used in the ANOVA F tests are assumed to have a
normal distribution, which will be true for normal data. This will also hold
for non-normal data, provided the sample sizes are sufficiently large for the
central limit theorem to operate (Chapter 7). Thus, the tests used in ANOVA
will still be valid for large sample sizes, regardless of the distribution of the
data. Valid in this context means the tests have the correct Type I error rate
(such as α = 0.05) and power levels.

There are conditions where parametric procedures are less than ideal.
For example, suppose that the data appear non-normal and sample sizes are
relatively small. We cannot rely on the central limit theorem here, and so
parametric tests based on the normal distribution might be invalid. Non-
parametric tests are often useful in this situation. These procedures do
not assume a particular probability distribution for the data, and are there-
fore applicable for any distribution. For this reason they are also known
as distribution-free methods. Nonparametric tests can be more powerful
than parametric tests for non-normal data (Conover 1999; Hollander et al.
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2014). The increase in power can be substantial for distributions with heavy
tails compared to the normal distribution, which implies that extreme obser-
vations are more common. While nonparametric tests are less powerful than
parametric ones for normal data, the loss of power is often quite minimal.

We will examine three types of nonparametric tests for one-way designs.
The first are tests based on ranks. These replace the data values with their
rank values, obtained by ordering the data from smallest to largest. They
then utilize test statistics that are functions of these ranks rather than the
original data values. We will cover rank tests for two or more groups, in
particular the Wilcoxon and Kruskal-Wallis tests (Conover 1999; Hollander
et al. 2014). They are used to test whether the distributions for each group
differ in location, and serve a function similar to parametric tests like one-
way ANOVA. We will also examine the two-sample Kolmogorov-Smirnov
test, which can detect differences in both the shape and location of two
distributions (Conover 1999; Hollander et al. 2014). It makes use of the
empirical distribution function for each group, the empirical counterpart of
the distribution function for continuous random variables (Chapter 6). The
last type of nonparametric test we will consider are randomization tests.
These tests examine whether the data are consistent with a null hypothesis of
randomness (Hinkelmann & Kempthorne 1994; Manly 1997). The behavior
of a test statistic (often a parametric one like an F statistic) is examined
under this null hypothesis, in a process that involves randomly permuting or
rearranging observations across the groups many times.

We will use data from a study of chitons (a kind of mollusk) in the inter-
tidal zone (Flores-Campaña et al. 2012) to illustrate the use of nonparametric
tests. Populations of Chiton albolineatus were sampled from three islands in
Mazatlan Bay, Mexico. For each island, samples were taken from sites that
were exposed or sheltered from wave action, and the body length of the chi-
tons measured. The authors found that the distribution of chiton length
was non-normal, and so used the nonparametric Kruskal-Wallis test to com-
pare the lengths of chitons across islands and sites. They found significant
differences in length among various combinations of island and site, and a
tendency for chiton to be larger in exposed sites. We will use a small subset
of these data in our calculations, shown in Tables 16.1 and 16.2.
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Table 16.1: Example 1 - Body lengths of Chiton albolineatus in the intertidal
zone of the island of Venados (Flores-Campaña et al. 2012). Chitons were
sampled from sites sheltered or exposed to wave action. Also shown are the
rank values (Rij) for each observation, and the sum of the ranks for each
groups (

∑ni
j=1 Rij, where ni is the sample size for each group.)

Site Yij = Length (mm) Rij i j
∑ni

j=1Rij

Sheltered 44.39 20 1 1
Sheltered 22.30 3 1 2
Sheltered 21.31 2 1 3
Sheltered 23.80 5 1 4
Sheltered 26.23 8 1 5 70
Sheltered 27.98 10 1 6
Sheltered 28.10 11 1 7
Sheltered 24.39 6 1 8
Sheltered 22.32 4 1 9
Sheltered 15.16 1 1 10
Exposed 30.20 16 2 1
Exposed 29.36 14 2 2
Exposed 28.88 12 2 3
Exposed 32.23 19 2 4
Exposed 26.54 9 2 5 140
Exposed 24.85 7 2 6
Exposed 30.54 17 2 7
Exposed 31.36 18 2 8
Exposed 28.98 13 2 9
Exposed 29.49 15 2 10
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Table 16.2: Example 2 - Body length of C. albolineatus on the sheltered side
of three islands, located in Mazatlan Bay, Mexico (Flores-Campaña et al.
2012). Also shown are the rank values (Rij) for each observation, and the
sum of the ranks for each group (

∑ni
j=1Rij)

Site Yij = Length (mm) Rij i j
∑ni

j=1Rij

Lobos 23.86 16 1 1
Lobos 20.20 6 1 2
Lobos 29.32 27 1 3
Lobos 23.56 13 1 4
Lobos 24.32 17 1 5 157
Lobos 22.33 12 1 6
Lobos 23.69 14 1 7
Lobos 26.78 21 1 8
Lobos 27.32 23 1 9
Lobos 21.22 8 1 10

Pajaros 32.90 29 2 1
Pajaros 32.73 28 2 2
Pajaros 26.94 22 2 3
Pajaros 29.09 26 2 4
Pajaros 12.32 1 2 5 142
Pajaros 15.25 5 2 6
Pajaros 25.87 19 2 7
Pajaros 20.21 7 2 8
Pajaros 13.96 3 2 9
Pajaros 12.48 2 2 10
Venados 44.39 30 3 1
Venados 22.30 10 3 2
Venados 21.31 9 3 3
Venados 23.80 15 3 4
Venados 26.23 20 3 5 166
Venados 27.98 24 3 6
Venados 28.10 25 3 7
Venados 24.39 18 3 8
Venados 22.32 11 3 9
Venados 15.16 4 3 10
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16.1 Wilcoxon two-sample test

The Wilcoxon test provides a nonparametric alternative to a two-sample t
test or a one-way ANOVA for two groups (see Chapter 11). It does not
assume any particular distribution of the data, except that it is a continuous
one (see Chapter 6). The null and alternative hypotheses for the Wilcoxon
test are expressed in terms of the cumulative distribution for the two groups,
say F1(y) and F2(y). Under the null hypothesis the two distribution are
supposed to be identical, which can be expressed as H0 : F2(y) = F1(y) for
all y (Fig. 16.1). Under the alternative, one distribution is shifted from
the other by a distance ∆, but they otherwise have the same shape (Conover
1999; Hollander et al. 2014). This can be expressed as H1 : F2(y) = F1(y−∆)
(Fig. 16.2).

Figure 16.1: Cumulative distributions for two groups under H0 : ∆ = 0.

The Wilcoxon test statistic W is based on the ranks of the observations.
The observations are first assigned ranks from the smallest to the largest
across the two groups. The test statistic is then the sum of the ranks for
one of the groups. Typically the one with the smallest sample size is chosen,
or if the sample sizes are equal, one is arbitrarily selected (SAS uses group
order). For the Example 1 data the sample sizes are equal, so we could use
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Figure 16.2: Cumulative distributions for two groups under H1 : ∆ = 10.

the summed ranks for the Sheltered chiton group, namely

W =

n1∑
j=1

R1j = 70 (16.1)

(Conover 1999; Hollander et al. 2014). We would expect small values of
this statistic when F1 is located to the left of F2 (∆ > 0), because this
implies that values of Y1j are more likely to be small relative to Y2j ones.
Conversely, large values of the statistic would occur when F1 is to the right of
F2 (∆ < 0). W is also sensitive to differences in the expected values (means)
of the two distributions, because of the relationship between expected values
and distributions. For a two-tailed test, we would reject H0 if W is sufficiently
large, or sufficiently small. An exact P value for both one- and two-tailed
tests can be calculated using the distribution of W . We will let SAS handle
the calculations for exact tests.

For large sample sizes, the distribution of W under H0 approaches the
normal distribution with mean and variance given by

EH0 [W ] =
n1(n1 + n2 + 1)

2
(16.2)

and

V arH0 [W ] =
n1n2(n1 + n2 + 1)

12
. (16.3)



16.1. WILCOXON TWO-SAMPLE TEST 501

The expected value formula assumes W is calculated using the first group.
We then have

Z =
W − EH0 [W ]√
V arH0 [W ]

∼ N(0, 1) (16.4)

for large sample sizes. We can use this approximation to find P values for
both one- and two-tailed tests (Hollander et al. 2014).

The Wilcoxon statistic W can be derived starting with a two-sample t
test (see Chapter 11), and simply replacing the observations with their rank
values (Bickel & Doksum 1977). It is also equivalent to the Mann-Whitney
U test, another common nonparametric test. Modifications of the Wilcoxon
test are also available to deal with the problem of tied observations. The
tied observations are assigned the average of the tied ranks, and the variance
equation is modified to account for the number of ties (Hollander et al. 2014).

Sample calculation

For the Example 1 data, we see that W = 70 for the Sheltered chitons (see
Table 16.1). We will use the normal approximation for this statistic to obtain
a two-tailed P value for the test. We have EH0 [W ] = 10(10+10+1)/2 = 105
and V arH0 [W ] = 10 · 10(10 + 10 + 1)/12 = 175, and so

Z =
70− 105√

175
= −2.646. (16.5)

From Table Z, we find that P [Z < −2.646] = 1−P [Z < 2.646] ≈ 1−0.9960 =
0.0040. The two-tailed P value is then twice this value, or P = 2(0.0040) =
0.0080.

16.1.1 Wilcoxon test for Example 1 - SAS demo

We now conduct the Wilcoxon test using the Example 1 data and the SAS
procedure npar1way, which implements a number of nonparametric procedures
for one-way (single factor) designs (SAS Institute Inc. 2014a). See program
listing below. The Wilcoxon test is invoked by adding the wilcoxon option
in the proc npar1way statement. The class statement identifies the group
variable, while var selects the dependent variable. The exact wilcoxon line
generates exact P values for the test. The program also includes proc gplot

code to plot the group means (SAS Institute Inc. 2014b). For purposes
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of comparison, a one-way ANOVA is also conducted using proc glm. See
program and output below.

We find that the Wilcoxon two-tailed test is highly significant, for both
the exact test (W = 70, P = 0.0068) and the normal approximation (Z =
−2.6080, P = 0.0091). The value of Z calculated by SAS differs slightly
from our earlier result, because it includes a correction that improves the
normal approximation. From the summed ranks for each group, as well as
the graph, we see that the Sheltered chitons are smaller than the Exposed
ones. Note that the parametric one-way ANOVA for these data was non-
significant (F1,18 = 2.13, P = 0.1619). This likely occurred because of one
very large and one small chiton at the Sheltered site, which would be outliers
in the ANOVA. In the analysis using ranks, these are simply the largest and
smallest rank values, only one step away from the next ones.
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SAS Program

* WKWtest_chitons_Venados.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Wilcoxon and Kruskal-Wallis tests for chiton length’;

data chitons;

input site :$10. length;

datalines;

Sheltered 44.39

Sheltered 22.30

Sheltered 21.31

Sheltered 23.80

Sheltered 26.23

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Plot means, standard error, and observations;

proc gplot data=chitons;

plot length*site / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Kruskal-Wallis/Wilcoxon tests;

proc npar1way wilcoxon data=chitons;

class site;

var length;

exact wilcoxon;

run;

* One-way ANOVA for comparison;

proc glm data=chitons;

class site;

model length = site;

output out=resids p=pred r=resid;

run;

quit;
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SAS Output

Wilcoxon and Kruskal-Wallis tests for chiton length 1

13:00 Wednesday, November 18, 2015

Obs site length

1 Sheltered 44.39

2 Sheltered 22.30

3 Sheltered 21.31

4 Sheltered 23.80

5 Sheltered 26.23

etc.

Wilcoxon and Kruskal-Wallis tests for chiton length 2

13:00 Wednesday, November 18, 2015

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable length

Classified by Variable site

Sum of Expected Std Dev Mean

site N Scores Under H0 Under H0 Score

Sheltered 10 70.0 105.0 13.228757 7.0

Exposed 10 140.0 105.0 13.228757 14.0

Wilcoxon Two-Sample Test

Statistic (S) 70.0000

Normal Approximation

Z -2.6080

One-Sided Pr < Z 0.0046

Two-Sided Pr > |Z| 0.0091

t Approximation

One-Sided Pr < Z 0.0086

Two-Sided Pr > |Z| 0.0173

Exact Test

One-Sided Pr <= S 0.0034
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Two-Sided Pr >= |S - Mean| 0.0068

Z includes a continuity correction of 0.5.

Kruskal-Wallis Test

Chi-Square 7.0000

DF 1

Pr > Chi-Square 0.0082

Wilcoxon and Kruskal-Wallis tests for chiton length 3

13:00 Wednesday, November 18, 2015

The GLM Procedure

Class Level Information

Class Levels Values

site 2 Exposed Sheltered

Number of Observations Read 20

Number of Observations Used 20

Wilcoxon and Kruskal-Wallis tests for chiton length 4

13:00 Wednesday, November 18, 2015

The GLM Procedure

Dependent Variable: length

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 66.4301250 66.4301250 2.13 0.1619

Error 18 562.0077700 31.2226539

Corrected Total 19 628.4378950
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R-Square Coeff Var Root MSE length Mean

0.105707 20.37791 5.587723 27.42050

Source DF Type I SS Mean Square F Value Pr > F

site 1 66.43012500 66.43012500 2.13 0.1619

Source DF Type III SS Mean Square F Value Pr > F

site 1 66.43012500 66.43012500 2.13 0.1619

Figure 16.3: Means ± standard errors and individual data points for the
Example 1 data.
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16.2 Kruskal-Wallis test

The Kruskal-Wallis test is an extension of rank methods to one-way designs
with three or more groups. The null and alternative hypotheses are similar to
the Wilcoxon test, with the cumulative distributions for the different groups
the same under H0, and differing by shift parameters under H1. The Kruskal-
Wallis test is sensitive to these shifts as well as differences among the means
of the groups.

The Kruskal-Wallis test statistic H is calculated using the ranks of the
observations across all groups. Suppose we have a different groups, and for
simplicity assume the same sample size n for each group. The Kruskal-Wallis
test statistic is

H =
12n

an(an+ 1)

a∑
i=1

(∑n
j=1Rij

n
− an+ 1

2

)2

(16.6)

(Conover 1999; Hollander et al. 2014). Note that the left term in parentheses
is the mean rank for each group, while the right one is the mean rank across
all the groups. This implies that H will become large when the mean rank
differs among groups, similar to the way differences in the group means affect
the F statistic for one-way ANOVA. In fact, the Kruskal-Wallis statistic can
be derived from the F test by substituting ranks for the observations (Bickel
& Doksum 1977). A more complex form of H is used when sample sizes are
unequal, or when there are ties in the data. Under H0, H has approximately
a χ2 distribution with a− 1 degrees of freedom.

Sample calculations

We will illustrate the Kruskal-Wallis test using both the Example 1 and 2
data sets. For Example 1, we have two groups with ten observations each, so
a = 2 and n = 10. The summed ranks for the two groups are 70 (Sheltered)
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and 140 (Exposed). It follows that

H =
12 · 10

2 · 10(2 · 10 + 1)

[(
70

10
− 2 · 10 + 1

2

)2

+

(
140

10
− 2 · 10 + 1

2

)2
]

=
120

420

[
(7− 10.5)2 + (14− 10.5)2

]
= 0.2857 [12.25 + 12.25]

= 7.00.

The degrees of freedom are a − 1 = 2 − 1 = 1. From Table C, we find that
P < 0.01, and so the Exposed and Sheltered chitons are significantly different
in length (H = 7.00, df = 1, P < 0.01).

The Example 2 data involves chitons collected from three different islands
(a = 3), with ten chitons sampled per island (n = 10). The summed ranks for
the three islands are 157, 142, and 166. From this information, we calculate
that

H =
12 · 10

3 · 10(3 · 10 + 1)

·

[(
157

10
− 3 · 10 + 1

2

)2

+

(
142

10
− 3 · 10 + 1

2

)2

+

(
166

10
− 3 · 10 + 1

2

)2
]

=
120

930

[
(15.7− 15.5)2 + (14.2− 15.5)2 + (16.6− 15.5)2

]
= 0.129 [0.04 + 1.69 + 1.21]

= 0.38.

The degrees of freedom are a − 1 = 3 − 1 = 2. From Table C, we find
that P < 0.9. There was no significant difference in length among the three
islands (H = 0.38, df = 2, P < 0.9).

16.2.1 Kruskal-Wallis test for Example 1 - SAS demo

The Kruskal-Wallis test is automatically calculated when the wilcoxon option
for proc npar1way is used (see previous SAS output). We see there is a highly
significant difference in length betwee the Sheltered and Exposed sites (H =
7.00, df = 1, P = 0.0082).
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16.2.2 Kruskal-Wallis test for Example 2 - SAS demo

The Kruskal-Wallis test for the Example 2 data is shown below. There was
no significant difference in length among the three islands (H = 0.38, df =
2, P = 0.8272). Note that an exact version of this test is also provided
(P = 0.8386).

SAS Program

* KWtest_chitons_3islands.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Kruskal-Wallis test for chiton length’;

data chitons;

input island $ length;

datalines;

Lobos 23.86

Lobos 20.20

Lobos 29.32

Lobos 23.56

Lobos 24.32

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Plot means, standard error, and observations;

proc gplot data=chitons;

plot length*island / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Kruskal-Wallis/Wilcoxon tests;

proc npar1way wilcoxon data=chitons;

class island;

var length;

exact wilcoxon;

run;

quit;
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Figure 16.4: Means ± standard errors and individual data points for the
Example 2 data.
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SAS Output

Kruskal-Wallis test for chiton length 1

10:24 Wednesday, January 7, 2015

length

Obs island length Rank

1 Lobos 23.86 16

2 Lobos 20.20 6

3 Lobos 29.32 27

4 Lobos 23.56 13

5 Lobos 24.32 17

etc.

Kruskal-Wallis test for chiton length 2

10:24 Wednesday, January 7, 2015

The NPAR1WAY Procedure

Wilcoxon Scores (Rank Sums) for Variable length

Classified by Variable island

Sum of Expected Std Dev Mean

island N Scores Under H0 Under H0 Score

Lobos 10 157.0 155.0 22.730303 15.70

Pajaros 10 142.0 155.0 22.730303 14.20

Venados 10 166.0 155.0 22.730303 16.60

Kruskal-Wallis Test

Chi-Square 0.3794

DF 2

Asymptotic Pr > Chi-Square 0.8272

Exact Pr >= Chi-Square 0.8386
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16.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a nonparametric procedure used to compare
the distributions of two samples. Let F1(y) be the cumulative distribution
function for the first group, while F2(y) is the second. The null hypothesis
for the Kolmogorov-Smirnov test is H0 : F2(y) = F1(y), which means that
the two groups have the same distribution. The alternative hypothesis is
H1 : F2(y) 6= F1(y) for some y, implying there is some difference in the
distributions, which could involve their location, general shape, variance,
and so forth. This is a broader alternative hypothesis than the rank tests we
examined earlier, where the distributions had the same shape but differed by
location.

The Kolmogorov-Smirnov test statistic is calculated using the empirical
distribution functions of the two samples. These are the empirical counter-
parts of the distribution functions defined for distributions like the normal
(see Chapter 6). For a sample with ni observations, the empirical distribution
function is defined as

Gi(y) =
Number of Yij values ≤ y

ni
. (16.7)

Gi(y) increases in a step-like fashion as y increases, with a jump occurring
at every value of Yij (Conover 1999; Hollander et al. 2014). Fig. 16.5 shows
these functions for the two samples in Example 1. The Kolmogorov-Smirnov
test uses the maximum vertical distance between the two functions as the
test statistic. The distance is defined using the formula

D = max
y
|G1(y)−G2(y)| (16.8)

(Conover 1999; Hollander et al. 2014). D is the largest distance between
G1(y) and G2(y) over all values of y, with the absolute value making it a
positive quantity. We would then reject H0 for sufficiently large values of
D. The P value for the test can calculated exactly for small sample sizes,
and there is also a large sample approximation for the test. We will let
SAS handle the details. This test can also be used when there ties in the
observations, in which case it is conservative, meaning it is less likely to reject
H0 (Hollander et al. 2014).



16.3. KOLMOGOROV-SMIRNOV TEST 513

Figure 16.5: Empirical distribution functions for the Example 1 data. Also
shown is the maximum value of D for the two samples.

16.3.1 Kolmogorov-Smirnov test for Example 1 - SAS
demo

The SAS procedure npar1way can also be used for the Kolmogorov-Smirnov
test (SAS Institute Inc. 2014a). It is invoked by adding the edf option in
the proc npar1way statement (see program below). An exact version of test
can also be generated using the line exact ks. The program also includes
proc gchart code to generate histograms of the two groups (SAS Institute
Inc. 2014b). This seems more appropriate for the Kolmogorov-Smirnov test
than plotting the means, because this test can detect differences in both
shape and location. Examining the SAS output, we see that D = 0.7 (see
also Fig. 16.5). The P value for the exact version of the test is significant
(P = 0.0123), implying there is some difference in the distributions of the
two samples. The graph generated by proc gchart illustrates these differences
(Fig. 16.6). See program and output below.
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SAS Program

* KStest_chitons_Venados.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Kolmogorov-Smirnov test for chiton length’;

data chitons;

input site :$10. length;

datalines;

Sheltered 44.39

Sheltered 22.30

Sheltered 21.31

Sheltered 23.80

Sheltered 26.23

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Histograms for the two groups;

proc gchart data=chitons;

vbar length / group=site axis=axis1 gaxis=axis1 maxis=axis2;

axis1 label=(height=2) value=(height=2) width=3 minor=none;

axis2 label=(height=1.5) value=(height=1.5) width=1.5;

run;

* Kolmogorov-Smirnov test;

proc npar1way edf data=chitons;

class site;

var length;

exact ks;

run;

quit;
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SAS Output

Kolmogorov-Smirnov test for chiton length 1

10:24 Wednesday, January 7, 2015

Obs site length

1 Sheltered 44.39

2 Sheltered 22.30

3 Sheltered 21.31

4 Sheltered 23.80

5 Sheltered 26.23

etc.

Kolmogorov-Smirnov test for chiton length 2

10:24 Wednesday, January 7, 2015

The NPAR1WAY Procedure

Kolmogorov-Smirnov Test for Variable length

Classified by Variable site

EDF at Deviation from Mean

site N Maximum at Maximum

Sheltered 10 0.900 1.106797

Exposed 10 0.200 -1.106797

Total 20 0.550

Maximum Deviation Occurred at Observation 7

Value of length at Maximum = 28.10

KS 0.3500 KSa 1.5652

Kolmogorov-Smirnov Two-Sample Test

D = max |F1 - F2| 0.7000

Asymptotic Pr > D 0.0149

Exact Pr >= D 0.0123

D+ = max (F1 - F2) 0.7000

Asymptotic Pr > D+ 0.0074

Exact Pr >= D+ 0.0062
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D- = max (F2 - F1) 0.1000

Asymptotic Pr > D- 0.9048

Exact Pr >= D- 0.9091

Figure 16.6: Histograms showing the distribution of lengths for the Example
1 data.

16.4 Randomization tests

Randomization tests are another common kind of nonparametric test used for
one-way designs, as well as more complex ones (Hinkelmann & Kempthorne
1994; Manly 1997). The null hypothesis for these tests is different from other
tests we have considered, which involved statements about probability distri-
butions and their parameters. For randomization tests, the null hypothesis
is that all possible permutations (rearrangements) of the data among groups
are equally likely, given no treatment or group effects, with the observed data
being one such arrangement (Hinkelmann & Kempthorne 1994; Manly 1997).
These tests commonly employ a parametric test statistic to examine the null
hypothesis, one that is sensitive to potential differences among groups. For
one-way designs, the Fs statistic from one-way ANOVA (Chapter 11) is often
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used to detect differences in the group means. To conduct a randomization
test using this statistic, we first calculate the value of Fs(obs) for the observed
data. Similar to one-way ANOVA, we then need to determine if Fs(obs) is
sufficiently large to consider rejecting H0. This is accomplished by permuting
or rearranging the observations many times across groups, and calculating
the value of Fs for each permutation. The justification for this procedure
follows directly from the definition of H0. The P value for the test is defined
as the proportion of the Fs values greater than or equal to Fs(obs), including
Fs(obs) as one of the values.

For small data sets it may be possible to carry out all possible permu-
tations, but for larger data sets this may be impractical. Instead, the ob-
servations are randomly rearranged across groups a large number of times,
in effect drawing a random sample from all possible permutations. The col-
lection of Fs values obtained by this process is called the randomization
distribution. How many of these randomizations are needed to generate an
accurate P value for the test? Some guidance is provided by Manly (1997),
who suggests that 1000 randomizations should be sufficient for P ≈ 0.05,
and 5000 for P ≈ 0.01.

An interesting feature of randomization tests is that the randomization
distribution of Fs under H0 can be approximated by the parametric F dis-
tribution (Hinkelmann & Kempthorne 1974) under some conditions. This
provides another justification for the use of F tests when the normality as-
sumption of these tests is violated.

We will use data on nematode intensities for male vs. female bob-
cats (Lynx rufus) to illustrate randomization tests. The sampled bobcats
were recent roadkill collected from the Southern Illinois region (Francisco
A. Jimenez-Ruiz and Eliot A. Zieman, unpublished data). The guts were
examined for nematodes as well as other parasites, and the total number
counted (Table 16.3). These data have many zeroes as well as large values,
as is common for parasite intensity data. The data are clearly non-normal
and so a nonparametric test seems warranted.
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Table 16.3: Example 3 - Number of nematode parasites found in the gut of
male and female bobcats collected from Southern Illinois .

Sex Nematodes Sex Nematodes Sex Nematodes Sex Nematodes
F 0 F 0 M 6 M 8
F 8 F 5 M 10 M 0
F 0 F 0 M 1 M 60
F 0 F 0 M 0 M 25
F 0 F 0 M 5 M 1
F 0 F 11 M 59 M 0
F 0 F 0 M 2 M 74
F 1 F 5 M 3 M 3
F 2 F 11 M 0 M 1
F 1 F 0 M 44 M 15
F 1 F 24 M 1 M 0
F 6 F 13 M 1 M 7
F 1 F 2 M 0 M 0
F 6 M 2 M 0
F 2 M 17
F 1 M 5
F 13 M 3
F 0 M 26
F 0 M 20
F 7 M 3
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16.4.1 Randomization test for Example 3 - SAS demo

We will analyze the bobcat data using both one-way ANOVA and the anal-
ogous randomization test, comparing the parasite intensities for male vs.
female cats. The SAS program below first generates a graph showing the
mean intensities for both sexes, then conducts a standard one-way ANOVA.
We see that the mean intensity for male bobcats is higher than females (Fig.
16.7), and the ANOVA shows this difference is significant (F1,65 = 5.50, P =
0.0221).

The program then uses two SAS macro programs to conduct the random-
ization test (Cassell 2002). SAS macros are chunks of code that are used to
carry out custom calculations, ones not available in standard SAS procedures
(SAS Institute Inc. 2014c). They are inserted into a main program through
the use of %include statements, which point to the file locations of the macros.
Note that the percent sign (%) in tells SAS that a particular line contains
macro code. The first macro, %rand_gen.sas, is used to generate the desired
number of random permutations of the data. Once the macro is included in
the program, it can be called using the following arguments. The input data
set is specified using the indata=parasites statement, while the output data
set specified by outdata=outrand contains all the randomizations. The state-
ment numreps=5000 sets the number of randomizations, with the dependent
variable specified by depvar=nematodes.

The next step in the randomization test is to conduct a one-way ANOVA
for each one of the randomizations, as well as the original data set. This
is accomplished using proc glm with a by replicate statement. The variable
replicate is generated by the rand_gen macro to number the different ran-
domizations. In addition, a data file containing the statistical output of the
ANOVA is specified using the statement outstat=outstat1. The ANOVA for
the original data corresponds to a replicate = 0 in this output file. The
noprint option is used to suppress the printing of each ANOVA.

The last step in the randomization test uses the second macro, %rand_anl.sas,
to determine the P value for the test. The data file containing the statis-
tical output from proc glm is specified using a randdata=outstat1 argument.
The where=_source_=’sex’ and _type_=’SS3’ argument tells the macro which
part of the statistical output to use, in particular the test associated with
the sex effect and Type III sum of squares. The testprob=prob statement
tells the macro to use the P value for this F test in calculating the P value
for the randomization test. The macro uses the P rather than Fs value to
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provide some additional flexibility for other kinds of tests (Cassell 2002).
As the Fs and P value for the ANOVA are related, it yields the same re-
sult. The P value for the randomization test is provided in the SAS log.
The testlabel=Model F test argument provides some labeling for this output.
Examining the SAS log, we find that the randomization test is significant
(P = 0.0172). The P value for this test is smaller than the one found using
one-way ANOVA, and makes no assumptions about the distribution of the
data.

The remaining portion of the program generates a graph of the random-
ization distribution of Fs, and displays the value of this statistic for the
original distribution. We see that the original value of Fs lies far above most
of the randomizations. This illustrates the pattern for a significant random-
ization test. For a non-significant test, we would see an Fs value that is more
central within the randomization distribution.
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SAS Program

* Randtest_bobcat_parasites.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Randomization test for bobcat parasites’;

data parasites;

input nematodes sex $;

datalines;

0 F

8 F

0 F

0 F

0 F

etc.

;

run;

* Print data set;

proc print data=parasites;

run;

* Plot means, standard error, and observations;

proc gplot data=parasites;

plot nematodes*sex / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way ANOVA;

proc glm data=parasites;

class sex;

model nematodes = sex;

run;

* Include two macros for randomization test;

%include "C:\Users\John\Documents\My Documents\Nonparametric\rand_gen.sas";

%include "C:\Users\John\Documents\My Documents\Nonparametric\rand_anl.sas";

* One-way ANOVA as a randomization test;

%rand_gen(indata=parasites,outdata=outrand,

depvar=nematodes,numreps=5000)

proc glm data=outrand noprint outstat=outstat1;

by replicate;

class sex;

model nematodes = sex;

run;

%rand_anl(randdata=outstat1,
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where=_source_=’sex’ and _type_=’SS3’,

testprob=prob,testlabel=Model F test)

* Extract F values from outstat1 for null distribution graph;

data nulldist;

set outstat1;

if _type_="SS3";

* Assign original F value to macro variable;

if replicate=0 then call symput(’F’,F);

run;

* Null distribution;

title2 "Null distribution";

proc univariate data=nulldist noprint;

var F;

histogram F / vscale=count wbarline=3 waxis=3 height=4 href=&F whref=3

hreflabel="F";

run;

quit;

SAS Output

Randomization test for bobcat parasites 1

10:24 Friday, January 9, 2015

Obs nematodes sex

1 0 F

2 8 F

3 0 F

4 0 F

5 0 F

Randomization test for bobcat parasites 3

10:24 Friday, January 9, 2015

The GLM Procedure

Class Level Information

Class Levels Values

sex 2 F M

Number of Observations Read 67
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Number of Observations Used 67

Randomization test for bobcat parasites 4

10:24 Friday, January 9, 2015

The GLM Procedure

Dependent Variable: nematodes

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 1 1122.49709 1122.49709 5.50 0.0221

Error 65 13274.57754 204.22427

Corrected Total 66 14397.07463

R-Square Coeff Var Root MSE nematodes Mean

0.077967 183.4248 14.29071 7.791045

Source DF Type I SS Mean Square F Value Pr > F

sex 1 1122.497087 1122.497087 5.50 0.0221

Source DF Type III SS Mean Square F Value Pr > F

sex 1 1122.497087 1122.497087 5.50 0.0221

SAS Log

Randomization test for Model F test where _source_=’sex’ and _type_=’SS3’

has significance level of 0.0172
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Figure 16.7: Means ± standard errors and individual data points for the
Example 1 data.

Figure 16.8: Distribution of F under the null hypothesis, obtained through
randomization.
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16.5 Limitations of nonparametric tests

While nonparametric tests can be useful for non-normal data, they do have
some drawbacks. One is that the number of designs that have nonparametric
tests are fairly limited. We have seen tests nonparametric tests analogous
to one-way ANOVA and two-sample t tests. There is also a rank test for
randomized block designs called Friedman’s test, as well as procedures for
multiple comparisons (Hollander et al. 2014). Unfortunately, for more com-
plex designs there are few available procedures.

Although nonparametric tests are not based on a particular distribution,
they do make some assumptions. Consider the null and alternative hypothe-
ses for the Wilcoxon test. The two groups are assumed to have the same
cumulative distribution function, differing only by a shift parameter ∆. This
implies the two groups have the same variance under both hypotheses, simi-
lar to parametric ones. When the variances are unequal as well as the sample
sizes, both parametric and nonparametric tests may not be valid (Stewart-
Oaten 1995). In particular, they may not have the correct Type I error
rate.

Table 16.4 illustrates how unequal variances and sample sizes can affect
the Type I error rate. It summarizes a simulation study comparing the
validity of several different methods of comparing samples from two groups,
including parametric and nonparametric methods. The first six columns
give the theoretical mean, variance, and the sample sizes for the two groups.
The simulated data were normally distributed with these parameters. Each
data set was then analyzed using a two-sample t test, a Welch t test that
implements a correction for unequal variances, the Wilcoxon test, and a
randomization test. Any significant differences detected by these tests are
Type I errors, because the two groups have the same mean. A total of
5000 simulated data sets were generated and analyzed. The proportion of
simulated data sets showing significant results is an estimate of the Type
I error rate (α) for each test. If the test is conducted using α = 0.05, for
example, we would expect this proportion of the simulations to be significant.

Regardless of differences in the variance between the two groups, when
the sample sizes are equal all methods yield a Type I error rate near the
nominal α = 0.05 level. When sample sizes are unequal, the t test, Wilcoxon
test, and the randomization test all yield Type I error rates higher or lower
than α = 0.05. Note that the pattern depends on which group (high or low
variance) has the smaller sample size. Thus, the validity of these procedures
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depends on equal variances, especially when sample sizes are unequal across
groups. This assumption needs to be carefully examined within applying
both parametric and nonparametric tests.

The only valid test in this scenario was the Welch t test, which employs a
correction for unequal variances. The correction alters the degrees of freedom
for the test, based on the sample sizes and variances of the two groups (Stuart
et al. 1999). It is conducted automatically by proc ttest in SAS, with
the output labeled Satterthwaite (see Chapter 11). There is also a similar
procedure for one-way designs called Welch ANOVA. It can conducted under
proc glm using the welch option for the means statement.

Table 16.4: Effect of unequal variances and sample sizes on the estimated
Type I error rate for common parametric and nonparametric tests, using
α = 0.05 for all tests. See text for further details.

µ1 σ2
1 n1 µ2 σ2

2 n2 t Welch Wilcoxon Randomization
10 1 10 10 1 10 0.0474 0.0454 0.0422 0.0484
10 1 10 10 2 10 0.0516 0.0504 0.0514 0.0524
10 1 5 10 2 15 0.0208 0.0510 0.0236 0.0214
10 1 15 10 2 5 0.0956 0.0578 0.0662 0.0954
10 1 10 10 4 10 0.0510 0.0452 0.0464 0.0510
10 1 5 10 4 15 0.0104 0.0494 0.0170 0.0108
10 1 15 10 4 5 0.1588 0.0574 0.0836 0.1598
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16.6 Problems

1. Using the Example 3 data, conduct a Wilcoxon test comparing parasite
intensity in male vs. female bobcats. How do the results compare to
the randomization test for these data in the text?

2. Data were also collected on the number of cestode parasites found in the
bobcats from Example 3 (see below). Cestodes are another common
type of gut parasite. Conduct a randomization test comparing the
cestode intensity for male vs. female bobcats.

Sex Cestodes Sex Cestodes Sex Cestodes Sex Cestodes
F 1 F 0 M 9 M 3
F 7 F 7 M 31 M 2
F 9 F 6 M 5 M 2
F 0 F 33 M 0 M 0
F 1 F 2 M 10 M 3
F 1 F 1 M 6 M 7
F 8 F 18 M 0 M 2
F 0 F 6 M 0 M 5
F 0 F 1 M 6 M 1
F 32 F 14 M 9 M 1
F 11 F 12 M 6 M 4
F 4 F 6 M 18 M 0
F 3 F 0 M 4 M 3
F 13 M 9 M 1
F 2 M 6
F 2 M 5
F 12 M 17
F 4 M 4
F 1 M 8
F 3 M 11
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