
Chapter 8

Sampling and Estimation

We discuss in this chapter two topics that are critical to most statistical
analyses. The first is random sampling, which is a method for obtaining
observations from a statistical population that has many advantages. After
obtaining a random sample, the next step of the analysis is the selection of
a probability distribution to model the observations, such as the Poisson or
normal distributions. One then seeks to estimate the parameters of these
distributions (λ, µ, σ2, etc.) using the information contained in the random
sample, the second topic of this chapter. We will examine one common
method of parameter estimation called maximum likelihood.

8.1 Random samples

A basic assumption of many statistical procedures is that the observations
are a random sample from a statistical population (see Chapter 3). A
sample from a statistical population is a random sample if (1) each element
of the population has an equal probability of being sampled, and (2) the
observations in the sample are independent (Thompson 2002). This definition
has a number of implications. It implies that a random sample will resemble
the statistical population from which it is drawn, especially as the sample
size n increases, because each element of the population has an equal chance
of being in the sample. Random sampling also implies there is no connection
or relationship between the observations in the sample, because they are
independent of one another.

What are some ways of obtaining a random sample? Suppose we are
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interested in the distribution of body length for insects of a given species,
say in a particular forest. This defines the statistical population of interest.
One way to obtain a random sample would be to number all the insects, and
then write the numbers on pieces of paper and place them in a hat. After
mixing the pieces, one would draw n numbers from the hat (without peeking)
and collect only those insects corresponding to these numbers. Although im-
practical, because of difficulties in locating and numbering individual insects,
this method would in fact yield a random sample of the insect population.
Each member of the insect population would have an equal probability of be-
ing selected from the hat, and the observations would also be independent.
This method of sampling is more useful for statistical populations were the
number of elements or members is relatively small and can be individually
identified, as in surveys of human populations (Thompson 2002).

A more feasible way of sampling insects would be to place traps in the
forest and in this way sample the population. If we want to successfully
approximate a random sample with our trapping scheme, however, some
knowledge of the biology of the organism is essential. For example, suppose
that insect size varies in space because of differences in food plants or mi-
croclimate. A single trap deployed at only one location could therefore yield
insects different in length than those in the overall population. A better
sampling scheme would deploy multiple traps at several locations within the
forest. The location of the traps could be randomly chosen to avoid conscious
or unconscious biases by the trapper, such as deploying the traps close to a
road for convenience. There is also the problem that insects susceptible to
trapping could differ in length from the general population. This implies
that the population actually sampled could differ from the target statistical
population, and a careful analyst would consider this possibility. Thus, the
biology of the organism plays an integral role in designing an appropriate
sampling scheme.

8.2 Parameter estimation

Suppose we have obtained a random sample from some statistical population,
say the lengths of insects trapped in a forest, or the counts of the insects
in each trap. The first step faced by the analyst is to chose a probability
distribution to model the data in the sample. For insect lengths, a normal
distribution could be a plausible model, while counts of the insects per trap
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might have a Poisson distribution. Once a distribution has been selected, the
next task is to estimate the parameters of the distribution using the sample
data. The dominant method of parameter estimation in modern statistics is
maximum likelihood. This method has a number of desirable statistical
properties although it can also be computationally intensive.

Maximum likelihood obtains estimates of the parameters using a math-
ematical function (see Chapter 2) known as the likelihood function. The
likelihood function gives the probability or density of the observed data as a
function of the parameters in the probability distribution. For example, the
likelihood function for Poisson data would be a function of the Poisson pa-
rameter λ. We then seek the maximum value of the likelihood function (hence
the name maximum likelihood) across the potential range of parameter val-
ues. The parameter values that maximize the likelihood are the maximum
likelihood estimates. In other words, the maximum likelihood estimates
are the parameter values that give the largest probability (or prob-
ability density) for the observed data.

8.2.1 Maximum likelihood for Poisson data

We will first illustrate estimation using maximum likelihood with a random
sample drawn from a statistical population where the observations are Pois-
son. For simplicity, let n = 3 and suppose the observed values are Y1 = 8,
Y2 = 5, and Y3 = 6. We begin by calculating the probability of observing this
sample, which in fact is its likelihood function. Because we have a random
sample, the Yi values are independent of each other, and so this probability
is the product of the probability for each Yi. We have

L(λ) = P [Y1 = 8]× P [Y2 = 5]× P [Y3 = 6] (8.1)

=
e−λλ8

8!
× e−λλ5

5!
× e−λλ6

6!
(8.2)

The notation L(λ) is used for likelihood functions and indicates the likelihood
is a function of the parameter λ of the Poisson distribution. The method of
maximum likelihood estimates λ by finding the value of λ that maximizes
this function (Mood et al. 1974). Note that the location of the maximum
will vary with the data in the sample.

We can find the maximum likelihood estimate graphically by plotting
L(λ) as function of λ (Fig. 8.1). For these particular data values, the max-
imum occurs at λ = 6.3, and so the maximum likelihood estimate (often
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abbreviated MLE) of λ is this value. This is also the value of Ȳ for these
data, which suggests that Ȳ might be the maximum likelihood estimator of λ
in general. This can also be shown mathematically using derivatives. Let y1,

Figure 8.1: Plot of L(λ) vs. λ

y2, and y3 be the observed values of Y1, Y2, and Y3. The likelihood function
can then be written as

L(λ) =
e−λλy1

y1!
× e−λλy2

y2!
× e−λλy3

y3!
=
e−3λλy1+y2+y3

y1!y2!y3!
(8.3)

We want to find the maximum of L(λ) (Eq. 8.3), which should occur when
the derivative of this function with respect to λ equals zero. This follows
because the derivative is the slope of a function, and at the maximum the
slope is equal to zero. Differentiating L(λ) with respect to λ and simplifying,
we obtain

dL(λ)

dλ
=

e−3λ

y1!y2!y3!

[
(y1 + y2 + y3)λy1+y2+y3−1 − 3λy1+y2+y3

]
. (8.4)

This derivative can only equal zero if the term in square brackets is zero:[
(y1 + y2 + y3)λy1+y2+y3−1 − 3λy1+y2+y3

]
= 0 (8.5)
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or

(y1 + y2 + y3)λy1+y2+y3−1 = 3λy1+y2+y3 . (8.6)

Canceling the quantity λy1+y2+y3 from both sides of this equation, we find
that

(y1 + y2 + y3)λ−1 = 3, (8.7)

or

λ̂ =
y1 + y2 + y3

3
. (8.8)

Note that this is the sample mean Ȳ for n = 3, and it is can be shown that Ȳ
is the maximum likelihood estimator of λ for any n. Statisticians often write
the estimator of a parameter like λ using the notation λ̂, pronounced ‘λ-
hat.’ An estimator can be thought of as the formula or recipe for obtaining
an estimate of a parameter, with the estimate itself obtained by plugging
actual data values into the estimator.

8.2.2 Poisson likelihood function - SAS demo

We can use a SAS program to further illustrate the behavior of the likelihood
function for Poisson data (see program listing below). In particular, we will
show how L(λ) changes as the observed data and the sample size n changes.
The program first generates n random Poisson observations for a specified
Poisson parameter value of λ = 6 (mu_parameter = 6). It then plots L(λ)
across a range of λ values. In this scenario we actually know the underlying
value of λ and can see how well maximum likelihood estimates its value. See
SAS program below.

The program makes extensive use of loops in the data step, to generate
the Poisson data and also values of the likelihood function for different values
of λ. One new feature of this program is the use of a SAS macro variable(SAS
Institute Inc. 2014). In this case, a macro variable labeled n is defined and
assigned a value of 3 using the command

%let n = 3;

We can then refer to this value throughout the program using the notation
&n. Otherwise, if we wanted to change the sample size n in the program we
would have to type in a new value everywhere sample size is used in the
calculations.
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SAS program

* likepois_random.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Plot L(lambda) for Poisson data vs. lambda";

data likepois;

* Generate n random Poisson observations with parameter lambda;

%let n = 3;

lambda_parameter = 6;

array ydata (&n) y1-y&n;

do i=1 to &n;

ydata(i) = ranpoi(0,lambda_parameter);

end;

* Find likelihood as function of lambda;

do lambda=0.1 to 15 by 0.1;

Llambda = 1;

do i=1 to &n;

Llambda = Llambda*pdf(’poisson’,ydata(i),lambda);

end;

output;

end;

run;

* Print data;

proc print data=likepois;

run;

* Plot likelihood as a function of lambda;

proc gplot data=likepois;

plot Llambda*lambda=1 / vaxis=axis1 haxis=axis1;

symbol1 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

Examining the SAS output and graphs from the first two runs of the
program (Fig. 8.2, 8.3), we see that the likelihood function is different. This
is because the observed data are different for each run. The peak in the
likelihood function always occurs at the value of Ȳ for each data set, and
this is the maximum likelihood estimate of λ.

The last run shows the effect of increasing the sample size in the program,
from n = 3 to n = 10. Note that the peak of the likelihood function lies quite
close to the specified value λ = 6 (Fig. 8.4). This illustrates an important
property of maximum likelihood estimators - they converge on the true value



8.2. PARAMETER ESTIMATION 211

as n→∞. This property is known as consistency in mathematical statistics.

SAS output

Plot L(lambda) for Poisson data vs. lambda 1

11:12 Tuesday, January 26, 2010

lambda_

Obs parameter y1 y2 y3 i lambda Llambda

1 6 6 5 2 4 0.1 4.2871E-19

2 6 6 5 2 4 0.2 2.6018E-15

3 6 6 5 2 4 0.3 3.7512E-13

4 6 6 5 2 4 0.4 1.1697E-11

5 6 6 5 2 4 0.5 1.5762E-10

6 6 6 5 2 4 0.6 .000000001

7 6 6 5 2 4 0.7 .000000007

8 6 6 5 2 4 0.8 .000000029

9 6 6 5 2 4 0.9 .000000099

10 6 6 5 2 4 1.0 .000000288

11 6 6 5 2 4 1.1 .000000737

12 6 6 5 2 4 1.2 .000001692

13 6 6 5 2 4 1.3 .000003548

14 6 6 5 2 4 1.4 .000006888

15 6 6 5 2 4 1.5 .000012512

16 6 6 5 2 4 1.6 .000021449

17 6 6 5 2 4 1.7 .000034945

18 6 6 5 2 4 1.8 .000054426

19 6 6 5 2 4 1.9 .000081428

20 6 6 5 2 4 2.0 .000117511

21 6 6 5 2 4 2.1 .000164154

22 6 6 5 2 4 2.2 .000222642

23 6 6 5 2 4 2.3 .000293959

24 6 6 5 2 4 2.4 .000378689

25 6 6 5 2 4 2.5 .000476944

etc.
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Figure 8.2: Plot of L(λ) vs. λ for n = 3, first run

Figure 8.3: Plot of L(λ) vs. λ for n = 3, second run
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Figure 8.4: Plot of L(λ) vs. λ for n = 10
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8.2.3 Maximum likelihood for normal data

Now suppose we draw a random sample from a population with a normal
distribution, such as body lengths, etc. For simplicity, let n = 3 again and
the observed values be Y1 = 4.5, Y2 = 5.4, and Y3 = 5.3. The likelihood
function in this case is the probability density values for the observed data:

L(µ, σ2) =
1√

2πσ2
e−

1
2

(4.5−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.4−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.3−µ)2

σ2 .

(8.9)

Note that the terms in the likelihood for normal data are probability densities,
instead of probabilities as with Poisson data.

We can find the maximum likelihood estimate graphically by plotting
L(µ, σ2) as function of µ and σ2. The likelihood function in this case describes
a dome-shaped surface (Fig. 8.5). With these particular data, the maximum
occurs at about µ = 5.07 and σ2 = 0.16, and so these are the maximum
likelihood estimates of µ and σ2.

Figure 8.5: Plot of L(µ, σ2) vs. µ and σ2
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Using a bit of calculus, it can be shown that the maximum likelihood
estimators of these parameters are, for any sample size n:

µ̂ = Ȳ (8.10)

and

σ̂2 =
Σn
i=1(Yi − Ȳ )2

n
. (8.11)

Note that does not quite equal the sample variance s2, which uses n − 1
(rather than n) in the denominator:

s2 =
Σn
i=1(Yi − Ȳ )2

n− 1
. (8.12)

Recall that s2 is an unbiased estimator of σ2, and so σ̂2 derived using max-
imum likelihood is actually a biased estimator of σ2. It would consistently
generate values that underestimate σ2 because n is greater than n − 1. For
cases like this one where bias is known, most analysts would use a bias-
corrected version of the maximum likelihood estimator (i.e., n − 1 rather
than n in the denominator).

8.2.4 Normal likelihood function - SAS demo

We will use another SAS program to illustrate the behavior of the likelihood
function for normal data. The program first generates n random normal
observations for a specified, known value of µ = 5 and σ2 = 0.25. It then
plots the likelihood function across a range of possible µ and σ2 values. See
SAS program below.

Examining the SAS output and graphs from the first two runs of the
program, we see that the likelihood function changes with the observed data.
The peak always occurs at µ̂ and σ̂2 for each data set. The last run shows
the effect of increasing the sample size from n = 3 to n = 10. Note that the
peak of the likelihood function lies quite close to the specified values of µ = 5
and σ2 = 0.25. This again illustrates the consistency of maximum likelihood
estimates.
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SAS program

* likenorm_random.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Plot L(mu,sig2) for normal data vs. mu and sig2";

data likenorm;

* Generate n random normal observations with parameters mu and sig2;

%let n = 3;

mu_parameter = 5; sig2_parameter = 0.25; sig_parameter = sqrt(sig2_parameter);

array ydata (&n) y1-y&n;

do i=1 to &n;

ydata(i) = mu_parameter + sig_parameter*rannor(0);

end;

* Find likelihood as a function of mu and sig2;

do mu=4 to 6 by 0.01;

do sig2=0.05 to 0.5 by 0.01;

sig = sqrt(sig2);

Lmusig2 = 1;

do i=1 to &n;

Lmusig2 = Lmusig2*pdf(’normal’,ydata(i),mu,sig);

end;

output;

end;

end;

run;

* Print data, first 25 observations;

proc print data=likenorm(obs=25);

run;

* Plot likelihood as a function of mu and sig2;

* Contour plot version;

proc gcontour data=likenorm;

plot sig2*mu=Lmusig2 / autolabel nolegend vaxis=axis1 haxis=axis1;

symbol1 height=1.5 font=swissb width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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SAS output

Plot L(mu,sig2) for normal data vs. mu and sig2 1

14:55 Wednesday, June 2, 2010

s

i s

m g i

u 2 g

_ _ _

p p p

a a a

r r r L

a a a m

m m m u

e e e s s

O t t t i s i

b e e e y y y m g i g

s r r r 1 2 3 i u 2 g 2

1 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.05 0.22361 1.8951E-21

2 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.06 0.24495 5.4739E-18

3 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.07 0.26458 1.5654E-15

4 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.08 0.28284 1.0597E-13

5 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.09 0.30000 2.7536E-12

6 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.10 0.31623 3.6678E-11

7 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.11 0.33166 3.0097E-10

8 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.12 0.34641 .000000002

9 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.13 0.36056 .000000007

10 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.14 0.37417 .000000026

11 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.15 0.38730 .000000076

12 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.16 0.40000 .000000193

13 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.17 0.41231 .000000437

14 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.18 0.42426 .000000900

15 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.19 0.43589 .000001709

16 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.20 0.44721 .000003034

17 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.21 0.45826 .000005081

18 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.22 0.46904 .000008092

19 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.23 0.47958 .000012340

20 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.24 0.48990 .000018118

21 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.25 0.50000 .000025733

22 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.26 0.50990 .000035493

23 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.27 0.51962 .000047701

24 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.28 0.52915 .000062644

25 5 0.25 0.5 5.86023 4.75626 4.95540 4 4 0.29 0.53852 .000080587
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Figure 8.6: Plot of L(µ, σ2) vs. µ and σ2 for n = 3, first run

Figure 8.7: Plot of L(µ, σ2) vs. µ and σ2 for n = 3, second run
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Figure 8.8: Plot of L(µ, σ2) vs. µ and σ2 for n = 10
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8.3 Optimality of maximum likelihood esti-

mates

Why should we use maximum likelihood estimates? There are other methods
of parameter estimation, but maximum likelihood estimates are optimal in
a number of ways (Mood et al. 1974). We have already seen that they are
consistent, approaching the true parameter values as sample size increases.
Increasing the sample size also reduces the variance of these estimators. We
can observe this behavior for µ̂ = Ȳ , the estimator of µ for the normal
distribution. Recall that the variance of Ȳ is σ2/n, which decreases for
large n. Maximum likelihood estimates are also asymptotically unbiased,
meaning their expected value approaches the true value of the parameter as
the sample size n increases. We can see this in operation for Eq. 8.11, the
maximum likelihood estimator of σ2, vs. Eq. 8.12, an unbiased estimator
of σ2. Note that the difference between n vs. n − 1 in the denominator
becomes very small as n increases. Finally, maximum likelihood estimates are
asymptotically normal, meaning their distribution approaches the normal
distribution for large n.

There are other uses for the likelihood function besides parameter esti-
mation. We will later see how the likelihood function can be used to develop
statistical tests called likelihood ratio tests. Many of the statistical tests we
will study are actually likelihood ratio tests. Likelihood methods provide an
essential tool for developing new statistical procedures, provided that we can
specify a probability distribution for the data.
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8.5 Problems

1. The exponential distribution is a continuous distribution that is used
to model the time until a particular event occurs. For example, the
time when a radioactive particle decays is often modeled using an ex-
ponential distribution. If a variable Y has a exponential distribution,
then its probability density is given by the formula

f(y) =
e−y/λ

λ
(8.13)

for y ≥ 0. The distribution has one parameter, λ, which is the mean
decay time (E[Y ] = λ).

(a) Use SAS and the program fplot.sas to plot the exponential prob-
ability density with λ = 2, for 0 ≤ y ≤ 5. Attach your SAS
program and output.

(b) Suppose you have a sample of four observations y1, y2, y3 and y4

from the exponential distribution. What would be the likelihood
function for these observations?

(c) Plot the likelihood function for y1 = 1, y2 = 2, y3 = 2 and y4 = 3
over a range of λ values. Show that the maximum occurs at λ̂ = Ȳ ,
the maximum likelihood estimator of λ. Attach your SAS program
and output.

2. The geometric distribution is a discrete distribution that is used to
model the time until a particular event occurs. Consider tossing a coin
– the number of tosses before a head appears would have a geometric
distribution. If a variable Y has a geometric distribution, then the
probability that Y takes a particular value y is given by the formula

P [Y = y] = f(y) = p(1− p)y (8.14)

where p is the probability of observing the event on a particular trial,
and y = 0, 1, 2, . . . ,∞. The distribution has only one parameter, p.

(a) Use SAS and the program fplot.sas to plot this probability dis-
tribution for p = 0.5, for y = 0, 1, . . . , 10. Attach your SAS pro-
gram and output.
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(b) Suppose you have a sample of three observations y1, y2, and y3

from the geometric distribution. What would be the likelihood
function for these observations?

(c) Plot the likelihood function for y1 = 1, y2 = 2, and y3 = 3 over a
range of p values. Show that the maximum occurs at p̂ = 1/(Ȳ +
1), the maximum likelihood estimator of p. Attach your SAS
program and output.


