
Chapter 14

Analysis of Variance
(Two-Way)

Two-way ANOVA examines how two different factors, such as different ex-
perimental treatments, affect the means of the different groups. For example,
we might be interested in how different baits, as well as trap color, affect the
number of insects caught in the traps. If we conducted an experiment where
traps were deployed with different combinations of bait and trap color, this
would be a two-way factorial design, where the term factorial implies all
possible combinations of the two factors. If there were three different baits
(A, B, and C) and two trap colors (black, white), a factorial design implies
there would be six different treatment combinations in the experiment (A-
black, A-white, B-black, B-white, C-black, C-white). There would be one
or more traps deployed with each treatment combination. It is customary
to call one of the factors in a two-way design ‘Factor A’, while the other is
‘Factor B’.

Similar to one-way ANOVA designs, the factors in two-way ANOVA can
be either fixed or random. In the insect trapping experiment discussed above,
both bait and trap color would be fixed effects because they were selected by
the investigator. There are then F tests for each factor in the design, and
potentially a test for the interaction of the two factors. An interaction
between two factors implies there is a joint effect of the two fac-
tors beyond that predicted by each factor operating additively. For
example, insects might be strongly attracted to A-black traps, more than
would be predicted by the bait and trap color effects observed in the rest
of the treatments. We will focus some effort on the analysis of this design
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because it is one of the more common ones.
There are other possible two-way designs, including one fixed and one

random effect, or more rarely both effects are random. We will examine
a popular design where one factor is fixed and the other random, called
a randomized block design. There is an F test for the fixed effect in
this design, and this test is often the primary goal of the analysis. With
respect to the random effects, it is common to simply estimate the variance
components associated with these effects and not conduct any tests, although
these are still available. This design is ubiquitous in field studies because it
helps control for certain forms of spatial or temporal heterogeneity in the
observations, permitting a more powerful test of any treatment or group
effects.

What do the data look like for a two-way ANOVA design? We will first
examine a simplified data set from a trapping study of the bark beetle preda-
tor T. dubius (Reeve et al. 2009). These predators feed on bark beetles which
attack and kill pine trees, and are attracted to the pheromones of the bark
beetles as well as odors emitted by damaged pines. Visual cues may also play
a role in their behavior, in particular the dark vertical silhouette provided
by the bole of the tree. Three different baits were used: frontalin + turpen-
tine (FRT), ipsdienol + turpentine (IDT), and ipsenol + turpentine (IST).
Frontalin, ipsdienol, and ipsenol are bark beetle pheromones, while turpen-
tine contains volatiles similar to those in pine resin. The traps were also
painted two different colors, black vs. white, to manipulate their appearance
to the predators. Thus, there were a total of six treatments (three baits, two
colors) in the design. The different treatments were randomly assigned to
trapping locations along transects in a pine forest, with four replicates per
treatment. The number of predators caught in each trap were counted after
several weeks of trapping (Table 14.1). The fourth column in the table shows
the values after applying a log transformation, which is commonly used with
count data (see Chapter 15).

We will use the notation Yijk to reference the observations in two-way
ANOVA designs. The i subscript refers to the group or treatment within
Factor A (bait), j the group or treatment within Factor B (trap color), while
k refers to the observation within the treatment. For example, Y123 refers to
the third observation in the FRT bait - W color treatment, which is 0.903.

We will also examine data from an experiment that examined how nu-
trient and water availability, as well as resource heterogeneity in space or
time, affect biomass production in grassland plants (Maestre & Reynolds
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2007). Plants from a grassland community were seeded in small containers
in the greenhouse, with the treatments consisting of different levels of nitro-
gen and watering. There were three nitrogen and three watering levels in
the experiment, for a total of nine treatments, with four replicate containers
per treatment. The experiment also included treatments were the nitrogen
was heterogeneously distributed in the container and watering was pulsed in
time, but we will defer analysis of these other factors to Chapter 19. The
total biomass of the plants was then determined after 100 d of growth (Table
14.2).

The data sets presented in this chapter are balanced designs with the
same number of replicates per group, because this simplifies the formulas.
They can be extended to unbalanced designs, but we will let SAS handle the
details of the calculations in this case. We will later see how unbalanced data
sets can influence the tests in two-way ANOVA.
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Table 14.1: Example 1 - Effect of bait and trap color on catches of T. dubius, a bark beetle predator (Reeve
et al. 2009). The baits used were frontalin + turpentine (FRT), ipsdienol + turpentine (IDT), and ipsenol
+ turpentine (IST), and the traps were painted either black (B) or white (W). Also shown are the means
for each treatment group (Ȳij·) and preliminary calculations to find SSwithin

.

Bait Color T. dubius Yijk = log10(T.dubius+ 1) i j k Ȳij· (Yijk − Ȳij·)2

FRT B 18 1.279 1 1 1 1.150 1.664×10−2

FRT B 12 1.114 1 1 2 1.296×10−3

FRT B 22 1.362 1 1 3 4.494×10−2

FRT B 6 0.845 1 1 4 9.303×10−2

FRT W 12 1.114 1 2 1 0.980 1.796×10−2

FRT W 15 1.204 1 2 2 5.018×10−2

FRT W 7 0.903 1 2 3 5.929×10−3

FRT W 4 0.699 1 2 4 7.896×10−2

IDT B 0 0.000 2 1 1 0.369 1.363×10−1

IDT B 2 0.477 2 1 2 1.161×10−2

IDT B 1 0.301 2 1 3 4.658×10−3

IDT B 4 0.699 2 1 4 1.087×10−1

IDT W 2 0.477 2 2 1 0.314 2.665×10−2

IDT W 1 0.301 2 2 2 1.626×10−4

IDT W 2 0.477 2 2 3 2.665×10−2

IDT W 0 0.000 2 2 4 9.844×10−2
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Bait Color T. dubius Yijk = log10(T.dubius+ 1) i j k Ȳij· (Yijk − Ȳij·)2

IST B 2 0.477 3 1 1 0.725 6.126×10−2

IST B 2 0.477 3 1 2 6.126×10−2

IST B 10 1.041 3 1 3 1.002×10−1

IST B 7 0.903 3 1 4 3.186×10−2

IST W 1 0.301 3 2 1 0.719 1.745×10−1

IST W 4 0.699 3 2 2 3.901×10−4

IST W 14 1.176 3 2 3 2.091×10−1

IST W 4 0.699 3 2 4 3.901×10−4
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Table 14.2: Example 2 - Effect of nutrient and water availability on the total
biomass of grassland plants grown in microcosms (Maestre & Reynolds 2007).

N (mg) Water (ml/week) Yijk = Biomass i j k
40 125 4.372 1 1 1
40 125 4.482 1 1 2
40 125 4.221 1 1 3
40 125 3.977 1 1 4
40 250 7.400 1 2 1
40 250 8.027 1 2 2
40 250 7.883 1 2 3
40 250 7.769 1 2 4
40 375 7.226 1 3 1
40 375 8.126 1 3 2
40 375 6.840 1 3 3
40 375 7.901 1 3 4
80 125 5.140 2 1 1
80 125 3.913 2 1 2
80 125 4.669 2 1 3
80 125 4.306 2 1 4
80 250 9.099 2 2 1
80 250 9.711 2 2 2
80 250 9.123 2 2 3
80 250 9.709 2 2 4
80 375 10.701 2 3 1
80 375 11.552 2 3 2
80 375 11.356 2 3 3
80 375 9.759 2 3 4



14.1. RANDOM ASSIGNMENT OF TREATMENTS 389

N (mg) Water (ml) Yijk = Biomass i j k
120 125 5.021 3 1 1
120 125 4.970 3 1 2
120 125 5.055 3 1 3
120 125 4.862 3 1 4
120 250 9.029 3 2 1
120 250 10.791 3 2 2
120 250 9.115 3 2 3
120 250 10.319 3 2 4
120 375 12.189 3 3 1
120 375 14.381 3 3 2
120 375 13.153 3 3 3
120 375 14.066 3 3 4

14.1 Random assignment of treatments

A essential step in executing ANOVA designs is the random as-
signment of treatments to experimental units. For instance, in the
Example 2 experiment we would want to randomly assign nitrogen and wa-
tering levels to the microcosms. This avoids any bias on the part of the
experimenter in assigning the treatments to the containers, and also ensures
that the replicates for each treatment are spread and intermingled through-
out the greenhouse. What could happen if the treatments are not randomly
assigned? Suppose that all the replicates for a given treatment in Example
2 are placed next to each other in the greenhouse, perhaps because this is
convenient when applying the treatments. If a particular location happens
to be warmer or receive more sunlight than another location, then the plants
may be larger in that location and so bias the results of the experiment. We
may falsely conclude a particular treatment has an effect on biomass because
of this location effect. The random assignment of treatments avoids biases of
this sort and also ensures independence of the observations, a basic assump-
tion of most statistical models (Hurlbert 1984; Potvin 1993). Experiments
with this feature are also known as completely randomized designs. We
will illustrate the random assignment of treatments using a SAS program
below.
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14.1.1 Random assignment of treatments - SAS Demo

The program below shows one way of randomly assigning treatments to con-
tainers for the Example 2 experiment. We first input the different treatment
combinations using a data step, with one line in the data set for each repli-
cate. The data step also assigns a random number to each observation. The
program uses a uniform random variable generated by the ranuni function,
but any continuous random variable would work. We then use proc sort to
sort the observations in ascending order by this random variable, thereby ran-
domly shuffling the treatments (see Fig. 14.2). We would then assign to the
first container the first treatment combination in the shuffled observations,
the second container the second treatment combination, and so forth.

* Rand_treatments.sas;

title "Random assignment of Example 2 treatments";

data treat;

input nitrogen water;

* Generate a uniform random variable;

u = ranuni(0);

datalines;

40 125

40 125

40 125

40 125

40 250

40 250

40 250

40 250

etc.

;

run;

title2 "Original order of treatments";

proc print data=treat;

run;

* Sort treatments by value of u;

proc sort out=shuffled data=treat;

by u;

run;

title2 "Randomly shuffled treatments";

proc print data=shuffled;

run;
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quit;

etc.

Figure 14.1: rand treatments.sas - proc print
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etc.

Figure 14.2: rand treatments.sas - proc print
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14.2 Two-way fixed effects model

Suppose that we want to model the observations in studies like Example 1 or
2, where there are two factors that are manipulated and are fixed effects. Let
Factor A be one treatment (such as bait type) while Factor B is the other
treatment (trap color). Let the symbol Yijk stand for the kth observation
(k = 1, 2, . . . , n) in the ith Factor A treatment and jth Factor B treatment.
For example, with the Example 1 data set we have Y111 = 1.279 while Y222 =
0.301 (see Table 14.1). One commonly used model for such a design (Searle
1971) is

Yijk = µ+ αi + βj + (αβ)ij + εijk. (14.1)

Here µ is the grand mean of the observations, while αi is the deviation from µ
caused by the ith treatment in Factor A, while βj is the deviation caused by
the jth treatment in Factor B. These terms are called the main effects in the
model. The term (αβ)ij represents an interaction between Factors A and B,
implying a shift in the mean for a particular treatment combination beyond
the effects of Factor A and B. An interaction between two factors A and B
is often symbolized as ‘A × B.’ It is also considered a fixed effect when both
A and B are fixed effects. The εijk term represents random departures from
the mean value predicted by the main effects and interaction due to natural
variability among the observations, and are also assumed to be independent.
The model also assumes that

∑
αi = 0,

∑
βj = 0, and

∑
(αβ)ij = 0, but this

does not affect its generality. The same model can also be used to describe the
observations for studies where there are a groups or levels for Factor A, and
b for Factor B, with any number of replicates (n) per treatment combination,
as well as unbalanced designs with different numbers of replicates.

It follows for the ith level of Factor A and jth of Factor B that E[Yijk] =
µ+ αi + βj + (αβ)ij and V ar[Yijk] = σ2, using the rules for expected values
and variances. Thus, for the ith and jth level we have Yijk ∼ N(µ + αi +
βj + (αβ)ij, σ

2). We can illustrate how the different parameters work in this
model by plotting the distribution of the data for different parameter values.
The behavior of the model is described for four different scenarios below. We
will model an experiment similar to Example 1, where there are three levels
for Factor A (a = 3) and two for Factor B (b = 2).
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14.2.1 Factor A effect

Suppose that Factor A has a strong effect on Yijk, but there is only a minimal
effect of Factor B and no interaction between the two factors. To make
things concrete, let µ = 1.5, α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.1, β2 =
−0.1, (αβ)ij = 0 for all i and j, and σ2 = 0.05. Figure 14.3 shows the
distribution of the observations in each treatment group. Note that the mean
for treatment 1 under Factor A is shifted upward from µ while treatment 3
is shifted downward, for both levels of Factor B. The distribution for each
treatment combination has the same variance, namely σ2 = 0.05.

14.2.2 Factor B effect

Suppose the reverse situation is now true, with Factor B having a strong effect
on Yijk while Factor A has a minimal effect, again with no interaction. This
could be modeled using α1 = 0.1, α2 = 0, α3 = −0.1, β1 = 0.5, β2 = −0.5,
and (αβ)ij = 0 for all i and j. Figure 14.4 shows the pattern that results.
Note that the mean for treatment 1 under Factor B is shifted upward from
µ, while treatment 2 is shifted downward, for all three levels of Factor A.

14.2.3 Factor A and B effect

If both factors have an effect on Yijk, we would expect to see a combination
of the previous patterns, with the treatment groups shifted away from each
other (Fig. 14.5). This figure uses α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.3, β2 =
−0.3, and (αβ)ij = 0 for all i and j.

14.2.4 Interaction effect

We now examine how an A × B interaction influences the model. Suppose
that α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.3 and β2 = −0.3 as in the pre-
vious figure, but now (αβ)11 = 0.2, (αβ)12 = −0.2, (αβ)21 = 0, (αβ)22 =
0, (αβ)31 = −0.2, and (αβ)32 = 0.2. We see that Factor B has a substantial
effect under treatment 1 for Factor A, and smaller effect under treatment 2,
and almost no effect under treatment 3 (Fig. 14.6). Note that the distribu-
tions under the different treatment combinations no longer move in parallel
as in Fig. 14.5. This pattern is diagnostic of an interaction in the analysis of
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real data. We will later examine a data set where there is strong interaction
between the two factors.

The objective in two-way ANOVA is to test whether Factor A, B, or both
have an effect on the group means, and whether there is interaction between
the two factors. For Factor A this amounts to testing H0 : all αi = 0, while
for Factor B we would test H0 : all βj = 0. For interaction between the
two factors, we would test H0 : all (αβ)ij = 0. The corresponding alternative
hypotheses are H1 : some αi 6= 0, H1 : some βj 6= 0, and H1 : some (αβ)ij 6= 0.
We will discuss how these null hypotheses are tested in the next section.
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Figure 14.3: Fixed effects model for two-way ANOVA showing a Factor A
effect.

Figure 14.4: Fixed effects model for two-way ANOVA showing a Factor B
effect.
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Figure 14.5: Fixed effects model for two-way ANOVA showing both Factor
A and B effects.

Figure 14.6: Fixed effects model for two-way ANOVA showing an A × B
interaction between the two factors.
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14.3 Hypothesis testing for two-way ANOVA

We now develop statistical tests for each of the null hypotheses listed above.
All work in a similar fashion to the F test for one-way ANOVA. For Factor A
and B in the model, as well as the interaction term, there is a corresponding
sum of squares and mean square term. There is also an overall sum of squares
and mean square within groups. These quantities are used to construct three
different F tests, one for Factor A, Factor B, and the A × B interaction.
These three tests are also examples of likelihood ratio tests, in which the fit
is compared between the null and alternative models (Searle 1971). We will
illustrate the calculations for these tests using the Example 1 data set, with
Factor A being bait while Factor B is trap color.

14.3.1 Sum of squares and mean squares

We begin by calculating the group means for each treatment combination.
For the Example 1 data, this amounts to calculating a group mean for each
combination of bait and trap color. These group means are shown in Table
14.1 and labeled as Ȳij·. Here the ‘·’ notation implies the mean was calculated
using all the observations in that group (k = 1, 2, . . . , n). A grand mean can
then be calculated as the mean of these group means, or equivalently by
summing all the observations and dividing by their total number. We label

this grand mean as
¯̄̄
Y . It can be generally calculated using the formula

¯̄̄
Y =

∑a
i=1

∑b
j=1 Ȳij·

ab
. (14.2)

For the Example 1 data set, we have

¯̄̄
Y =

1.150 + 0.980 + 0.369 + 0.314 + 0.725 + 0.719

6
= 0.709. (14.3)

We next calculate a mean corresponding to each level of Factor A by averag-
ing across the levels of Factor B, which we denote as ¯̄Yi··. It can be calculated
using the formula

¯̄Yi·· =

∑b
j=1 Ȳij·

b
. (14.4)

For the Example 1 data set, we have

¯̄Y1·· =
1.150 + 0.980

2
= 1.065, (14.5)
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¯̄Y2·· =
0.369 + 0.314

2
= 0.342, (14.6)

and
¯̄Y3·· =

0.725 + 0.719

2
= 0.722. (14.7)

The difference ¯̄Yi·· − ¯̄̄
Y is a measure of the shift generated by Factor A in

the observations, as well as an estimate of αi for each level of Factor A. We
can obtain a single measure of these shifts by squaring and summing them
across all groups to obtain a sum of squares for Factor A, or SSA. It can be
calculated using the general formula

SSA = nb
a∑
i=1

( ¯̄Yi·· − ¯̄̄
Y )2. (14.8)

SSA has a−1 degrees of freedom. We can calculate a mean square for Factor
A using the formula

MSA =
SSA
a− 1

. (14.9)

Note the factor nb in the expression for SSA, which scales MSA so that it
estimates σ2 if H0 : all αi = 0 is true (no Factor A effect). If H1 is true,
implying some αi 6= 0, then MSA will become larger. For the Example 1
data, we have

SSA = 4(2)
[
(1.065− 0.709)2 + (0.342− 0.709)2 + (0.722− 0.709)2

]
(14.10)

= 8
[
1.265× 10−1 + 1.353× 10−1 + 1.501× 10−4

]
= 2.096. (14.11)

and

MSA =
2.096

3− 1
= 1.048. (14.12)

We can similarly calculate a mean corresponding to each level of Factor B,
averaging across levels of Factor A. The general formula for these means is

¯̄Y·j· =

∑a
i=1 Ȳij·
a

. (14.13)

For the Example 1 data set, we have

¯̄Y·1· =
1.150 + 0.369 + 0.725

3
= 0.748 (14.14)
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and
¯̄Y·2· =

0.980 + 0.314 + 0.719

3
= 0.671. (14.15)

The difference ¯̄Y·j·− ¯̄̄
Y is a measure of the shift generated by Factor B in the

observations, as well as an estimate of βj for each level of Factor B. Squaring
and summing them across all groups, we obtain a sum of squares for Factor
B, or SSB. It can be calculated using the general formula

SSB = na
b∑

j=1

( ¯̄Y·j· − ¯̄̄
Y )2. (14.16)

SSB has b− 1 degrees of freedom. We can then calculate a mean square for
Factor B using the formula

MSB =
SSB
b− 1

. (14.17)

For the Example 1 data, we have

SSB = 4(3)
[
(0.748− 0.709)2 + (0.671− 0.709)2

]
(14.18)

= 12
[
1.485× 10−3 + 1.485× 10−3

]
= 3.565× 10−2 (14.19)

and

MSB =
3.565× 10−2

2− 1
= 3.565× 10−2. (14.20)

We can also calculate a sum of squares and mean square to test for the
A × B interaction. The sum of squares for interaction, SSAB, is calculated
in general using the formula

SSAB = n
a∑
i=1

b∑
j=1

(Ȳij· − ¯̄Yi·· − ¯̄Y·j· +
¯̄̄
Y )2. (14.21)

The terms within this expression estimate (αβ)ij, and are measures of the
difference between the means for each treatment combination and the values
predicted by the model without any interaction. SSAB has (a − 1)(b − 1)
degrees of freedom. Its associated mean square is defined by the formula

MSAB =
SSAB

(a− 1)(b− 1)
. (14.22)
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For the Example 1 data, we have

SSAB = 4[(1.150− 1.065− 0.748 + 0.709)2 (14.23)

+(0.980− 1.065− 0.671 + 0.709)2 (14.24)

+(0.369− 0.342− 0.748 + 0.709)2 (14.25)

+(0.314− 0.342− 0.671 + 0.709)2 (14.26)

+(0.725− 0.722− 0.748 + 0.709)2 (14.27)

+(0.719− 0.722− 0.671 + 0.709)2 (14.28)

= 5[2.111× 10−3 + · · ·+ 2.836× 10−2] = 2.836× 10−2. (14.29)

and

MSAB =
2.836× 10−2

(3− 1)(2− 1)
= 1.418× 10−2. (14.30)

These sum of squares and mean squares measure how Factor A, B, and
the A × B interaction influence the means of each treatment combination.
What about variability within each group? We can calculate SSwithin using
the general formula

SSwithin =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳij·)2 (14.31)

which has ab(n − 1) degrees of freedom. The associated mean square is
calculated as

MSwithin =
SSwithin
ab(n− 1)

. (14.32)

The last column of Table 14.1 shows the preliminary calculations for SSwithin.
Adding this column across all the treatment groups yields

SSwithin = 1.644× 10−2 + · · ·+ 3.901× 10−4 = 1.361 (14.33)

and

MSwithin =
1.361

(3)(2)(4− 1)
= 7.561× 10−2. (14.34)

There is one more sum of squares that is often calculated in two-way
ANOVA, the total sum of squares. It is defined as

SStotal =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − ¯̄̄
Y )2. (14.35)
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It measures the variability of the observations around the grand mean of the

data (
¯̄̄
Y ) and has abn − 1 degrees of freedom. An interesting feature of the

sum of squares is that they add to the total sum of squares when the design
is balanced, as do the degrees of freedom. In particular, we have

SSA + SSB + SSAB + SSwithin = SStotal (14.36)

and

(a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1) = abn− 1. (14.37)

Thus, the sum of squares and degrees of freedom can be partitioned into
components corresponding to every source of variation in the study. For
Example 1, we have SStotal = 3.521 with 3(2)(4)−1 = 23 degrees of freedom.

14.3.2 ANOVA tables and tests

We can organize the different sum of squares and mean squares into an
ANOVA table. It lists the different sources of variation in the data (Factor
A, B, A × B interaction, within groups, and total) and their degrees of
freedom. Table 14.3 shows the general layout of such a table for two-way
ANOVA designs.

Also shown in the table are F statistics used test to whether Factor
A, Factor B, and their interaction have an effect on the observations. The
numerator of the test statistic is the mean square for each factor (MSA,MSB,
or MSAB), while the denominator is always MSwithin. Thus, we use Fs =
MSA/MSwithin to test for the effect of Factor A. Under H0 : all αi = 0 this
statistic has an F distribution with df1 = a−1 and df2 = ab(n−1). Similarly,
we use Fs = MSB/MSwithin to test for an effect of Factor B. Under H0 : all
βj = 0 it has an F distribution with df1 = b− 1 and df2 = ab(n− 1). Finally,
we use Fs = MSAB/MSwithin to test for an interaction between A and B.
Under H0 : all (αβ)ij = 0 it has an F distribution with df1 = (a− 1)(b− 1)
and df2 = ab(n− 1).

All these tests are examples of likelihood ratio tests. For example, con-
sider the test for the A × B interaction. To construct the likelihood ratio
test for the interaction, we first find the maximum likelihood estimates of
various parameters under H1 vs. H0. Recall that the observations in the
two-way ANOVA model are described as

Yijk = µ+ αi + βj + (αβ)ij + εijk. (14.38)
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where µ is the grand mean, αi is the effect of the ith level of Factor A, βj
is the effect of the jth level of Factor B, (αβ)ij is effect of the interaction,
and εijk ∼ N(0, σ2). This is the statistical model under the alternative
hypothesis H1 : some (αβ)ij 6= 0, implying an interaction effect. Under H0 :
all (αβ)ij = 0, the model reduces to

Yijk = µ+ αi + βj + εijk. (14.39)

We would need to find the maximum likelihood estimates under both H1 and
H0, as well as LH0 and LH1 , the maximum height of the likelihood function
under H0 and H1. We would then use the likelihood ratio test statistic

λ =
LH0

LH1

. (14.40)

It can be shown that there is a one-to-one correspondence between −2 ln(λ)
and Fs for the interaction effect, and so the F test is actually a likelihood
ratio test (Searle 1971), as are the tests for the other effects. Large values of
the test statistic −2 ln(λ) or Fs indicate a lower value of the likelihood under
H0 relative to H1, and thus a poorer fit of the H0 model.

Table 14.4 shows the results for the Example 1 data set, including the
F statistics and P values obtained using Table F. In examining the test
results, it is customary to examine the test for the interaction first,
followed by the main effects. If the interaction is nonsignificant this sug-
gests the two main effects have a simple additive effect on the observations,
provided they are significant. If the interaction is significant the interpreta-
tion requires more attention. If one or more of the main effects are significant,
it suggests the observations are driven by both interaction and main effects.
Fig. 14.6 shows a theoretical example where an interaction, Factor A, and
Factor B all influence the observations.

For the bait × trap color interaction, we see that Fs = 0.19 with df1 = 2
and df2 = 18, and from Table F find that P > 0.100. Thus, the interaction
was nonsignificant for these data (F2,18 = 0.19, P > 0.100). The color effect
was also nonsignificant (F1,18 = 0.47, P > 0.100), but the bait effect was
highly significant (F2,18 = 13.86, P < 0.001). Each bait represents a different
bark beetle pheromone, and apparently some baits are more attractive than
others for T. dubius.
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Table 14.3: General ANOVA table for two-way designs with replication, showing formulas for different mean
squares and F tests.

Source df Sum of squares Mean square Fs
Factor A a− 1 SSA MSA = SSA/(a− 1) MSA/MSwithin
Factor B b− 1 SSB MSB = SSB/(b− 1) MSB/MSwithin
AB interaction (a− 1)(b− 1) SSAB MSAB = SSAB/(a− 1)(b− 1) MSAB/MSwithin
Within ab(n− 1) SSwithin MSwithin = SSwithin/ab(n− 1)
Total abn− 1 SStotal

Table 14.4: ANOVA table for the Example 1 data set, including P values for the tests.

Source df Sum of squares Mean square Fs P
Bait 2 2.096 1.048 13.86 < 0.001
Color 1 3.565× 10−2 3.565× 10−2 0.47 > 0.100
Bait × Color 2 2.836× 10−2 1.418× 10−2 0.19 > 0.100
Within 18 1.361 7.561× 10−2

Total 23 3.521
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14.3.3 Two-way ANOVA for Example 1 - SAS demo

The same calculations for the Example 1 study can be carried out using
proc glm (SAS Institute Inc. 2018). This procedure is primarily intended for
fixed effects ANOVA models, and this study has two fixed effects, bait type
and trap color, plus the interaction is also considered a fixed effect.

The first step in the program (see below) is to read in the observations us-
ing a data step, with one variable denoting the bait treatment (bait), another
the trap color (color), and the third the number of T. dubius captured per
trap (Tdubius). These numbers are then log-transformed using a SAS function
to yield the variable y = log10(Tdubius+1). We add one to the observations
before taking the log to avoid problems with zeroes.

The data are then plotted using proc gplot, with the bait treatment on
the x-axis and separate lines drawn for each color (SAS Institute Inc. 2016).
This is accomplished with the command plot y*bait=color. The rest of the
gplot statements control the appearance of the symbols and axes.

The next section of the program conducts the two-way ANOVA using
proc glm. The class statement tells SAS that both bait and color are used to
classify the observations into the six treatment groups. The model statement
tells SAS the form of the ANOVA model. Recall that the model for fixed
effects two-way ANOVA is given by the equation

Yijk = µ+ αi + βj + (αβ)ij + εijk (14.41)

The αi, βj, and (αβ)ij terms in this model equate directly with the bait,
color, and bait*color entries in the model statement. The lsmeans statement
causes glm to calculate quantities called least squares means for each level of
bait and color. When the data are balanced these are equivalent to the means
for each treatment group, but least squares means have some advantages
for unbalanced data and other statistical models. The option adjust=tukey

requests multiple comparisons among treatments using the Tukey method.
This is useful for comparing the different bait treatments, but for color there
is only one comparison (black vs. white) and in this case would be equivalent
to the F test for color.

The proc glm output provides information similar to that summarized in
an ANOVA table (see Fig. 14.9). The degrees of freedom, sum of squares,
mean squares, F statistics and P values for the bait, color, and bait ×
color interaction are listed near the bottom of the output under Type III SS.
The degrees of freedom, sum of squares, and mean square for the variation
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within groups are labeled as Error above this section (this terminology will
be explained in Chapter 15). The output labeled Type I SS is produced by
sequentially fitting the different terms in the model, in the order listed in
the model statement. Type III sums of squares are more generally useful
than Type I for ANOVA designs, although the results are the same when
the design is balanced. The output labeled Model refers to the combined
variation due to bait, color, plus their interaction. The associated F statistic
tests whether any or all of these effects influence the observations vs. the null
hypothesis that they have no effect. This particular test is not used much
with ANOVA designs.

We now examine the results of these tests, beginning with the interac-
tion (Fig. 14.9). We see that the bait × color interaction was nonsignif-
icant (F2,18 = 0.19, P = 0.8311). The color effect was also nonsignifi-
cant (F1,18 = 0.47, P = 0.5011), while bait was highly significant (F2,18 =
13.85, P = 0.0002). Examining the graph and Tukey results (Fig. 14.8,
14.10), we see that predator densities for the FRT and IST treatments were
significantly higher than for IDT. Note that the lines connecting the different
treatments are roughly parallel, further indicating an absence of interaction.
The effect of trap color appears minimal in this study, although trap catches
were somewhat higher for black traps.

SAS Program

* Tdubius_bait_color.sas;

title "Two-way ANOVA for T. dubius trapping";

title2 "Data from Reeve et al. (2009)";

data Tdubius;

input bait $ color $ Tdubius;

* Apply transformations here;

y = log10(Tdubius+1);

datalines;

FRT B 18

FRT B 12

FRT B 22

FRT B 6

FRT W 12

FRT W 15

FRT W 7

FRT W 4

etc.
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;

run;

* Print data set;

proc print data=Tdubius;

run;

* Plot means, standard errors, and observations;

proc gplot data=Tdubius;

plot y*bait=color / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=Tdubius;

class bait color;

model y = bait color bait*color;

lsmeans bait color / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.7: Tdubius bait color.sas - proc print

Figure 14.8: Tdubius bait color.sas - proc gplot
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Figure 14.9: Tdubius bait color.sas - proc glm
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Figure 14.10: Tdubius bait color.sas - proc glm
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14.3.4 Two-way ANOVA for Example 2 - SAS demo

We next analyze the Example 2 data set using SAS. These data involve the
total biomass of grass plants grown in small containers, where the treatments
are nitrogen or water availability. The SAS program is similar to the previous
example but with different variable names. Examining the output in Fig.
14.13, we see that the nitrogen × water interaction was highly significant
(F4,27 = 11.31, P < 0.0001). The interaction can be observed in Fig. 14.12,
which shows that the lines connecting the treatments are not parallel. Note
that the greatest response of biomass to nitrogen occurred at the highest
water level, while the response was minimal at the lowest level (Maestre &
Reynolds (2007). Thus, low water levels apparently prevent growth even
when nitrogen is abundant.

The analysis also found highly significant main effects of nitrogen (F2,27 =
64.28, P < 0.0001) and water (F2,27 = 456.46, P < 0.0001) on biomass (Fig.
14.13). There were also significant differences between every nitrogen or
water treatment (Fig. 14.14). We can judge the relative strength of these
effects by examining Fig. 14.12 as well as their sum of squares values, which
are a measure of the amount of variation explained by each effect. They
suggest that watering had the most effect on biomass, followed by nitrogen
and the nitrogen × water interaction.
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SAS Program

* Maestre_biomass.sas;

title "Two-way ANOVA for total biomass";

title2 "Data from Maestre and Reynolds (2007)";

data maestre;

input nitrogen water biomass;

* Apply transformations here;

y = log10(biomass);

datalines;

40 125 4.372

40 125 4.482

40 125 4.221

40 125 3.977

40 250 7.400

40 250 8.027

40 250 7.883

40 250 7.769

etc.

;

run;

* Print data set;

proc print data=maestre;

run;

* Plot means, standard errors, and observations;

proc gplot data=maestre;

plot y*nitrogen=water / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=maestre;

class nitrogen water;

model y = nitrogen water nitrogen*water;

lsmeans nitrogen water / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.11: Maestre biomass.sas.sas - proc print

Figure 14.12: Maestre biomass.sas.sas - proc gplot
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Figure 14.13: Maestre biomass.sas - proc glm
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Figure 14.14: Maestre biomass.sas - proc glm
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14.3.5 Tests for main effects with interaction

There is disagreement among statisticians on whether tests of the main effects
are appropriate when there is significant interaction. Two different proce-
dures have been developed. The SAS one involves fitting models with and
without a given main effect, but always including interaction terms, yield-
ing what SAS calls Type III sums of squares and tests (Speed et al. 1978,
Shaw & Mitchell-Olds 1993, SAS Institute Inc. 2018). This has the bene-
fit of generating tests for the interaction and main effects in a single pass
(see preceding SAS demo). However, there are authors that believe tests of
the main effects are questionable in the presence of interaction (e.g., Cox
1984, Winer et al. 1991, Stewart-Oaten 1995). One issue is whether a model
with interaction but lacking a main effect is even plausible (Stewart-Oaten
1995). These considerations motivate a different procedure. The first step
is to examine the test for interaction using the full two-way ANOVA model.
If interaction appears weak or absent, there are two alternate ways of test-
ing the main effects. One is to drop the interaction and rerun the model,
examining the main effects in the usual fashion. Another method is to use
what SAS calls Type II sums of squares, obtained using the option \ss2 in
the model statement. The tests based on these sums of squares assume there
is no interaction. If the interaction is significant the main effects tests are
ignored, although one can still test for Factor A effects at each level of Fac-
tor B, or vice versa (Winer et al. 1991). These are called tests of simple
effects, and can be conducted using the SAS slice option for lsmeans.

The modified SAS code to implement these procedures is listed below,
along with the corresponding output for the Example 2 data set. We see that
the nitrogen × water interaction was highly significant (F4,27 = 11.31, P <
0.0001), and so we skip the tests of the main effects (Fig. 14.15). Note that
the main effects sum of squares are identical to our previous ones using SAS
Type III tests, but this would only be true for the special case of balanced
designs with equal n for each treatment (see next section for unbalanced
designs). The slice option is used to test for a nitrogen effect at every level
of water, and vice versa (Fig. 14.16). We see that the effect of nitrogen was
significant at the lowest water level, while highly significant at the other two
levels. It appears the nitrogen effect was smaller at low water levels (see Fig.
14.12). The water effect was highly significant at every level of nitrogen.
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SAS Program

* Two-way ANOVA with interaction;

title3 "MODEL WITH INTERACTION - USE THIS OUTPUT IF INTERACTION SIGNIFICANT";

proc glm plots=diagnostics data=maestre;

class nitrogen water;

model y = nitrogen water nitrogen*water / ss2;

lsmeans nitrogen*water / slice=water slice=nitrogen;

run;

* Two-way ANOVA without interaction;

title3 "MODEL WITHOUT INTERACTION - USE THIS OUTPUT IF INTERACTION NS";

proc glm data=maestre;

class nitrogen water;

model y = nitrogen water / ss2;

lsmeans nitrogen water / adjust=tukey cl lines;

run;



418 CHAPTER 14. ANALYSIS OF VARIANCE (TWO-WAY)

Figure 14.15: Maestre biomass2 new.sas - proc glm
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Figure 14.16: Maestre biomass2 new.sas - proc glm
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14.4 Unbalanced designs and two-way ANOVA

The examples we have examined so far are balanced designs, with equal num-
bers of observations in each treatment combination. For these designs, the
various sums of squares are independent and additive (SSA +SSB +SSAB +
SSwithin = SStotal), the different methods of calculating the sum of squares
(Type I, II, and III) yield the same results, and the resulting tests are the
same. This is not the case for unbalanced two-way (or higher) designs, which
occur frequently in practice. These are designs where there are fewer obser-
vations in some treatments than others, possible only a single observation.
These designs can be analyzed using the same SAS procedures and programs
as before, but the various sums of squares are no longer additive, and the
tests are not independent (Shaw & Mitchell-Olds 1993). For this reason, if
the lack of balance is severe the analysis should be interpreted with some
caution.

We will use the Example 2 data set, with nine observations removed, to
illustrate the analysis of unbalanced designs (see Table 14.5). The number
of observations varies from n = 1 to 4 across treatments. These data can
be analyzed using the same program as before. To show the results for both
Type II and III sums of squares, the option \ ss2 ss3 was added to the model

statement. Examining the output (Fig. 14.17), we see that the bait × trap
color interaction was nonsignificant (F2,9 = 0.29, P = 0.7563). The color
effect was also nonsignificant (Type II: F1,9 = 0.94, P = 0.3576, Type III:
F1,9 = 0.98, P = 0.3475), but the bait effect was highly significant (Type II:
F2,9 = 8.11, P < 0.0097, Type III: F2,9 = 8.15, P = 0.0096). This is basically
the same result as we obtained earlier for this study, despite the lack of
balance. We can also see that the sums of squares are no longer additive.
For example, with Type III sums of squares we have SSA + SSB + SSAB +
SSwithin = 0.9106 + 0.0549 + 0.0322 + 0.5028 = 1.5005. This does not equal
SStotal = 1.4562.
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Table 14.5: Example 2 - Unbalanced design.

Bait Color T. dubius
FRT B 18
FRT W 12
FRT W 15
FRT W 7
FRT W 4
IDT B 2
IDT B 1
IDT B 4
IDT W 2
IDT W 1
IST B 2
IST B 2
IST B 10
IST B 7
IST W 4
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Figure 14.17: Tdubius bait color unbalanced.sas - proc glm
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14.5 Two-way ANOVA without replication

The designs we have examined so far assume there are multiple observations
for each treatment combination, implying n > 1 for each group. However, it
is possible to analyze studies where there is only replicate per group (n = 1)
although this requires a change in the model. With so little data, it is not
possible to estimate the interaction terms nor easily conduct a test for the
interaction. However, we can fit a simplified model of the form

Yij = µ+ αi + βj + εij. (14.42)

Note that the interaction term is absent. In addition, we no longer need the
third subscript k for the observations because there is only one observation
per treatment group. One can visualize the behavior of this model using the
same figures as for the two-way model with replication (see Fig. 14.3-14.5),
except that the model does not incorporate interaction.

It is important to realize that interaction could still be present
in the data, even though we cannot test for it using this model. If
interaction is present it will reduce the power to detect main effects, because
it adds variability to the observations in a way not accounted for by the
model. Even if interaction is absent, this design will obviously have less
power than a design with replication.

For these designs, we will be interested in testing whether Factor A or B
have an effect on the groups means. For Factor A, this amounts to testing
H0 : all αi = 0, while for Factor B we would test H0 : all βj = 0. No test of
this type is possible for the interaction.

14.5.1 Hypothesis testing

The sums of squares, mean squares, and other quantities for two-way ANOVA
without replication are similar to those for designs with replication. We will
illustrate the calculations using another data set for the insect predator T.
dubius (Example 3, Table 14.6). This predator is most abundant during
cool periods of the year in the southern USA, possibly because it cannot
tolerate high temperatures. A study was conducted to see how temperature
(which we call Factor A) and relative humidity (Factor B) affect the mortal-
ity rate of its eggs in the laboratory (Reeve 2000). Eggs and environmental
chambers were in short supply, however, so only a single replicate was con-
ducted at each temperature and humidity combination. Six temperatures
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(15◦, 20◦, 25◦, 30◦, 35◦, and 37.5◦C) and three relative humidity treatments
(55%, 75%, and 100%) were used. This corresponds to a = 6 and b = 3 in
the formulas below. An arcsine-square root transformation was applied to
the mortality rate observations, a common practice for data in the form of
proportions.

We begin by calculating a mean corresponding to each level of Factor A
by averaging across the levels of Factor B, which we denote as Ȳi·. It can be
calculated using the formula

Ȳi· =

∑b
j=1 Yij

b
. (14.43)

For example, we have

Ȳ1· =
0.379 + 0.325 + 0.615

3
= 0.440 (14.44)

for the first temperature treatment (15◦C) in Example 3. The means for
other temperature values are given in Table 14.6. We similarly can find
means corresponding to each level of Factor B by averaging across the levels
of Factor A. The general formula is

Ȳ·j =

∑a
i=1 Yij
a

. (14.45)

For the first humidity treatment in Example 3, we have

Ȳ·1 =
0.379 + 0.439 + 0.358 + 0.466 + 0.970 + 1.571

6
= 0.697. (14.46)

The means for the other humidity treatments are Ȳ·2 = 0.731 and Ȳ·3 = 0.719.
A grand mean ¯̄Y can then be calculated by averaging across the values of Ȳi·
or equivalently by summing all the observations and dividing by their total
number. It can be generally calculated using the formula

¯̄Y =

∑a
i=1 Ȳi·
a

. (14.47)

For the Example 3 data set, we have

¯̄Y =
0.440 + 0.502 + 0.454 + 0.521 + 0.806 + 1.571

6
= 0.716. (14.48)
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We next develop sums of squares and means squares for this design. The
difference Ȳi· − ¯̄Y is a measure of the shift generated by Factor A in the
observations, and also estimates αi. Squaring and summing them across all
the levels of Factor A, we obtain SSA. It is calculated using the general
formula

SSA = b

a∑
i=1

(Ȳi· − ¯̄Y )2. (14.49)

SSA has a − 1 degrees of freedom. Its mean square is calculated using the
formula

MSA =
SSA
a− 1

. (14.50)

Note the factor b in the expression for SSA, which as usual scales MSA so
that it estimates σ2 under H0. For the Example 3 data, we have

SSA = 3
[
(0.440− 0.716)2 + (0.502− 0.716)2 + · · ·+ (1.571− 0.716)2

]
(14.51)

= 3 [0.076176 + 0.045796 + 0.068644 + 0.038025 + 0.008100 + 0.731025]
(14.52)

= 2.903298 (14.53)

(14.54)

and

MSA =
2.903298

6− 1
= 0.580660. (14.55)

We similarly define SSB using the general formula

SSB = a
b∑

j=1

(Ȳ·j − ¯̄Y )2. (14.56)

SSB has b− 1 degrees of freedom. We can then calculate a mean square for
Factor B using the formula

MSB =
SSB
b− 1

. (14.57)

For the Example 3 data, we have

SSB = 6
[
(0.697− 0.716)2 + (0.731− 0.716)2 + (0.719− 0.716)2

]
(14.58)

= 6 [0.000361 + 0.000225 + 0.000009] (14.59)

= 0.003570. (14.60)
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and

MSB =
0.003570

3− 1
= 0.001785. (14.61)

We now need a measure of the variability of the observations. We previously
used SSwithin for this purpose, which measured the variability of the obser-
vations within each treatment group. However, in two-way designs without
replication there is only a single observation in these groups (n = 1). If we
assume there is no interaction, however, we can use an interaction-like sum
of squares as a measure of variability. In particular, we have

SSwithin =
a∑
i=1

b∑
j=1

(Yij − Ȳi· − Ȳ·j + ¯̄Y )2. (14.62)

The squared terms within this expression measure the difference between the
one observation for each treatment combination and the values predicted by
the model without any interaction. Note the similarity to SSAB for designs
with replication. SSwithin has (a − 1)(b − 1) degrees of freedom, and the
associated mean square is defined by the formula

MSwithin =
SSwithin

(a− 1)(b− 1)
. (14.63)

The last column of Table 14.6 shows the preliminary calculations for SSwithin.
Adding this column across all the treatment groups yields

SSwithin = 0.131334 (14.64)

and

MSwithin =
0.131334

(6− 1)(3− 1)
= 0.013133. (14.65)

The total sum of squares is given by the formula

SStotal =
a∑
i=1

b∑
j=1

(Yij − ¯̄Y )2 (14.66)

and has ab−1 degrees of freedom. For Example 3, we calculate that SStotal =
3.038202 with 17 degrees of freedom.

As before, we can organize the different sum of squares and mean squares
into an ANOVA table. Table 14.7 shows the general layout of such a table
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for two-way designs without replication. We use Fs = MSA/MSwithin to
test for the effect of Factor A. Under H0 : all αi = 0 this statistic has an
F distribution with df1 = a − 1 and df2 = (a − 1)(b − 1). Similarly, we use
Fs = MSB/MSwithin to test for an effect of Factor B. Under H0 : all βj = 0
it has an F distribution with df1 = b− 1 and df2 = (a− 1)(b− 1).

Table 14.8 shows the results for the Example 3 data set, including the F
statistics and P values obtained using Table F. The temperature effect was
highly significant (F5,10 = 44.214, P < 0.001) while humidity was nonsignif-
icant (F2,10 = 0.136, P > 0.100). Examining the data in Table 14.6, we see
that mortality rates sharply increased as temperature increased.
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Table 14.6: Example 3 - Effect of temperature and relative humidity on the mortality rate of T. dubius eggs.
Also shown are the means for each temperature level (Ȳi·) and preliminary calculations to find SSwithin

.

Temp. (◦C) Humidity (%) Mortality Yij = sin−1(
√

Mortality) i j Ȳi· (Yij − Ȳi. − Ȳ.j + ¯̄Y )2

15 55 0.137 0.379 1 1 0.001764
15 75 0.102 0.325 1 2 0.440 0.016900
15 100 0.333 0.615 1 3 0.029584
20 55 0.181 0.439 2 1 0.001936
20 75 0.337 0.619 2 2 0.502 0.010404
20 100 0.188 0.448 2 3 0.003249
25 55 0.123 0.358 3 1 0.005929
25 75 0.259 0.534 3 2 0.454 0.004225
25 100 0.205 0.470 3 3 0.000169
30 55 0.202 0.466 4 1 0.001296
30 75 0.321 0.602 4 2 0.521 0.004356
30 100 0.226 0.495 4 3 0.000841
35 55 0.680 0.970 5 1 0.033489
35 75 0.447 0.732 5 2 0.806 0.007921
35 100 0.431 0.716 5 3 0.008649

37.5 55 1.000 1.571 6 1 0.000361
37.5 75 1.000 1.571 6 2 1.571 0.000225
37.5 100 1.000 1.571 6 3 0.000036



14.5.
T
W
O
-W

A
Y

A
N
O
V
A

W
IT

H
O
U
T

R
E
P
L
IC

A
T
IO

N
429

Table 14.7: General ANOVA table for two-way designs without replication, showing formulas for different
mean squares and F tests.

Source df Sum of squares Mean square Fs
Factor A a− 1 SSA MSA = SSA/(a− 1) MSA/MSwithin
Factor B b− 1 SSB MSB = SSB/(b− 1) MSB/MSwithin
Within (a− 1)(b− 1) SSwithin MSwithin = SSwithin/(a− 1)(b− 1)
Total ab− 1 SStotal

Table 14.8: ANOVA table for the Example 3 data set, including P values for the tests.

Source df Sum of squares Mean square Fs P
Temperature 5 2.903298 0.580660 44.214 < 0.001
Humidity 2 0.003570 0.001785 0.136 > 0.100
Within 10 0.131334 0.013133
Total 17 3.038198
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14.5.2 Two-way ANOVA no replication - SAS demo

We now analyze these same data using SAS. The program is similar to pre-
vious ones for two-way designs with replication, except that the interaction
term needs to be deleted from the model statement. Because there are several
levels of temperature (temp) and relative humidity (rh) in the experimental
design, it seems reasonable to use multiple comparisons to compare the dif-
ferent groups using an lsmeans statement. See SAS program and output
below.

Examining Fig. 14.20, we see a highly significant effect of temperature
on egg mortality (F5,10 = 44.31, P < 0.0001), while the effect of humidity
was nonsignificant (F2,10 = 0.13, P = 0.8777). The results are similar to the
manual calculations in Table 14.6. The Tukey procedure (Fig. 14.21) finds
that 37.5◦C was significantly different from all the other temperatures, while
35◦C was significantly different from 15◦C and 25◦C. No other differences
were significant. There were also no significant differences among the hu-
midity treatments. Figure 14.19 suggests that mortality was constant up to
30◦C, then rapidly increased.

SAS Program

* Clerid_eggs_th.sas;

title "Two-way ANOVA for T. dubius egg mortality";

title2 "No replication";

data mortality;

input temp rh mortrate;

* Apply transformations here;

y = arsin(sqrt(mortrate));

datalines;

15 55 0.137

15 75 0.102

15 100 0.333

20 55 0.181

20 75 0.337

20 100 0.188

25 55 0.123

25 75 0.259

25 100 0.205

30 55 0.202

30 75 0.321

30 100 0.226

35 55 0.680

35 75 0.447
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35 100 0.431

37.5 55 1.000

37.5 75 1.000

37.5 100 1.000

;

run;

* Print data set;

proc print data=mortality;

run;

* Plot means, standard errors, and observations;

proc gplot data=mortality;

plot y*temp=rh / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=mortality;

class temp rh;

model y = temp rh;

lsmeans temp rh / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.18: Clerid eggs th.sas - proc print
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Figure 14.19: Clerid eggs th.sas - proc gplot
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Figure 14.20: Clerid eggs th.sas - proc glm
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Figure 14.21: Clerid eggs th.sas - proc glm
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14.6 Randomized block designs

Suppose that we are interested in the yield of five different strains (A, B,
C, D, and E) of corn, with five replicates per strain. One possible design
would be to randomly assign the strain treatments to 30 small plots scattered
throughout a large field, in a completely randomized design (Fig. 14.22). The
resulting data from this design could be analyzed using one-way ANOVA
(Chapter 11), with strain as the treatment. One problem with this design
is soil fertility, moisture, and other factors could vary across this large field.
This spatial heterogeneity would make it more difficult to see any treatment
effects because it would increase the variance among replicate plots.

A common two-way design, the randomized block design, provides a
possible solution to this spatial heterogeneity problem. Suppose that soil
fertility and moisture are more homogeneous on smaller spatial scales, as
often seems to be true. We could then select six plots within this field,
called blocks, and within sections of each block plant the five corn strains
(see Fig. 14.23). The order of the different treatments within each block
would be randomized, hence the name randomized blocks. This ensures that
the sequence of treatments varies across blocks, and that each treatment
has different strains for neighbors in each block. The resulting data would
then be analyzed using a two-way model with a fixed treatment effect and a
random block effect, which helps account and control for spatial heterogeneity
in the system. The block is considered a random effect because the blocks
are usually selected from a potentially large collection of possible blocks. A
statistical model with both fixed and random effects is called a
mixed model.

Another example of a randomized block design could be insect traps
baited with different attractants, say A, B, C, D, and E. Different stands
in the forest would be the blocks. Five traps would be deployed in each
stand along a transect, with baits randomly assigned to the traps within the
transect. In another type of randomized block design, the blocks are differ-
ent times rather than locations in space. For example, suppose that we want
to test six different diets for rearing fish in ponds, but only have six ponds
available. We could randomly assign the diets to the ponds and conduct the
experiment, obtaining one replicate of each treatment. We would then repeat
the study several more times using the same ponds, with the treatments ran-
domly assigned each time. Each time would be treated as a separate block
in the analysis.
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Figure 14.22: Completely randomized design with five treatments (A, B, C,
D, and E) and six replicates per treatment.

Figure 14.23: Randomized block design with five treatments (A, B, C, D,
and E) and six blocks.
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14.6.1 Randomized block models

There are two effects in a randomized block design, a fixed treatment and
a random block effect, usually denoted as Factor A and B. The model com-
monly used to analyze these designs has the form

Yij = µ+ αi +Bj + εij. (14.67)

Here µ, αi, and εij are defined as in previous models, while Bj ∼ N(0, σ2
B).

The model thus has two variance components, the variance among blocks
(σ2

B) and the variance of εij (σ2).
Note that there is no interaction term in this model, although there could

be interaction in the data. A randomized block design has just one obser-
vation per combination of treatment and block, and so there are insufficient
data to estimate an A × B interaction. However, there are variants of the
randomized block design that have two or more replicates of each Factor A
treatment per block. In this, case, we could fit a model with interaction of
the form

Yij = µ+ αi +Bj + (αB)ij + εij. (14.68)

Here (αB)ij ∼ N(0, σ2
AB). The interaction term in these designs is considered

to be a random effect because it involves the random block effect. This
model has three variance components, the interaction variance (σ2

AB), the
block variance (σ2

B), and the variance of εij (σ2).

14.6.2 Hypothesis testing and variance components

We will use proc mixed in SAS to analyze the data for randomized block de-
signs (SAS Institute Inc. 2018). The default method in SAS estimates the
variance components in the model using a method called restricted maximum
likelihood, or REML. This process involves separating the fixed effects from
the likelihood function, then estimating the variance components of the ran-
dom effects by maximizing this restricted likelihood (hence the name). Once
these are determined, the fixed effects parameters are estimated and F tests
generated for those effects (Littell et al. 1996, McCulloch & Searle 2001).
For a randomized block design, the null hypothesis tested for Factor A would
be H0 : all αi = 0. However, there is no ANOVA table nor related quantities
like sum of squares and mean squares. The emphasis in proc mixed is on the
estimation of variance components rather than tests on them, although tests
can be constructed if necessary (see below).
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14.6.3 Randomized block design - SAS demo

We will illustrate a proc mixed analysis for the randomized block design using
a different trapping study of T. dubius (Reeve et al. 2009). Six different
stands were located in the forest and considered to be blocks. Five traps
were placed in a line at 30 m intervals within each stand, and then a bait
treatment randomly assigned to each trap. There were five such treatments:
blank trap (BLANK), α-pinene (AP), frontalin + α-pinene (FRAP), ipsdienol + α-
pinene (IDAP), and ipsenol + α-pinene (ISAP). As mentioned earlier, frontalin,
ipsdienol, and ipsenol are bark beetle pheromones while α-pinene is a major
component of pine resin. The number of predators caught in each trap was
then counted. See SAS program with data below.

The count data were manipulated in two ways before analysis. A log
transformation was applied to predator counts to ensure the observations
meet the assumptions of ANOVA (see Chapter 15). All observations for the
BLANK treatment were also removed using the statement

if treat="BLANK" then delete;

because this treatment caught no insects. The proc mixed portion of the
program basically implements the model for randomized block designs. We
first need to tell SAS the variables categorizing the groups in the data, using
a class statement. For the trapping study, the variables treat and block

identify the treatment and block variables, so we use the statement

class treat block;

Next, recall that the randomized block model has the form

Yij = µ+ αi +Bj + εij. (14.69)

Here, the SAS variable treat corresponds to αi, the fixed effect in the model,
while block corresponds to Bj, the random effect. One feature of proc mixed

is the separation of fixed and random effects in the model – all fixed effects
are placed in the model statement while random effects are included in the
random statement. Thus, the model statement for the trapping data would be

model y = treat / ddfm=kr;

while the random statement is

random block;
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The ddfm=kr option specifies the Kenward-Rogers method of calculating the
degrees of freedom (SAS Institute Inc. 2018), a general method for calcu-
lating the degrees of freedom that works in a variety of circumstances. An
lsmeans statement of the form

lsmeans treat / pdiff=all adjust=tukey adjdfe=row;

is also used to compare the different bait treatments using the Tukey method.
See complete program listing and output below.

From Fig. 14.27, we see there was a highly significant effect of bait treat-
ment on the number of predators trapped (F3,13.9 = 54.68, P < 0.0001).
Note the non-integer degrees of freedom for this F statistic. This has oc-
curred because the data are unbalanced (one observation is a missing value)
and proc mixed is adjusting the test. The Tukey output (Fig. 14.28) shows
a column of adjusted P values, with the adjustment made according to the
Tukey procedure. Adjusted P values less than 0.05 are judged to be signif-
icant. We see that every pair of bait treatments was significantly different
except for IDAP vs. ISAP. The graph (Fig. 14.25) and least squares means
show that FRAP caught the most insects, IDAP and ISAP were intermediate,
while AP caught the fewest.

The proc mixed output also provides estimates of the two variance com-
ponents in the model, the block variance (σ2

B) and the variance of εij (σ2).
They are listed under the Covariance Parameter Estimates in the SAS output
(Fig. 14.27), labeled as block and Residual, along with confidence intervals
for these estimates. We see that the block variance σ2

B = 0.3332 was large
relative to σ2 = 0.1831. The block variance can be directly observed in Fig.
14.25 as the vertical spread between different blocks. In most cases, we are
primarily interested in testing the fixed effects in the model, with the random
effects and their associated variance components of less importance. They
are included in the model and analysis to account and control for spatial
heterogeneity in the observations. We will examine a likelihood ratio test for
the block variance in the next section.
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SAS Program

* TrapRCBD_clerids.sas;

title "Randomized block ANOVA for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

2 AP 1

2 BLANK 0

2 FRAP 124

2 IDAP 13

2 ISAP 20

3 AP 0

3 BLANK 0

3 FRAP 14

3 IDAP .

3 ISAP 2

4 AP 0

4 BLANK 0

4 FRAP 15

4 IDAP 11

4 ISAP 7

5 AP 0

5 BLANK 0

5 FRAP 29

5 IDAP 7

5 ISAP 7

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;
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run;

* Print data set;

proc print data=trapexp;

run;

* Plot means, standard errors, and observations;

proc gplot data=trapexp;

plot y*treat=block / vaxis=axis1 haxis=axis1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

proc mixed cl plots=residualpanel data=trapexp;

class treat block;

model y = treat / ddfm=kr;

random block;

lsmeans treat / pdiff=all adjust=tukey adjdfe=row;

run;

quit;

etc.

Figure 14.24: TrapRCBD clerids.sas - proc print
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Figure 14.25: TrapRCBD clerids.sas - proc gplot
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Figure 14.26: TrapRCBD clerids.sas - proc mixed
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Figure 14.27: TrapRCBD clerids.sas - proc mixed
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Figure 14.28: TrapRCBD clerids.sas - proc mixed
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14.6.4 Likelihood ratio test for the block effect

In the preceding example, the block variance σ2
B = 0.3332 appeared large

relative to σ2 = 0.1831, the variance due to εij. The block effect was also
clearly visible in Fig. 14.25. A further step would be a test of H0 : σ2

B = 0
vs. H1 : σ2

B > 0. If the test is significant it provides further evidence
for variability among blocks in the density of insects. Littell et al. (1996)
recommend a likelihood ratio test for this purpose.

We can construct this test by fitting two different models to the data,
corresponding to H0 vs. H1. Under H0 : σ2

B = 0 the statistical model for a
randomized block design reduces to

Yij = µ+ αi + εij (14.70)

because Bj = 0 for all j under H0. The statistical model under H1 : σ2
B > 0

is just the full model for randomized block designs:

Yij = µ+ αi +Bj + εij (14.71)

We now need to find maximum likelihood estimates of the model parameters
under both H1 and H0, as well as LH0 and LH1 , the maximum height of the
likelihood function under H0 and H1. We would then use the likelihood ratio
test statistic

−2 ln(λ) = 2 ln(LH1)− 2 ln(LH0). (14.72)

The SAS program below finds the likelihoods for both models using proc mixed.
Two separate calls to proc mixed are required, one for each model. The like-
lihoods are labeled -2 Res Log Likelihood in the output, which is almost the
form required above except for the sign (see Fig. 14.29, 14.30). Examining
the output, we see that −2 ln(LH0) = 47.4 and −2 ln(LH1) = 39.0. We then
have

−2 ln(λ) = −39.0− (−47.4) = −39.0 + 47.4 = 8.4 (14.73)

How do we obtain a P value for this test statistic? For any likelihood ratio
test, the quantity −2 ln(λ) has approximately a χ2 distribution under H0.
The degrees of freedom for the test are equal to the difference in the number
of parameters for the two models (H1 vs. H0). There is a difference in one
parameter between the two models here, because H1 has the block variance
σ2
B while under H0 this is assumed to be zero. We therefore have df = 1, and

from Table C find that P < 0.005. We are actually conducting a one-tailed
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test, however, because H1 is a one-tailed alternative. Thus, the P value is
half this quantity, or P < 0.0025. It appears the variance due to blocks was
highly significant.

We can calculate the P value more exactly using a simple SAS program
(see below). In the data step, the program reads in the values of −2 ln(LH0),
−2 ln(LH1), and df , then calculates the P value using the SAS function
probchi. We find that P = 0.0019 (Fig. 14.31).

SAS Program

* TrapRCBD_clerids_block_test.sas;

title "Randomized block ANOVA for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

etc.

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;

run;

title2 "H0 true - no block effect";

proc mixed cl data=trapexp;

class treat;

model y = treat / ddfm=kr;

run;

title2 "H1 true - there is a block effect";

proc mixed cl data=trapexp;

class treat block;
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model y = treat / ddfm=kr;

random block;

run;

quit;

Figure 14.29: TrapRCBD clerids block test.sas - proc mixed (1)



450 CHAPTER 14. ANALYSIS OF VARIANCE (TWO-WAY)

Figure 14.30: TrapRCBD clerids block test.sas - proc mixed (2)
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SAS Program

* lrtpvalue.sas;

title "P-value for likelihood ratio test";

data values;

*Data are -2lnL values under H0 and H1, plus degrees of freedom;

input m2lnLH1 m2lnLH0 df;

m2lnl = -m2lnLH1 - (-m2lnLH0);

* Find P-value;

Pvalue = (1 - probchi(m2lnl,df))/2;

datalines;

39.0 47.4 1

;

run;

proc print data=values;

run;

Figure 14.31: lrtpvalue.sas - proc print
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14.8 Problems

1. An entomologist is interested in how bark beetles respond to traps
baited with two treatments, their own pheromone (P) vs. the pheromone
plus a repellent chemical (PR). They also want to see if trap color (black
vs. white) affects the response of the beetles. They conduct an experi-
ment in which these two factors are randomly assigned to traps in one
section of the forest, with five replicate traps for each treatment. The
counts of bark beetles responding to each trap are listed below.

Bait Trap color Counts for five replicate traps
P Black 138, 569, 196, 139, 726
PR Black 96, 168, 25, 36, 152
P White 174, 99, 293, 67, 122
PR White 52, 27, 11, 57, 93

(a) Write an appropriate ANOVA model for this design, and state
which effects are fixed or random. Is it possible to include an
interaction term in the model?

(b) Use SAS to analyze these data using your ANOVA model, log
transforming the observations. Interpret the results of all the tests.
Attach your SAS program and output.

2. A research group is interested in the effects of diet and temperature on
the growth rate of fish in aquaculture. They conduct an experiment
with three different diet treatments (A, B and C) crossed with three
rearing temperatures (15, 20 and 25◦C). Two fish tanks are assigned to
each treatment combination and the growth rate (g/week) determined
for each tank. The following data were obtained:

Diet Temp Growth rate (two tanks)
A 15 24.7, 22.3
A 20 31.9, 28.9
A 25 32.6, 31.3
B 15 19.6, 14.2
B 20 30.5, 26.5
B 25 25.5, 32.8
C 15 21.1, 21.3
C 20 23.4, 23.4
C 25 28.2, 25.8
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(a) Write an appropriate ANOVA model for this design, and state
which effects are fixed or random. Is it possible to include an
interaction term in the model?

(b) Use SAS to analyze these data using your ANOVA model. You
may use any method for dealing with interactions. Interpret the
results of all the tests.

(c) Use the Tukey method to compare the different diet treatments,
and then the temperature treatments. Interpret the results.


