
Chapter 18

Correlation

Correlation is a statistical technique used to examine the association be-
tween two continuous variables. Unlike regression, correlation does not as-
sume a particular direction to the relationship among the variables, and there
is no dependent or independent variable. Instead, there are two random vari-
ables Y1 and Y2 that could be related in some way. Correlation may be used
to examine the relationship between just two variables, or as a screening tool
to examine the pairwise relationships among many variables.

We will use a classic data set to illustrate correlation, the iris flowers
examined by Fisher (1936). The data set contains measurements of iris
flowers for three different Iris species, but we will only examine I. setosa.
The variables measured were sepal length and width, and petal length and
width. A total of 50 flowers were measured, but we will only use the first ten
observations to illustrate the calculations, and only sepal length and width
(Table 18.1). The notation Y1i and Y2i refer to the values for the ith pair of
numbers. For example, Y11 = 5.1 and Y21 = 3.5. Figure 18.9 shows there is
a positive association between the two variables, with sepal length (Y1i) and
width (Y2i) appearing to increase together.
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Table 18.1: Example 1 - Sepal length and width measurements for ten flowers of I. setosa (Fisher 1936),
showing some preliminary calculations for the correlation analysis. See Chapter 21 for the full data set.

i Y1i = Sepal length Y2i = Sepal width (Y1i − Ȳ1)(Y2i − Ȳ2) (Y1i − Ȳ1)2 (Y2i − Ȳ2)2

1 5.1 3.5 4.56×10−2 5.76×10−2 3.61×10−2

2 4.9 3.0 -1.24×10−2 1.60×10−3 9.61×10−2

3 4.7 3.2 1.76×10−2 2.56×10−2 1.21×10−2

4 4.6 3.1 5.46×10−2 6.76×10−2 4.41×10−2

5 5.0 3.6 4.06×10−2 1.96×10−2 8.41×10−2

6 5.4 3.9 3.19×10−1 2.92×10−1 3.48×10−1

7 4.6 3.4 -2.34×10−2 6.76×10−2 8.10×10−3

8 5.0 3.4 1.26×10−2 1.96×10−2 8.10×10−3

9 4.4 2.9 1.89×10−1 2.12×10−1 1.68×10−1

10 4.9 3.1 -8.40×10−3 1.60×10−3 4.41×10−2∑
- - 6.34×10−1 7.64×10−1 8.49×10−1
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Figure 18.1: Scatterplot of I. setosa sepal length and width.
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18.1 Correlation model

The statistical model for correlation is the bivariate normal distribution.
This is an extension of the normal distribution to two random variables Y1

and Y2. The bivariate normal distribution has five parameters, the mean and
standard deviation for Y1 and Y2 (µ1, σ1, µ2, σ2) and the parameter ρ, which
describes the association between them (Stuart et al. 1999). If ρ > 0 then
the two variables are positively related, as in Fig. 18.9, while if the ρ < 0
they are inversely related. If ρ = 0 the two variables are independent of
one another. The probability density for the bivariate normal distribution is
given by the function

f(y1, y2) =
1

2πσ1σ2

√
1− ρ2

×

exp

[
− 1

2(1− ρ2)

{(
y1 − µ1

σ1

)2

− 2ρ
y1 − µ1

σ1

y2 − µ2

σ2

+

(
y2 − µ2

σ2

)2
}]

.

(18.1)

A interesting property of this distribution is that each Y variable, when con-
sidered alone, also has a normal distribution. In particular, Y1 ∼ N(µ1, σ

2
1)

and Y2 ∼ N(µ2, σ
2
2). These are known as the marginal distributions of Y1

and Y2.
Figure 18.2 and Fig. 18.3 shows this distribution as a surface or contour

plot, for ρ = 0.7. This value of ρ implies a strong positive relationship
between the two variables, and so the probability density has a ridge-like
shape because Y1 and Y2 are likely to increase or decrease together. Fig.
18.4 shows a sample data set generated for the same parameter values of this
distribution. Note the relationship between Y1 and Y2 and the elliptical cloud
of points.

Figure 18.5 shows the distribution for a strong negative relationship be-
tween the variables (ρ = −0.7). A sample data set for the same parameter
values is shown in Fig. 18.6. Figure 18.7 and Fig. 18.8 show the patterns
when the two variables are unassociated or independent (ρ = 0).

The usual goal in correlation is to estimate the value of ρ and then test
H0 : ρ = 0. This null hypothesis means the two variables are independent,
and if we can reject this suggests the two variables are associated or depen-
dent. It is also possible to test null hypotheses of the form H0 : ρ = ρ0, where
ρ0 is any value.
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Figure 18.2: Surface plot of the bivariate normal distribution for µ1 = µ2 =
5, σ2

1 = σ2
2 = 1, and ρ = 0.7.

Figure 18.3: Contour plot of the bivariate normal for the same parameter
values as Fig. 18.3
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Figure 18.4: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = 0.7.
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Figure 18.5: Contour plot of the bivariate normal for µ1 = µ2 = 5, σ2
1 = σ2

2 =
1, and ρ = −0.7.

Figure 18.6: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = −0.7.
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Figure 18.7: Contour plot of the bivariate normal for µ1 = µ2 = 5, σ2
1 = σ2

2 =
1, and ρ = 0.

Figure 18.8: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = 0.
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18.2 Correlation and maximum likelihood

Maximum likelihood can be used to estimate the parameters for the bivariate
normal distribution, using methods like those for simpler distributions. It
turns out that the sample mean Ȳ and standard deviation s can be used to
estimate µ1, σ1, µ2, andσ2 for this distribution. For the Example 1 data set,
we have Ȳ1 = 4.86, s1 = 0.29136, Ȳ2 = 3.31, ands2 = 0.30714. The maximum
likelihood estimator of ρ is the sample correlation coefficient, r, given by
the formula

r =

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)√∑n

i=1(Y1i − Ȳ1)2
∑n

i=1(Y2i − Ȳ2)2
(18.2)

(Stuart et al. 1999). Note that the sign of r depends on the numerator
of this expression. If Y1 and Y2 are positively or negatively associated, the
numerator will be positive or negative. For the Example 1 data, we have

n∑
i=1

(Y1i − Ȳ1)(Y2i − Ȳ2) = 0.634, (18.3)

n∑
i=1

(Y1i − Ȳ1)2 = 0.764, (18.4)

and
n∑
i=1

(Y2i − Ȳ2)2 = 0.849. (18.5)

Using these values, the correlation coefficient can then be calculated:

r =
6.34× 10−1

√
7.64× 10−1 × 8.49× 10−1

= 0.787. (18.6)

The equation for r can also be expressed using the standard deviations of the
two variables, and a quantity called the sample covariance. The sample
covariance for two variables is given by the formula

s12 =

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)

n− 1
. (18.7)

Dividing the top and bottom of the equation for r by n− 1, we have

r =
1

n−1

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)√

1
n−1

∑n
i=1(Y1i − Ȳ1)2 1

n−1

∑n
i=1(Y2i − Ȳ2)2

(18.8)

=
s12√
s2

1s
2
2

=
s12

s1s2

(18.9)
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Thus, r can be expressed as the sample covariance s12 scaled by the standard
deviation s1 and s2 for each variable. This quantity is also known as the
Pearson correlation coefficient.

The square of the correlation coefficient is called the coefficient of de-
termination, and provides an indication of the amount of variability in Y1

explained by Y2, or vice versa. It is typically written as R2 like in linear
regression or ANOVA. The value of R2 ranges from zero to one, with values
near one implying a strong relationship (positive or negative) between Y1 and
Y2, while values near zero imply a weak one. For the Example 1 data, we
have R2 = 0.7872 = 0.619. About 62% of the variability in Y1 is explained
by Y2, or vice versa.

There is also a likelihood ratio test for H0 : ρ = 0 vs. H1 : ρ 6= 0,
equivalent to testing whether Y1 is independent of Y2. Under H0, the test
statistic

Ts = r

√
n− 2

1− r2
(18.10)

has a t distribution with n − 2 degrees of freedom, and we would reject H0

for sufficiently large values (Stuart et al. 1999). For the Example 1 data, we
have

Ts = 0.787

√
10− 2

1− 0.7872
= 3.608. (18.11)

Using Table T with 10 − 2 = 8 degrees of freedom, we see that P < 0.01.
The correlation between sepal length and width is highly significant (t8 =
3.608, P < 0.01), and so the two variables appear dependent, not indepen-
dent.

There is an approximate test for H0 : ρ = ρ0 vs. H0 : ρ 6= ρ0, for values
ρ0 different from zero. It uses a special transformation for r, the inverse
hyperbolic tangent function:

arctanh(r) =
1

2
ln

(
1 + r

1− r

)
, (18.12)

defined for −1 < r < 1. The effect of this transformation is to spread
out the distribution of r and make it more normal. Under H0, we have
E[arctanh(r)] ≈ arctanh(ρ0) and V ar[arctanh(r)] ≈ 1/(n− 3), and so

Zs =
arctanh(r)− arctanh(ρ0)√

1/(n− 3)
(18.13)

=
√
n− 3 [arctanh(r)− arctanh(ρ0)] ∼ N(0, 1) (18.14)
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for large n (Stuart et al. 1999). As an example of this test, suppose we want
to test H0 : ρ = 0.5 for the Example 1 data set. We have

Zs =
√

10− 3 [arctanh(0.787)− arctanh(0.5)] (18.15)

= 2.646(1.064− 0.549) = 1.363. (18.16)

Using the last row of Table T (df =∞) to find the P value for the standard
normal distribution, we find that P < 0.2. The correlation coefficient was
not significantly different from 0.5 (Zs = 1.363, P < 0.2).

18.2.1 Correlation for Example 1 - SAS demo

We can conduct a correlation analysis using proc corr in SAS. We first input
the observations using a data step, and then generate a scatterplot using
proc gplot (SAS Institute Inc. 2014a). The correlation analysis is conducted
using proc corr as shown below, with the variables to be analyzed listed
in the var statement (SAS Institute Inc. 2014b). The ods graphics on and
off statements enable proc corr to generate more sophisticated plots of the
data, using the plots=(scatter matrix) option (SAS Institute Inc. 2014a).
These commands will generate pairwise scatterplots of all the variables, and
a scatterplot matrix of all the graphs together.

From the proc corr output, we see that the correlation between sepal
length and width is highly significant (r = 0.787, P = 0.0069). The scat-
terplot generated by proc corr for these two variables is also shown (Fig.
18.9).
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SAS Program

* Iris.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Correlation for Iris data";

data iris;

input seplen sepwid;

datalines;

5.1 3.5

4.9 3.0

4.7 3.2

4.6 3.1

5.0 3.6

5.4 3.9

4.6 3.4

5.0 3.4

4.4 2.9

4.9 3.1

;

run;

* Print data set;

proc print data=iris;

run;

* Correlation analysis and scatterplots;

ods graphics on;

proc corr data=iris plots=(scatter matrix);

var seplen sepwid;

run;

ods graphics off;

quit;

SAS Output

Correlation for Iris data 1

09:23 Thursday, June 5, 2014

Obs seplen sepwid

1 5.1 3.5

2 4.9 3.0

3 4.7 3.2

4 4.6 3.1

5 5.0 3.6

6 5.4 3.9
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7 4.6 3.4

8 5.0 3.4

9 4.4 2.9

10 4.9 3.1

Correlation for Iris data 2

09:23 Thursday, June 5, 2014

The CORR Procedure

2 Variables: seplen sepwid

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

seplen 10 4.86000 0.29136 48.60000 4.40000 5.40000

sepwid 10 3.31000 0.30714 33.10000 2.90000 3.90000

Pearson Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

seplen sepwid

seplen 1.00000 0.78721

0.0069

sepwid 0.78721 1.00000

0.0069
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Figure 18.9: Scatterplot of I. setosa sepal length and width.
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18.2.2 Testing H0 : ρ = ρ0 - SAS demo

We can use a short SAS program to test H0 : ρ = 0.5 vs. H1 : ρ 6= 0.5 for the
Example 1 data (see program and output below). The program calculates
the P value for this two-tailed alternative (pvalue2) as well as both one-tailed
ones (p_val_gt,p_val_lt). We see that the correlation between sepal length
and width is not significantly different from 0.5 (Zs = 1.360, P = 0.174).

SAS Program

* rhocalc.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’Test Ho: rho = rho_0 where rho_0 is non-zero’;

data rhocalc;

* Input sample size, rho, and rho_0;

n = 10;

r = 0.787;

rho_0 = 0.5;

zs = sqrt(n-3)*(artanh(r)-artanh(rho_0));

* P-value for two-tailed test;

p_value2 = 2*(1 - probnorm(abs(zs)));

* P-values for one-tailed tests;

* Ho: rho = rho_0 vs. H1: rho > rho_0;

p_val_gt = 1 - probnorm(zs);

* Ho: rho = rho_0 vs. H1: rho < rho_0;

p_val_lt = probnorm(zs);

run;

* Print test results;

proc print data=rhocalc;

run;

SAS Output

Test Ho: rho = rho_0 where rho_0 is non-zero 1

11:03 Wednesday, June 11, 2014

Obs n r rho_0 zs p_value2 p_val_gt p_val_lt

1 10 0.787 0.5 1.36043 0.17369 0.086847 0.91315
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18.2.3 Correlation for I. setosa, all data - SAS demo

We now analyze the full data set for I. setosa, as listed in Chapter 21. We will
examine the correlation between sepal length, sepal width, petal length, and
petal width for all 50 flowers. The SAS program is similar to the Example
1 analysis, except that all four variables are listed in the data and proc corr

steps. We see there is a highly significant correlation between sepal length
and width (r = 0.743, P < 0.0001), and petal length and width are also
significantly correlated (r = 0.332, P = 0.0186). All the remaining correla-
tions are nonsignificant. It appears that measurements of the same structure
(petal or sepal) are correlated, but the correlation is weaker between struc-
tures. The scatterplot matrix (Fig. 18.10 reflects these patterns, with sepal
length and width showing a strong positive association, with a weaker one for
petal length and width. The remaining pairs show no obvious relationships.
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SAS Program

* Iris_all.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Correlation for Iris data";

data iris;

input seplen sepwid petlen petwid;

datalines;

5.1 3.5 1.4 0.2

4.9 3.0 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5.0 3.6 1.4 0.2

etc.

4.8 3.0 1.4 0.3

5.1 3.8 1.6 0.2

4.6 3.2 1.4 0.2

5.3 3.7 1.5 0.2

5.0 3.3 1.4 0.2

;

run;

* Print data set;

proc print data=iris;

run;

* Correlation analysis and scatterplots;

ods graphics on;

proc corr data=iris plots=(scatter matrix);

var seplen sepwid petlen petwid;

run;

ods graphics off;

quit;

SAS Output

Correlation for Iris data 1

16:36 Wednesday, June 11, 2014

Obs seplen sepwid petlen petwid

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2
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4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

etc.

46 4.8 3.0 1.4 0.3

47 5.1 3.8 1.6 0.2

48 4.6 3.2 1.4 0.2

49 5.3 3.7 1.5 0.2

50 5.0 3.3 1.4 0.2

Correlation for Iris data 2

16:36 Wednesday, June 11, 2014

The CORR Procedure

4 Variables: seplen sepwid petlen petwid

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

seplen 50 5.00600 0.35249 250.30000 4.30000 5.80000

sepwid 50 3.42800 0.37906 171.40000 2.30000 4.40000

petlen 50 1.46200 0.17366 73.10000 1.00000 1.90000

petwid 50 0.24600 0.10539 12.30000 0.10000 0.60000

Pearson Correlation Coefficients, N = 50

Prob > |r| under H0: Rho=0

seplen sepwid petlen petwid

seplen 1.00000 0.74255 0.26718 0.27810

<.0001 0.0607 0.0505

sepwid 0.74255 1.00000 0.17770 0.23275

<.0001 0.2170 0.1038

petlen 0.26718 0.17770 1.00000 0.33163

0.0607 0.2170 0.0186

petwid 0.27810 0.23275 0.33163 1.00000

0.0505 0.1038 0.0186



18.2. CORRELATION AND MAXIMUM LIKELIHOOD 599

Figure 18.10: Scatterplot matrix for I. setosa sepal length and width, and
petal length and width.
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18.3 Correlation assumptions

The main assumption of correlation is that the data have a bivariate normal
distribution. If the data do not appear to be bivariate normal, it may be
useful to transform one or both variables. The same transformations used
in linear regression may be helpful (see Chapter 17). For example, suppose
that the relationship between Y1 and Y2 appears to be curved (Fig. 18.11).
A log transformation of Y2 makes the overall distribution more similar to
the bivariate normal (Fig. 18.12). Once the distribution appears correct, we
would calculate the correlation coefficient r and conduct our tests.
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Figure 18.11: Simulated data showing a curved relationship between Y1 and
Y2.

Figure 18.12: Simulated data showing a bivariate normal distribution for Y1

and ln(Y2).
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18.4 Nonparametric correlation

There are nonparametric correlation methods useful when the observations
are not bivariate normal. One common method is the Spearman rank cor-
relation test (Hollander et al. 2014). This procedure simply substitutes the
rank values of Y1 and Y2 in the formula for r, then proceeds as before. We
are still interested in testing whether Y1 and Y2 are independent, but no
distribution is specified.

We will illustrate the Spearman rank correlation procedure using the
Example 1 data set. The initial calculations are shown in Table 18.2. We
next calculate the Spearman rank correlation rs using the results from this
table. We have

rs =
62√

81× 81.5
= 0.763. (18.17)

If we want to test whether Y1 and Y2 are independent, we can use the same
test procedure as before, but substituting rs for r. For the Table 18.2 data,
we have

Ts = rs

√
n− 2

1− r2
s

= 0.763

√
10− 2

1− 0.7632
= 3.339. (18.18)

Using Table T with 10−2 = 8 degrees of freedom, we see that P < 0.02. This
result suggests the two variables are not independent (rs = 0.763, P < 0.02).
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Table 18.2: Preliminary calculations for Spearman rank correlation using the Example 1 data. Here R1i

and R2i are the rank values of sepal length and width. Tied values were assigned the average of their ranks.

i Y1i = Sepal length Y2i = Sepal width R1i R2i (R1i − R̄1)(R2i − R̄2) (R1i − R̄1)2 (R2i − R̄2)2

1 5.1 3.5 9 8 8.75 12.25 6.25
2 4.9 3.0 5.5 2 0.00 0.00 12.25
3 4.7 3.2 4 5 0.75 2.25 0.25
4 4.6 3.1 2.5 3.5 6.00 9.00 4.00
5 5.0 3.6 7.5 9 7.00 4.00 12.25
6 5.4 3.9 10 10 20.25 20.25 20.25
7 4.6 3.4 2.5 6.5 -3.00 9.00 1.00
8 5.0 3.4 7.5 6.5 2.00 4.00 1.00
9 4.4 2.9 1 1 20.25 20.25 20.25

10 4.9 3.1 5.5 3.5 0.00 0.00 4.00∑
- - - - 62.00 81.00 81.50
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18.4.1 Spearman rank correlation for Example 1 - SAS
demo

The Spearman rank correlation and tests can be conducted in SAS by adding
the spearman option to the proc corr statement. For the Table 18.2 data, we
obtain rs = 0.763, P = 0.0102. See SAS output below showing the Spearman
section.

SAS Output

Spearman Correlation Coefficients, N = 10

Prob > |r| under H0: Rho=0

seplen sepwid

seplen 1.00000 0.76308

0.0102

sepwid 0.76308 1.00000

0.0102
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18.5 Problems

1. An entomologist is interested in variation in eye and head size for leaf-
cutting ants (Moser et al. 2004). A microscope is used to measure the
width of the head (mm), and the surface area of the eyes and ocelli
(mm). The following data were obtained for the females of one species
(Atta sexdens).

Head
√

Eye
√

Ocelli Head
√

Eye
√

Ocelli
4.1 0.660 0.311 3.8 0.633 0.290
4.1 0.651 0.301 3.9 0.659 0.293
4.1 0.614 0.287 4.0 0.633 0.287
4.1 0.668 0.301 4.1 0.614 0.295
4.0 0.659 0.298 4.2 0.678 0.295
4.1 0.659 0.306 4.2 0.668 0.292
4.1 0.678 0.311 4.1 0.668 0.304
4.0 0.668 0.311 4.2 0.678 0.298
4.0 0.601 0.285 4.2 0.678 0.286
3.9 0.651 0.288 3.9 0.646 0.295
4.1 0.678 0.303 4.0 0.633 0.295
4.1 0.665 0.298 4.1 0.659 0.295
4.2 0.668 0.306 4.0 0.646 0.296
4.0 0.668 0.306 4.1 0.655 0.298
4.1 0.678 0.306 4.0 0.659 0.290
4.0 0.659 0.301 4.1 0.678 0.298
3.9 0.659 0.298 4.1 0.678 0.301
4.1 0.678 0.304 4.1 0.668 0.298
4.2 0.668 0.299 4.1 0.659 0.295
4.1 0.659 0.304 4.2 0.678 0.301
4.1 0.665 0.301 3.9 0.687 0.296
4.2 0.665 0.307 4.0 0.614 0.293
4.1 0.651 0.306 4.1 0.668 0.298
4.2 0.659 0.293 4.3 0.678 0.304
4.1 0.659 0.301 4.1 0.646 0.297
4.0 0.659 0.301 4.2 0.655 0.301



606 CHAPTER 18. CORRELATION

(a) Calculate all pairwise correlations among these variables using
SAS. Interpret the results of this analysis, providing a P value
and discussing the significance of the test. Provide a biological
explanation for the positive correlations among these variables.

(b) Test whether each of the pairwise correlations is significantly dif-
ferent from 0.2.

(c) Calculate all pairwise Spearman rank correlations using SAS. In-
terpret the results of this analysis.
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