
Chapter 19

More Complex ANOVA
Designs

This chapter examines three designs that incorporate more factors and in-
troduce some new elements of experimental design. They are three-way
ANOVA, one-way nested ANOVA, and analysis of covariance (ANCOVA).
These are common designs whose elements can be combined to generate even
more elaborate ones. A useful guide to complex ANOVA designs is Winer et
al. (1991), who provide a description and statistical model for each design.
Once a particular design is identified, the statistical model can be used to
program the analysis in SAS or other software.

19.1 Three-way ANOVA

We will first discuss three-way ANOVA, an analysis which examines how
three different factors influence the means of the different groups. The three
factors may be any combination of fixed or random effects and are typically
referred to a Factors A, B, and C. In this design, there are one or more repli-
cate observations for each combination of the three factors. The statistical
analysis for three-way ANOVA designs may include F tests for the main ef-
fects of the factors as well as the interactions among them. For example, if
the design has replication and all three factors are fixed, there are F tests
for the main effects (Factor A, B, C), each pairwise interaction (A × B, A
× C, B × C), and a three-way interaction (A × B × C). The additional
complexity of this design with its many interactions can make interpretation
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610 CHAPTER 19. MORE COMPLEX ANOVA DESIGNS

of the results quite challenging.
As an example of three-way ANOVA, we will analyze data from an ex-

periment by Maestre & Reynolds (2007). This study examined how overall
nutrient and water availability, and nutrient heterogeneity, affected grassland
biomass production (Table 19.1). Nutrient heterogeneity was manipulated by
placing the nitrogen at a particular location within the container vs. an even
distribution. See Chapter 14 for further description of this experiment. We
will use the notation Yijkl to reference the observations in three-way ANOVA
designs. The i subscript refers to the group or treatment within Factor A (in
this case nitrogen heterogeneity), j the treatment within Factor B (nitrogen
levels), k the treatment within Factor C (water levels), while l refers to the
observation within the treatment. For example, Y1134 refers to the fourth ob-
servation in the no nutrient heterogeneity, 40 mg N, 375 ml water treatment,
which is 7.901.
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Table 19.1: Example 1 - Effect of nitrogen heterogeneity, nitrogen availability, and water availability on the
total biomass of grassland plants grown in microcosms (Maestre & Reynolds 2007). The table illustrates
how the subscripts for Yijkl vary across treatments for a portion of the data set (see Chapter 21 for the full
version).

N het. (Y/N) N (mg) Water (ml/week) Yijkl = Biomass i j k l
N 40 125 4.372 1 1 1 1
N 40 125 4.482 1 1 1 2
N 40 125 4.221 1 1 1 3
N 40 125 3.977 1 1 1 4
N 40 250 7.400 1 1 2 1
N 40 250 8.027 1 1 2 2
N 40 250 7.883 1 1 2 3
N 40 250 7.769 1 1 2 4
N 40 375 7.226 1 1 3 1
N 40 375 8.126 1 1 3 2
N 40 375 6.840 1 1 3 3
N 40 375 7.901 1 1 3 4

etc.

Y 120 250 10.731 2 3 2 1
Y 120 250 12.640 2 3 2 2
Y 120 250 10.350 2 3 2 3
Y 120 250 11.550 2 3 2 4
Y 120 375 14.697 2 3 3 1
Y 120 375 17.826 2 3 3 2
Y 120 375 14.711 2 3 3 3
Y 120 375 13.614 2 3 3 4
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19.1.1 Three-way fixed effects model

Suppose that we want to model the observations in a study like Example
1, where there are Factors A, B, and C. Assume the design is factorial with
every possible combination of the three factors, with n > 1 observations of
each one. This design is often called three-way ANOVA with replication. A
common model for the observations Yijkl in such designs (Winer et al. 1991)
is

Yijkl = µ+αi +βj + +γk + (αβ)ij + (βγ)jk + (αγ)ik + (αβγ)ijk + εijkl. (19.1)

Here µ is the grand mean of the observations, while αi is the deviation from
µ caused by the ith level or treatment of Factor A, βj the deviation caused
by the jth level of Factor B, and γk is the deviation caused by the kth level of
Factor C. These terms are the main effects in the model. The terms (αβ)ij,
(βγ)jk, and (αγ)ik are pairwise or first-order interactions among Factors A
and B, B and C, and A and C. These interactions are also symbolized as A
× B, B × C, and A × C. They are similar to the interaction term in two-way
ANOVA, but with three factors in the design there are more possibilities for
interaction among them. The term (αβγ)ijk models a second-order interac-
tion (symbolized as A × B × C) among all three factors. It can be thought
of as an interaction of interactions, i.e., the interaction between Factors A
and B could change across levels of C. The εijkl term represents the usual
random departures from the mean value predicted by the main effects and
interactions due to natural variability.

The objective in three-way ANOVA is to test whether Factor A, B, and
C have an effect on the group means, and whether there are interactions
among these factors. For Factor A this amounts to testing H0 : all αi = 0,
and similarly H0 : all βj = 0 for Factor B and H0 : all γk = 0 for Factor
C. For the A × B interaction, we would test H0 : (αβ)ij = 0, and similarly
H0 : (αγ)ik = 0 for the A × C and H0 : (βγ)jk = 0 for the B × C interactions.
For the second-order interaction A × B × C, we are interested in testing H0 :
all (αβγ)ijk = 0. The F tests for these hypotheses can be constructed using
various sums of squares and mean squares, similar to two-way ANOVA, and
are also examples of likelihood ratio tests. We will not consider this process
in detail but instead proceed directly to the analysis and interpretation of
the Example 1 data set.
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19.1.2 Three-way ANOVA for Example 1 - SAS demo

The first step in the program (see below) is to read in the observations
using a data step, with the first variable (nitrohet) denoting the nitrogen
heterogeneity treatment, while nitrogen and water represent the nitrogen and
water levels. The variable biomass is then log-transformed before analysis,
yielding the dependent variable y = log10(biomass}. Three separate plots
then requested using proc gplot (SAS Institute Inc. 2014a), one for every
pairwise combination of nitrohet, nitrogen, and water. These plots will allow
us to examine the main effects and all first order (pairwise) interactions
among the treatments. The choice as to whether a particular treatment is
plotted on the x-axis or appears as separate groups (lines) on the graph is
arbitrary. Like two-way ANOVA, if the lines are not parallel in a plot this
suggests there is an interaction between the factors.

The second set of plots is intended to illustrate the second-order interac-
tion among the three factors. Each plot illustrates the interaction between
nitrogen and water at one level of nitrogen heterogeneity. If there is a second-
order interaction, then the plots will appear different from one another.

The next section of the program conducts the three-way ANOVA using
proc glm (SAS Institute Inc. 2014b). The class statement tells SAS that
nitrohet, nitrogen, and water are used to classify the observations into the 18
different treatment groups. The model statement tells SAS the form of the
ANOVA model. Recall that the model for fixed effects three-way ANOVA
(Eq. 19.1). The statement nitrohet|nitrogen|water is SAS shorthand for
this model, and will automatically generate all the possible main effects and
interactions of the three factors.

The lsmeans statement causes proc glm to calculate quantities called least
squares means for each level of nitrohet, nitrogen, and water. When the data
are balanced these are equivalent to the means for each treatment group, but
least squares means have some advantages for unbalanced data and other
statistical models. The option adjust=tukey requests multiple comparisons
among treatments using the Tukey method. This is useful for comparing the
different levels of the main effects. However, tests for the main effects as well
as multiple comparisons should be treated with caution in the presence of
strong interaction (see Chapter 14 for discussion of this issue).

We now examine the results of the tests generated by SAS, examining
the interactions first (see SAS output below). We are primarily interested
in the results for Type III sums of squares. We see that the second-order
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nitrogen heterogeneity × nitrogen × water interaction was nonsignificant
(F4,54 = 1.39, P = 0.2492). The two graphs that illustrate this interaction ap-
pear similar, further indicating this interaction is weak or absent (Fig. 19.1,
19.2). Turning to the first order interactions, we see that the nitrogen hetero-
geneity × nitrogen interaction was nonsignificant (F2,54 = 0.93, P = 0.4017).
In agreement with this result, the corresponding graph for this interaction
(Fig. 19.3) suggests these two treatments are additive. The nitrogen ×
water interaction (F4,54 = 12.90, P < 0.0001) was highly significant. Ex-
amining Fig. 19.4, we see that the source of this interaction was a reduced
effect of watering at lower nitrogen levels. The nitrogen heterogeneity ×
water interaction was also highly significant (F2,54 = 13.10, P < 0.0001).
This interaction was apparently generated by a stronger effect of nitrogen
heterogeneity at the lowest water level (Fig. 19.5). Overall, the significant
interactions suggest that effects of these factors on biomass are not additive
(Maestre & Reynolds 2007).

The SAS analysis also found highly significant main effects of nitrogen
heterogeneity (F1,54 = 144.14, P < 0.0001), nitrogen (F2,27 = 129.71, P <
0.0001) and water (F2,27 = 657.00, P < 0.0001) on biomass. We can judge
the strength of these effects through the interaction plots as well as the sum
of squares values. Watering appears to have the largest effect on biomass,
followed by nitrogen and nitrogen heterogeneity. The heterogeneity result is
particularly intriguing, because more biomass was generated when this nu-
trient was heterogeneously distributed in space. Maestre & Reynolds (2007)
suggest this occurred because nutrient patches encourage root proliferation,
leading to increased nutrient uptake and overall growth. Even though there
were significant interactions in this analysis, the main effects were larger and
explained most of the variation in these data.
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SAS program

* Maestre_biomass_3way.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Three-way ANOVA for biomass";

title2 "Data from Maestre and Reynolds (2007)";

data maestre;

input nitrohet $ nitrogen water biomass;

* Apply transformations here;

y = log10(biomass);

datalines;

N 40 125 4.372

N 40 125 4.482

N 40 125 4.221

N 40 125 3.977

N 40 250 7.400

N 40 250 8.027

N 40 250 7.883

N 40 250 7.769

etc.

Y 120 375 14.697

Y 120 375 17.826

Y 120 375 14.711

Y 120 375 13.614

;

run;

* Print data set;

proc print data=maestre;

run;

proc gplot data=maestre;

plot y*nitrohet=nitrogen y*nitrogen=water y*nitrohet=water / vaxis=axis1

haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Sort data by nitrohet levels;

proc sort data=maestre;

by nitrohet;

run;

* Plots to show three-way interaction;

proc gplot data=maestre;
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by nitrohet;

plot y*nitrogen=water / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Three-way ANOVA with all fixed effects;

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water;

lsmeans nitrohet nitrogen water / adjust=tukey cl lines;

output out=resids p=pred r=resid;

run;

goptions reset=all;

title "Diagnostic plots to check anova assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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SAS Output

Three-way ANOVA for biomass 1

Data from Maestre and Reynolds (2007)

09:49 Friday, June 7, 2013

Obs nitrohet nitrogen water biomass y

1 N 40 125 4.372 0.64068

2 N 40 125 4.482 0.65147

3 N 40 125 4.221 0.62542

4 N 40 125 3.977 0.59956

5 N 40 250 7.400 0.86923

6 N 40 250 8.027 0.90455

7 N 40 250 7.883 0.89669

8 N 40 250 7.769 0.89037

etc.

Three-way ANOVA for biomass 3

Data from Maestre and Reynolds (2007)

09:49 Friday, June 7, 2013

The GLM Procedure

Class Level Information

Class Levels Values

nitrohet 2 N Y

nitrogen 3 40 80 120

water 3 125 250 375

Number of Observations Read 72

Number of Observations Used 72
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Three-way ANOVA for biomass 4

Data from Maestre and Reynolds (2007)

09:49 Friday, June 7, 2013

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 17 1.86010971 0.10941822 106.05 <.0001

Error 54 0.05571723 0.00103180

Corrected Total 71 1.91582694

R-Square Coeff Var Root MSE y Mean

0.970917 3.492176 0.032122 0.919818

Source DF Type I SS Mean Square F Value Pr > F

nitrohet 1 0.14872636 0.14872636 144.14 <.0001

nitrogen 2 0.26766625 0.13383312 129.71 <.0001

nitrohet*nitrogen 2 0.00191433 0.00095717 0.93 0.4017

water 2 1.35577897 0.67788949 657.00 <.0001

nitrohet*water 2 0.02702407 0.01351204 13.10 <.0001

nitrogen*water 4 0.05325694 0.01331423 12.90 <.0001

nitroh*nitroge*water 4 0.00574279 0.00143570 1.39 0.2492

Source DF Type III SS Mean Square F Value Pr > F

nitrohet 1 0.14872636 0.14872636 144.14 <.0001

nitrogen 2 0.26766625 0.13383312 129.71 <.0001

nitrohet*nitrogen 2 0.00191433 0.00095717 0.93 0.4017

water 2 1.35577897 0.67788949 657.00 <.0001

nitrohet*water 2 0.02702407 0.01351204 13.10 <.0001

nitrogen*water 4 0.05325694 0.01331423 12.90 <.0001

nitroh*nitroge*water 4 0.00574279 0.00143570 1.39 0.2492
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Three-way ANOVA for biomass 5

Data from Maestre and Reynolds (2007)

09:49 Friday, June 7, 2013

The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Tukey

H0:LSMean1=

LSMean2

nitrohet y LSMEAN Pr > |t|

N 0.87436837 <.0001

Y 0.96526708

nitrohet y LSMEAN 95% Confidence Limits

N 0.874368 0.863635 0.885102

Y 0.965267 0.954534 0.976000

Least Squares Means for Effect nitrohet

Difference Simultaneous 95%

Between Confidence Limits for

i j Means LSMean(i)-LSMean(j)

1 2 -0.090899 -0.106077 -0.075720

Tukey Comparison Lines for Least Squares Means of nitrohet

LS-means with the same letter are not significantly different.

LSMEAN

y LSMEAN nitrohet Number

A 0.96526708 Y 2

B 0.87436837 N 1

etc.
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Figure 19.1: Means ± standard errors and data for the Example 1 experi-
ment, where Y = log10(Biomass). This figure is the first of two figures illus-
trating any second order interaction, i.e., nitrogen heterogeneity × nitrogen
× water.

Figure 19.2: Means ± standard errors and data for the Example 1 experi-
ment, where Y = log10(Biomass). This figure is the second of two figures
illustrating any second-order interaction, i.e., nitrogen heterogeneity × ni-
trogen × water.
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Figure 19.3: Means ± standard errors and data for the Example 1 experi-
ment, where Y = log10(Biomass). This figure illustrates any nitrogen hetero-
geneity × nitrogen interaction, and the main effects of nitrogen heterogeneity
and nitrogen.

Figure 19.4: Means ± standard errors and data for the Example 1 exper-
iment, where Y = log10(Biomass). This figure illustrates any nitrogen ×
water interaction, and the main effects of nitrogen and water.
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Figure 19.5: Means ± standard errors and data for the Example 1 experi-
ment, where Y = log10(Biomass). This figure illustrates any nitrogen hetero-
geneity × water interaction, and the main effects of nitrogen heterogeneity
and water.
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19.1.3 Tests for main effects with interaction

As discussed in Chapter 14, there are questions as to whether tests of main
effects are appropriate when interaction is significant, and these extend to
three-way designs. As an alternative, we can use the slice option for lsmeans

to avoid tests of the main effects. The modified SAS code is listed below along
with the output. We first fit the full model including all the interactions,
and observe that the nitrogen heterogeneity × nitrogen × water interaction
is nonsignificant (F4,54 = 1.39, P = 0.2492), as is the nitrogen heterogene-
ity × nitrogen interaction (F2,54 = 0.93, P = 0.4017). We then drop these
interactions and refit the model. The remaining two interactions are both
highly significant in this reduced model (nitrogen heterogeneity × water,
F2,60 = 12.79, P < 0.0001; nitrogen × water, F4,60 = 12.61, P < 0.0001). We
skip the tests of the main effects because of these highly significant interac-
tions, and instead use the slice option to test for a nitrogen heterogeneity
effect at each water level, and vice versa. These tests were all highly signif-
icant, suggesting that nitrogen heterogeneity affects biomass at every water
level, and water affects biomass at every nitrogen heterogeneity level. Similar
tests could be conducted to examine the effects of nitrogen and water.

SAS Program

* Three-way ANOVA with interaction;

title3 "MODEL WITH ALL FOUR INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water / ss2;

output out=resids p=pred r=resid;

run;

* Three-way ANOVA dropping ns interactions;

title3 "MODEL WITH ONLY SIGNIFICANT INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet nitrogen water nitrohet*water nitrogen*water / ss2;

lsmeans nitrohet*water / slice=water slice=nitrohet;

run;
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SAS Output

Three-way ANOVA for biomass 4

Data from Maestre and Reynolds (2007)

MODEL WITH ALL FOUR INTERACTIONS

15:27 Friday, November 8, 2013

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 17 1.86010971 0.10941822 106.05 <.0001

Error 54 0.05571723 0.00103180

Corrected Total 71 1.91582694

R-Square Coeff Var Root MSE y Mean

0.970917 3.492176 0.032122 0.919818

Source DF Type II SS Mean Square F Value Pr > F

nitrohet 1 0.14872636 0.14872636 144.14 <.0001

nitrogen 2 0.26766625 0.13383312 129.71 <.0001

nitrohet*nitrogen 2 0.00191433 0.00095717 0.93 0.4017

water 2 1.35577897 0.67788949 657.00 <.0001

nitrohet*water 2 0.02702407 0.01351204 13.10 <.0001

nitrogen*water 4 0.05325694 0.01331423 12.90 <.0001

nitroh*nitroge*water 4 0.00574279 0.00143570 1.39 0.2492
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Three-way ANOVA for biomass 6

Data from Maestre and Reynolds (2007)

MODEL WITH ONLY SIGNIFICANT INTERACTIONS

15:27 Friday, November 8, 2013

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 11 1.85245259 0.16840478 159.44 <.0001

Error 60 0.06337435 0.00105624

Corrected Total 71 1.91582694

R-Square Coeff Var Root MSE y Mean

0.966921 3.533291 0.032500 0.919818

Source DF Type II SS Mean Square F Value Pr > F

nitrohet 1 0.14872636 0.14872636 140.81 <.0001

nitrogen 2 0.26766625 0.13383312 126.71 <.0001

water 2 1.35577897 0.67788949 641.80 <.0001

nitrohet*water 2 0.02702407 0.01351204 12.79 <.0001

nitrogen*water 4 0.05325694 0.01331423 12.61 <.0001
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11:20 Monday, November 25, 2013

The GLM Procedure

Least Squares Means

nitrohet water y LSMEAN

N 125 0.65929804

N 250 0.95137559

N 375 1.01243148

Y 125 0.80223888

Y 250 1.00139663

Y 375 1.09216574

Three-way ANOVA for biomass 8

Data from Maestre and Reynolds (2007)

MODEL WITH ONLY SIGNIFICANT INTERACTIONS

11:20 Monday, November 25, 2013

The GLM Procedure

Least Squares Means

nitrohet*water Effect Sliced by water for y

Sum of

water DF Squares Mean Square F Value Pr > F

125 1 0.122592 0.122592 116.07 <.0001

250 1 0.015013 0.015013 14.21 0.0004

375 1 0.038145 0.038145 36.11 <.0001
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Three-way ANOVA for biomass 9

Data from Maestre and Reynolds (2007)

MODEL WITH ONLY SIGNIFICANT INTERACTIONS

11:20 Monday, November 25, 2013

The GLM Procedure

Least Squares Means

nitrohet*water Effect Sliced by nitrohet for y

Sum of

nitrohet DF Squares Mean Square F Value Pr > F

N 2 0.854961 0.427481 404.72 <.0001

Y 2 0.527842 0.263921 249.87 <.0001
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19.1.4 Other three-way designs

The Maestre & Reynolds (2007) experiment had four replicate containers for
each treatment combination (n = 4), and so it was possible to fit a model
with a second order interaction, namely nitrogen heterogeneity × nitrogen
× water. Suppose now there was only observation for each treatment com-
bination (n = 1). It is still possible to analyze these data using three-way
ANOVA, but the data are not sufficient to fit a model with a second-order
interaction. We would therefore use the model

Yijk = µ+ αi + βj + +γk + (αβ)ij + (βγ)jk + (αγ)ik + εijk. (19.2)

The equivalent model statement for proc glm would be

model y = nitrohet nitrogen water nitrohet*nitrogen nitrohet*water

nitrogen*water;

There is no shorthand method of specifying this model. The SAS output
would be interpreted in the same way as the model with replication, except
there would be no test for a second-order interaction.

Another common three-way design could have one or more factors that
are random effects. For example, suppose that one manipulated nitrogen and
water levels similar to Maestre & Reynolds (2007) but conducted the exper-
iment in three different blocks, either different locations in the greenhouse
or points in time. Block could be a random effect in this design, and the
corresponding model would be

Yijkl = µ+αi +βj +Ck + (αβ)ij + (βC)jk + (αC)ik + (αβC)ijk + εijkl. (19.3)

Here C stands for a random block effect, with C ∼ N(0, σ2
C). Note that

every interaction term involving C is also considered a random effect. This
model could be analyzed with proc mixed (SAS Institute Inc. 2014b) using
the following SAS statements:

proc mixed cl;

class nitrogen water block;

model y = nitrogen water nitrogen*water / ddfm=kr outp=resids;

random block block*nitrogen block*water block*nitrogen*water;

run;
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19.2 One-way nested ANOVA

The second design we will examine are called one-way nested designs. There
are two factors in this design, a Factor A that may be a fixed or random
effect, and a random nested Factor B. Nested means that for each level of
Factor A, there are several levels of Factor B that are unique to that level of
A. There are several replicate observations for each combination of Factor A
and B.

As an example of this design, we will examine a genetic study of a minute
parasitic wasp, Anagrus delicatus (Hymenoptera: Mymaridae). This wasp
attacks eggs of the planthopper Prokelisia marginata (Homoptera: Delphaci-
dae), a salt marsh insect that feeds on Spartina plants. Cronin & Strong
(1996) were interested in the genetics of various wasp traits, including the
number of eggs carried by the wasps themselves, ovipositor length, and vari-
ous behavioral traits. They collected female wasps from three separate sites
in San Franciso Bay and established genetically identical isolines from in-
dividual wasps collected from each site. They then measured the traits for
a number of individuals from each isoline. Isolines are the nested factor in
this design, because each isoline was established from a single site. Sites
were classified as a fixed effect because there were essentially only three sites
available for sampling, and so the sites were not randomly selected from a
population of sites. Example 2 below shows a simulated data set based on
this study, with three sites, 14 isolines per site, and eight individuals per
isoline.
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Table 19.2: Example 2 - Fecundity for Anagrus delicatus collected from three
different sites, with 14 isolines per site and eight wasps per isoline. The data
were simulated from results presented in Cronin and Strong (1996). Note
that the values in the site, isoline, and wasp columns also correspond to the
subscripts for Yijk. See Chapter 21 for the full version of this data set.

Site Isoline Wasp Yijk = eggs
1 1 1 37
1 1 2 41
1 1 3 46
1 1 4 44
1 1 5 43
1 1 6 41
1 1 7 38
1 1 8 37
1 2 1 37
1 2 2 28
1 2 3 34
1 2 4 37
1 2 5 35
1 2 6 39
1 2 7 36

etc.

3 13 1 36
3 13 2 39
3 13 3 36
3 13 4 30
3 13 5 37
3 13 6 32
3 13 7 38
3 13 8 39
3 14 1 32
3 14 2 34
3 14 3 41
3 14 4 33
3 14 5 35
3 14 6 35
3 14 7 34
3 14 8 31



19.2. ONE-WAY NESTED ANOVA 631

19.2.1 Nested ANOVA models

Suppose that we want to model the observations in a study like Example 2,
where there is a fixed Factor A and a nested Factor B. A common model for
the observations Yijk in such designs (Winer et al. 1991) is

Yijk = µ+ αi +Bj(i) + εijk. (19.4)

Here µ is the grand mean of the observations, αi the deviation from µ caused
by the ith level or treatment of Factor A, and Bj(i) the random deviation
caused by the jth level of Factor B within the ith level of Factor A. Bj(i) is
assumed to be normally distributed with mean zero and variance σ2

B(A), or

Bj(i) ∼ N(0, σ2
B(A)), while εijk ∼ N(0, σ2) as usual. Bj(i) and εijk are assumed

to be independent. This model has two variance components, namely σ2
B(A)

and σ2.
The behavior of this model is illustrated in Fig. 19.6, for a = 3 levels of

Factor A and b = 4 levels of Factor B nested within A. The figure illustrates
how the value of αi shifts the mean of the observations away from µ, similar
to other ANOVA models. The Bj(i) values, which are random variables, shift
the observations for each nested level away from the values set by µ + αi.
Because they are random variables, the values of Bj(i) are different for each
level of Factor A.

The usual objectives for this nested ANOVA design are to test for Factor
A effects, and estimate the variance components σ2

B(A) and σ2. For Factor A
this amounts to testing H0 : all αi = 0. We will not consider this process in
detail but proceed to the analysis and interpretation of the Example 2 data
set. We will use proc mixed for the analysis because this design involves a
mixed model.
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Figure 19.6: Mixed model for nested ANOVA showing the Factor A and B
effects.

19.2.2 Nested ANOVA for Example 2 - SAS demo

The first step in analyzing the Example 2 data is to read the observations
using a data step, with the variables site and isoline denoting the collection
site and Anagrus isoline (see below). Although the isolines are numbered
similarly across the three sites, note they are actually unique to each site
and so are nested within sites. The variable wasp refers to a particular wasp
within each isoline, but is not used in the analyses. Two plots are then
requested using proc gplot (SAS Institute Inc. 2014a), one showing the mean
for each site and so illustrating the site effect. The second plot shows the
individual wasps color-coded by isoline, allowing for a visual comparison of
variation among and within isolines. The x-axis position of each wasp is
jittered to keep the points from overlapping. This involves adding a small
random quantity to the site value, generating a new variable called site_jit

that differs for each wasp.
The next section of the program conducts the nested ANOVA using

proc mixed (SAS Institute Inc. 2014b). The class statement tells SAS that
site and isoline are used to classify the observations. Next, the fixed effect
site is listed in the model statement, while the random, nested effect of isoline
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is incorporated in the random statement. SAS uses the syntax isoline(site)

to indicate that isoline is nested within site. An lsmeans statement is used to
compared the different sites using the Tukey method.

The analysis found no significant effect of site (F2,39 = 2.3, P = 0.1323)
on the number of eggs per wasp (Fig. 19.7. The estimated variance among
isolines within sites (σ̂2

B(A) = σ̂2
site(isoline) = 10.17) was substantial relative

to the variance among wasps within isolines (σ̂2 = 11.02). This pattern
can be observed in Fig. 19.8, with the observations for each isoline falling
into discernable groups. This suggests that variation in egg number has a
significant genetic component.

We can use the two variance components to estimate the heritability of
egg number, which is the proportion of the variance due to genotypic vs.
phenotypic differences among individuals (Falconer & Mackay 1996). The
genotypic variance, VG, is estimated by the variance among isolines within
sites, because each isoline represents a different genetic group. For the wasp
example, we have VG = σ̂2

site(isoline) = 10.17. The environmental variance, VE,
is estimated by the variance among individuals within isolines, and represents
variation among individuals not due to genotype. It is estimated by the
variance among wasps within isolines, or VE = σ̂2 = 11.02. The phenotypic
variance is defined as the sum of the genotypic and environmental variance,
or VP = VG + VE. Heritability is then defined h2 = VG/VP = VG/(VG + VE).
It follows that h2 = 10.17/(10.17 + 11.02) = 0.48 for the number of eggs in
the wasps. This is relatively large value, suggesting that egg number could
readily evolve in response to selection pressure.
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SAS program

* Nested_ANOVA_Anagrus.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Nested ANOVA for fecundity";

title2 "Data simulated from Cronin and Strong (1996)";

data anagrus;

input site isoline wasp eggs;

* Apply transformations here;

y = eggs;

* Make jittered data for plots;

site_jit = site + 0.1*rannor(0);

datalines;

1 1 1 37

1 1 2 41

1 1 3 46

1 1 4 44

1 1 5 43

1 1 6 41

1 1 7 38

1 1 8 37

etc.

3 14 1 32

3 14 2 34

3 14 3 41

3 14 4 33

3 14 5 35

3 14 6 35

3 14 7 34

3 14 8 31

;

proc print data=anagrus;

run;

* Plot means and standard errors for each site;

proc gplot data=anagrus;

plot y*site=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1jmt v=none height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Plot observations for each site and isoline;

proc gplot data=anagrus;

plot y*site_jit=isoline / vaxis=axis1 haxis=axis1;
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symbol1 i=none v=dot height=0.5;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Nested ANOVA mixed model;

proc mixed cl data=anagrus;

class site isoline;

model y = site / ddfm=kr outp=resids;

random isoline(site);

* Compare levels of fixed effect using Tukey’s HSD;

lsmeans site / diff=all adjust=tukey cl adjdfe=row;

run;

goptions reset=all;

title "Diagnostic plots to check ANOVA assumptions";

* Plot residuals vs. predicted values;

proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;
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SAS output

Nested ANOVA for fecundity 1

Data simulated from Cronin and Strong (1996)

10:55 Tuesday, June 11, 2013

Obs site isoline wasp eggs y site_jit

1 1 1 1 37 37 1.10326

2 1 1 2 41 41 0.90939

3 1 1 3 46 46 1.18465

4 1 1 4 44 44 1.12283

5 1 1 5 43 43 1.09742

6 1 1 6 41 41 0.95798

7 1 1 7 38 38 1.11470

8 1 1 8 37 37 0.98907

etc.

329 3 14 1 32 32 2.89845

330 3 14 2 34 34 2.96535

331 3 14 3 41 41 3.02094

332 3 14 4 33 33 2.92618

333 3 14 5 35 35 2.93152

334 3 14 6 35 35 3.01175

335 3 14 7 34 34 3.06111

336 3 14 8 31 31 2.93977

Nested ANOVA for fecundity 8

Data simulated from Cronin and Strong (1996)

10:55 Tuesday, June 11, 2013

The Mixed Procedure

Model Information

Data Set WORK.ANAGRUS

Dependent Variable y

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile

Fixed Effects SE Method Kenward-Roger

Degrees of Freedom Method Kenward-Roger
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Class Level Information

Class Levels Values

site 3 1 2 3

isoline 14 1 2 3 4 5 6 7 8 9 10 11 12 13

14

Dimensions

Covariance Parameters 2

Columns in X 4

Columns in Z 42

Subjects 1

Max Obs Per Subject 336

Number of Observations

Number of Observations Read 336

Number of Observations Used 336

Number of Observations Not Used 0

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 1965.68443676

1 1 1841.14730382 0.00000000

Convergence criteria met.

Nested ANOVA for fecundity 9

Data simulated from Cronin and Strong (1996)

10:55 Tuesday, June 11, 2013

The Mixed Procedure

Covariance Parameter Estimates
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Cov Parm Estimate Alpha Lower Upper

isoline(site) 10.1664 0.05 6.5003 18.1260

Residual 11.0187 0.05 9.4338 13.0417

Fit Statistics

-2 Res Log Likelihood 1841.1

AIC (smaller is better) 1845.1

AICC (smaller is better) 1845.2

BIC (smaller is better) 1848.6

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

site 2 39 2.13 0.1323

Least Squares Means

Standard

Effect site Estimate Error DF t Value Pr > |t| Alpha

site 1 34.4821 0.9081 39 37.97 <.0001 0.05

site 2 34.2946 0.9081 39 37.77 <.0001 0.05

site 3 32.0982 0.9081 39 35.35 <.0001 0.05

Least Squares Means

Effect site Lower Upper

site 1 32.6454 36.3188

site 2 32.4579 36.1313

site 3 30.2615 33.9349

Differences of Least Squares Means

Standard

Effect site _site Estimate Error DF t Value Pr > |t| Adjustment
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site 1 2 0.1875 1.2842 39 0.15 0.8847 Tukey

site 1 3 2.3839 1.2842 39 1.86 0.0710 Tukey

Nested ANOVA for fecundity 10

Data simulated from Cronin and Strong (1996)

08:29 Monday, November 11, 2013

The Mixed Procedure

Differences of Least Squares Means

Standard

Effect site _site Estimate Error DF t Value Pr > |t| Adjustment

site 2 3 2.1964 1.2842 39 1.71 0.0951 Tukey

Differences of Least Squares Means

Adj Adj

Effect site _site Adj P Alpha Lower Upper Lower Upper

site 1 2 0.9883 0.05 -2.4100 2.7850 -2.9411 3.3161

site 1 3 0.1651 0.05 -0.2136 4.9814 -0.7447 5.5126

site 2 3 0.2142 0.05 -0.4011 4.7939 -0.9322 5.3251
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Figure 19.7: Means ± standard errors for each site in the Example 2 study,
where Y = eggs.

Figure 19.8: Observations for each site and isoline in the Example 2 study,
where Y = eggs.
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19.3 Analysis of covariance

Analysis of covariance, or ANCOVA, is a design that combines elements of
ANOVA and regression. The simplest ANCOVA design is a combination of
one-way ANOVA and linear regression. Factor A in the design is typically a
fixed effect. For each observation in the design, a covariate X is measured
and along with the dependent variable Y . The covariate X is thought to
explain some level of variation in Y , and by including it in the design this
may increase the power to detect treatment effects. Y is often assumed to be
linearly related to X, although nonlinear relationships can be accomodated.
More generally, a study might involve a mixture of factors and covariates,
and the covariate effects may be of equal or greater interest than the factors.

As an example of ANCOVA, we will analyze a study of the fitness of
adult Thanasimus dubius, a bark beetle predator, reared on an artificial diet
vs. individuals collected from the wild (Reeve et al. 2003). The fitness
variables measured were the total number of eggs laid (fecundity) and elytral
length (Table 19.3). Body size and fecundity are often related in insects, so
elytral length was used as a covariate in the analysis. This helps control for
natural variation in body size to better see the treatment effect. The three
treatments in the study were (1) artificial diet as larvae and Ips grandicollis
as adults (DietIG), (2) artificial diet and cowpea weevils (DietCPW), and (3)
wild adults fed cowpea weevils (WildCPW). The wild adults were collected from
the field and so reared on natural prey as larvae. We will use the notation
Yij to reference the observations in ANCOVA designs, with the i subscript
refering to the Factor A or treatment group, while j is the observation within
the treatment.
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Table 19.3: Example 3 - Fitness of the predator T. dubius, reared on an
artificial diet as larvae vs. wild individuals collected from the field (Reeve et
al. 2003). See Chapter 21 for the full data set.

Yij = Eggs Xij = Length (mm) Treatment i j
290 5.7 DietIG 1 1
99 5.2 DietIG 1 2

340 5.5 DietIG 1 3
271 4.8 DietIG 1 4
200 5.2 DietIG 1 5

etc.

66 4.6 DietCPW 2 1
93 5.0 DietCPW 2 2
9 5.4 DietCPW 2 3

404 5.4 DietCPW 2 4
244 5.1 DietCPW 2 5

etc.

62 4.7 WildCPW 3 1
290 5.0 WildCPW 3 2
488 5.8 WildCPW 3 3
336 5.2 WildCPW 3 4
337 5.8 WildCPW 3 5

etc.
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19.3.1 ANCOVA model

The following model is commonly used for simple ANCOVA designs (Winer
et al. 1991). We have

Yij = µ+ αi + β(Xij − X̄) + εij, (19.5)

where µ is the grand mean and αi is the deviation from µ caused by the ith
level of Factor A. The term Xij is the value of the covariate for observation
Yij, while X̄ is the average of all the covariate values. The parameter β is
the slope of the relationship between Yij and Xij. This slope is assumed to
be the same across all levels of Factor A. We will later see how to test this
assumption. As usual, the model assumes εij ∼ N(0, σ2).

The model can also be written in the form

Y ′ij = Yij − β(Xij − X̄) = µ+ αi + εij. (19.6)

Displayed this way, we can see that ANCOVA is equivalent to carrying out a
one-way ANOVA on values of Yij that have been adjusted for the covariate
X, namely the values of Y ′ij.

Another adjustment of the model is needed by SAS and other statistical
software. Combining some elements, the model can be written as

Yij = µ′ + αi + βXij + εij, (19.7)

where µ′ = µ−βX̄. The quantity µ′ represents a grand mean adjusted for the
effect of the covariate. The objective in ANCOVA is to test whether Factor
A and the covariate have an effect, and so test H0 : all αi = 0 and H0 : β = 0.
However, before conducting these F tests we will first test whether the slopes
across Factor A groups are identical by including an interaction term in the
SAS model. If the slopes are significantly different, we have a scenario similar
to ANOVA when interaction is present (see Chapter 14). Like ANOVA, when
the interaction is significant tests of the main effects in ANCOVA, namely
Factor A and the covariate X, may not make sense.

19.3.2 ANCOVA for Example 3 - SAS demo

The first step in the analysis (see program below) is to plot the number of
eggs (y) for each treatment (treat) against elytral length, the covariate (x),
using proc gplot (SAS Institute Inc. 2014a). This gives some idea whether



644 CHAPTER 19. MORE COMPLEX ANOVA DESIGNS

each treatment group has the same slope, a key assumption of ANCOVA.
The slopes do appear to be similar (Fig. 19.9).

We then fit the ANCOVA model using proc glm, because all the effects
in the model are fixed effects (SAS Institute Inc. 2014b). The first step is
to fit a model with an interaction between the treatment and covariate, and
examine the test for the interaction (see first SAS output below). We see that
it is non-significant (F2,35 = 0.02, P = 0.9781), and so can assume the slopes
are the same across treatments. We then rerun the program using the model
without interaction. We see a highly significant effect of the covariate (F1,37 =
9.99, P = 0.0031), illustrating the typical strong relationship between body
size and fecundity in insects. The treatment effect was nonsigificant (F2,37 =
0.52, P = 0.5976), implying the treatments themselves had no effect on egg
numbers. Predators reared on the artificial diet are apparently similar to
wild predators on this measure of fitness, controlling for elytral length and
so body size.

The program also includes an lsmeans statement to calculate the least
squares means for each treatment group, and test for differences among them
using the Tukey method. Least squares means are means adjusted for the
effect of other variables in the model, and in the case of ANCOVA are the
treatment means adjusted for the covariate. In particular, they have the
form

Ȳi(adj) = Ȳi − β̂(X̄i − ¯̄X). (19.8)

We can see they are composed of two terms, the treatment means and the
adjustment for the covariate. Treatment groups that have covariate means
(X̄i values) far from the overall covariate mean ( ¯̄X) receive a larger adjust-
ment. No significant differences were found among the treatment groups,
which is not surprising given the overall treatment effect was nonsignificant.
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SAS Program

* ANCOVA_fitness.sas;

options pageno=1 linesize=80;

goptions reset=all;

title ’ANCOVA for T. dubius fitness’;

data fitness;

input eggs length treat $;

* Choose y and x variables;

y = eggs;

x = length;

datalines;

290 5.7 DietIG

99 5.2 DietIG

340 5.5 DietIG

271 4.8 DietIG

200 5.2 DietIG

etc.

;

run;

* Print data set;

proc print data=fitness;

run;

* Plot data and regression line;

proc gplot data=fitness;

plot y*x=treat / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=rl v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* ANCOVA;

proc glm data=fitness;

class treat;

* Model with interaction;

*model y = treat x treat*x;

* Model without interaction;

model y = treat x;

lsmeans treat / pdiff=all adjust=tukey cl lines;

output out=resids p=pred r=resid;

run;

goptions reset=all;

title "Diagnostic plots to check ANCOVA assumptions";

* Plot residuals vs. predicted values;
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proc gplot data=resids;

plot resid*pred=1 / vaxis=axis1 haxis=axis1;

symbol1 v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Normal quantile plot of residuals;

proc univariate noprint data=resids;

qqplot resid / normal waxis=3 height=4;

run;

quit;

Figure 19.9: Eggs laid by adult T. dubius in three treatments vs. elytra
length.
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SAS Output - Model with Interaction

ANCOVA for T. dubius fitness 3

13:26 Thursday, September 26, 2013

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 5 149241.7740 29848.3548 2.13 0.0845

Error 35 489963.3479 13998.9528

Corrected Total 40 639205.1220

R-Square Coeff Var Root MSE y Mean

0.233480 47.29918 118.3172 250.1463

Source DF Type I SS Mean Square F Value Pr > F

treat 2 16193.0211 8096.5105 0.58 0.5661

x 1 132427.1693 132427.1693 9.46 0.0041

x*treat 2 621.5837 310.7918 0.02 0.9781

Source DF Type III SS Mean Square F Value Pr > F

treat 2 396.6464 198.3232 0.01 0.9859

x 1 114086.8726 114086.8726 8.15 0.0072

x*treat 2 621.5837 310.7918 0.02 0.9781



648 CHAPTER 19. MORE COMPLEX ANOVA DESIGNS

SAS Output - Model without Interaction

ANCOVA for T. dubius fitness 1

08:29 Monday, November 11, 2013

Obs eggs length treat y x

1 290 5.7 DietIG 290 5.7

2 99 5.2 DietIG 99 5.2

3 340 5.5 DietIG 340 5.5

4 271 4.8 DietIG 271 4.8

5 200 5.2 DietIG 200 5.2

etc.

ANCOVA for T. dubius fitness 2

08:29 Monday, November 11, 2013

The GLM Procedure

Class Level Information

Class Levels Values

treat 3 DietCPW DietIG WildCPW

Number of Observations Read 41

Number of Observations Used 41

ANCOVA for T. dubius fitness 3

08:29 Monday, November 11, 2013

The GLM Procedure

Dependent Variable: y

Sum of

Source DF Squares Mean Square F Value Pr > F

Model 3 148620.1904 49540.0635 3.74 0.0193

Error 37 490584.9316 13259.0522
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Corrected Total 40 639205.1220

R-Square Coeff Var Root MSE y Mean

0.232508 46.03224 115.1480 250.1463

Source DF Type I SS Mean Square F Value Pr > F

treat 2 16193.0211 8096.5105 0.61 0.5484

x 1 132427.1693 132427.1693 9.99 0.0031

Source DF Type III SS Mean Square F Value Pr > F

treat 2 13846.2749 6923.1375 0.52 0.5976

x 1 132427.1693 132427.1693 9.99 0.0031

ANCOVA for T. dubius fitness 4

08:29 Monday, November 11, 2013

The GLM Procedure

Least Squares Means

Adjustment for Multiple Comparisons: Tukey-Kramer

LSMEAN

treat y LSMEAN Number

DietCPW 270.496170 1

DietIG 221.056056 2

WildCPW 251.610513 3

Least Squares Means for effect treat

Pr > |t| for H0: LSMean(i)=LSMean(j)

Dependent Variable: y

i/j 1 2 3

1 0.5702 0.8992

2 0.5702 0.7839
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3 0.8992 0.7839

treat y LSMEAN 95% Confidence Limits

DietCPW 270.496170 205.021331 335.971009

DietIG 221.056056 147.207956 294.904156

WildCPW 251.610513 195.890594 307.330433

Least Squares Means for Effect treat

Difference Simultaneous 95%

Between Confidence Limits for

i j Means LSMean(i)-LSMean(j)

1 2 49.440114 -69.094011 167.974239

1 3 18.885656 -85.958935 123.730248

2 3 -30.554457 -142.397015 81.288100

Tukey-Kramer Comparison Lines for Least Squares Means of treat

LS-means with the same letter are not significantly different.

LSMEAN

y LSMEAN treat Number

A 270.496 DietCPW 1

A

A 251.611 WildCPW 3

A

A 221.056 DietIG 2
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19.5 Problems

1. A limnologist wants to examine the length of a zooplankton species
reared using four different algal growth media (1, 2, 3, and 4). She
is also interested in whether there is variation among the containers
used to rear the organisms. An experiment is conducted where three
containers are used for each rearing medium, for a total of 12 different
containers. The containers were randomly selected from a box of con-
tainers. The length of four animals was determined for each container,
yielding the following data:

Medium Container Lengths 1-4 (mm)
1 1 3.1, 3.0, 3.2, 3.0
1 2 3.3, 3.6, 2.8, 2.5
1 3 3.7, 3.4, 3.4, 3.6
2 1 2.7, 2.9, 3.2, 3.0
2 2 2.9, 3.4, 3.5, 2.9
2 3 3.5, 3.5, 3.7, 4.0
3 1 2.8, 2.7, 1.8, 2.5
3 2 2.6, 2.5, 3.2, 2.4
3 3 2.6, 2.9, 1.8, 2.4
4 1 4.1, 4.6, 3.3, 4.5
4 2 3.7, 3.9, 4.0, 3.9
4 3 4.4, 4.4, 3.9, 4.6

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed, random, and possibly nested.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Is there a significant
difference among the four media in zooplankton length?

(c) Use the Tukey method to compare the media treatments. Inter-
pret your results.

(d) Compare the magnitude of your variance components. Does there
appear to be much variation among containers?

2. An ecologist is interested in the effect of three management treatments
(labeled 1, 2, and 3) on the abundance of an endangered snail. Treat-
ment 2 is a control treatment. Twenty-four plots are established and
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the three treatments assigned at random to the plots. The density of
snails is then measured at a later time, as well as a covariate in the
form of a habitat index. Larger values of the habitat index are thought
to indicate better snail habitat. See data set below.

Treatment Index Snails
1 9.3 23.0
1 9.8 24.9
1 9.9 24.7
1 10.1 24.6
1 8.9 23.4
1 10.8 27.1
1 9.6 25.4
1 10.7 25.4
2 11.9 21.8
2 9.6 18.8
2 10.3 21.0
2 10.8 21.5
2 9.9 20.9
2 10.9 22.6
2 8.9 19.8
2 10.2 22.4
3 11.2 23.4
3 10.3 18.5
3 11.1 22.3
3 9.8 20.5
3 11.2 20.5
3 8.7 18.4
3 8.4 18.7
3 10.5 19.2

(a) Test for equality of slopes among the different treatment groups
using SAS. Is this key assumption of ANCOVA satisfied?

(b) Use ANCOVA and SAS to test for overall treatment and covariate
effects in this experiment, and the Tukey method to compare the
different treatments. Interpret and discuss your results. Is there
a significant treatment and covariate effect? How do the different
treatments compare?
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3. A scientist interested in aquaculture raises fish using three kinds of
treatments in a factorial design. There were two fish diets (A and B),
two strains of fish (1 and 2), and three temperatures (22o, 24o, and
26oC). Two fish were reared for each combination of the treatments.
The following data were obtained:

Diet Strain Temp Weight (lb)
A 1 22 5.5
A 1 22 5.8
A 1 24 5.9
A 1 24 5.7
A 1 26 6.2
A 1 26 5.9
A 2 22 5.2
A 2 22 5.0
A 2 24 5.4
A 2 24 5.6
A 2 26 5.0
A 2 26 4.9
B 1 22 5.4
B 1 22 4.8
B 1 24 5.4
B 1 24 5.4
B 1 26 5.7
B 1 26 5.5
B 2 22 5.2
B 2 22 4.8
B 2 24 5.1
B 2 24 5.1
B 2 26 4.8
B 2 26 4.5

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed or random.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Interpret the results of
your analysis.


