
Chapter 15

Assumptions and
Transformations

Analysis of variance as well as regression analysis (see Chapter 17) make a
number of assumptions about the nature of the observations. These assump-
tions are embodied in the statistical model used in the analysis. For example,
recall the model for fixed effects one-way ANOVA:

Yij = µ+ αi + εij. (15.1)

Here µ is the grand mean while αi is the deviation from µ caused by the ith
level of Factor A. The εij term represents random departures from the mean
value predicted by Factor A due to natural variability. It is assumed that
εij ∼ N(0, σ2) and that these random variables are also independent of one
another. We examine these assumptions in more detail below and discuss
how their violation can affect the validity of the statistical analyses. We
then describe how variance-stabilizing transformations are used to fix
certain violations of these assumptions. We also present a common method
for identifying these violations known as residual analysis.

15.1 ANOVA assumptions

15.1.1 Independence of observations

One key assumption embodied in the above model is that the error terms
εij are independent, implying that the observations Yij are also independent.
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How would a lack of independence influence the results of ANOVA? The
consensus is that a lack of independence can greatly influence the validity of
ANOVA, including the Type I error rate and power of the F test, as well as
the estimation of group effects (Glass et al. 1972).

As an example of an experimental design where the observations are not
independent, suppose that we conduct an insect trapping experiment with
two bait treatments, A and B. We place all of the bait A traps in one location
and bait B ones in a second location. If location influences the abundance of
insects, we would expect the trap catches at a particular site to be high or
low for this reason, separate of any treatment effect. As a consequence, the
observations at a particular location are related to one another and so not
independent. We would also be more likely to find a bait effect if these data
were analyzed using one-way ANOVA, simply because of the location effect.
Thus, the Type I error rate of the F test would be higher. This combina-
tion of poor experimental design and an inappropriate statistical analysis has
been called pseudoreplication (Hurlbert 1984). While there are multiple
traps within each location, they are not true replicates because the obser-
vations are not independent, and treatment and location effects cannot be
separated. This design basically has only one replicate per treatment, one
for each location.

Fortunately, the assumption of independence will usually be satisfied by
good experimental design and execution (Hurlbert 1984). In the insect bait
experiment, a better experimental design would randomly allocate bait types
to traps at both locations, and the analysis would also include a location
(block) effect in the statistical model. Randomization also helps ensure that
estimates of the treatment effects are unbiased. For example, bait type A
might be messier to use than B, and the experimenter might be tempted to
do those replicates last or place them in a different location. This poten-
tial source of bias by the experimenter is avoided by randomization of the
treatments.

15.1.2 Homogeneity of variances

Another key assumption of ANOVA is that the variance is similar among
treatment groups, also known as the homogeneity of variances assumption
or homoscedasticity. This follows from the assumption that εij has a
variance of σ2 regardless of the treatment group. We can also see this from a
graphical presentation of the one-way ANOVA model, where each treatment
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group has the same distribution with the same variance except for shifts due
to Factor A (see Fig. 11.1 in Chapter 11). The condition of unequal variances
is also called heteroscedasticity.

If the homogeneity of variances assumption is not satisfied this can strongly
affect the validity of the F test in ANOVA, especially when the design is un-
balanced (Glass et al. 1972). If the treatments with higher variances have
smaller sample sizes, then the actual Type I error rate will be higher than its
nominal value (say α = 0.05). Conversely, if the treatments with higher vari-
ances have larger sample sizes, the actual Type I error rate will be smaller
than its nominal value. We will see later in this chapter how variance-
stabilizing transformations can be used to equalize the variance among
groups, making the observations better conform to this assumption.

15.1.3 Normality

A further assumption of ANOVA is that the error term εij is normally dis-
tributed, and as a consequence so are the observations (Yij values). The
assumption of normality appears to be less important for the validity of
ANOVA than homogeneity of variances. Many studies indicate that the
ANOVA F test has the nominal Type I error rate (α = 0.05) even when
the observations have distributions quite different from the normal, although
power may be increased or decreased relative to the normal (see Table 16,
Glass et al. 1972). For large values of n per group, ANOVA is likely to be a
valid procedure regardless of the distribution of the observations due to the
central limit theorem (Chapter 7). In practice, a transformation that equal-
izes the variance among groups also seems to normalize the observations,
solving both problems.

15.1.4 Absence of outliers

An assumption of ANOVA related to normality is the absence of outliers.
Outliers are observations that lie far from the other observations
in a particular study. The source of the outlier could be a rare biological
event, or simply a data entry error or bad measurement with an instrument.
Because it lies far from the other observations, an outlier will increase the
size of MSwithin and alter the estimated effect of its treatment group. If
the outlier is a data error then there is justification for deleting it from the
observations. If the source is unclear or the outlier is a valid observation, then
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one common approach is to conduct the statistical analysis with and without
the outlier and present both results. Outliers can be often be identified using
residual analysis (see below).

15.1.5 Additivity

ANOVA models are known as additive models because the observations are
modeled as the sum of several factors. For example, the model for two-way
fixed effects ANOVA without replication is

Yij = µ+ αi + βj + εij. (15.2)

Thus, the Yij values are modeled as the sum of the grand mean, the effects
of Factor A and B, and a random term representing variability among the
observations. Additivity of effects is a basic assumption of ANOVA.

However, some biological processes like survival and reproduction are
inherently multiplicative processes. For example, suppose our observations
are the number of offspring surviving to maturity from a single female. This
number will be the product of the fecundity of the female and the survival
rate of the offspring. We now apply a number of treatments that could
potentially influence both these factors. The resulting observations could be
described using the model

Yij = λsifjγij, (15.3)

where λ is the average number of offspring surviving to maturity, while si
and fj are the differential effects of the survival and fecundity treatments.
The term γij is a multiplicative error term with a distribution that takes only
positive values, and it is typically required that E[γij] = 1. Note that these
must all be positive quantities in order for the number of offspring (Yij) to
be positive.

Can data of this type be analyzed using ANOVA? The answer is yes,
because we can use a log transformation to make the data additive. Taking
the log of both sides of this model, we obtain

log Yij = log λ+ log si + log fj + log γij. (15.4)

The result is an additive model the same as for unreplicated two-way ANOVA,
and the data can be analyzed using standard ANOVA methods. This is one
reason why studies of reproduction and survival as well as population dy-
namics routinely use the log transformation.
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15.2 Variance-stabilizing transformations

Variance-stabilizing transformations are often used by statisticians to equal-
ize the variance of observations across different treatment groups, so that the
homogeneity of variances assumption is better satisfied. We have already em-
ployed these transformations in some of our analyses, including the log and
arcsine-square root transformations.

The different transformations are derived as follows. Suppose we have a
random variable Y that describes the data, and there is a functional rela-
tionship between its variance V ar[Y ] = v and its mean E[Y ] = m. More
specifically, suppose that we have

v = f(m) (15.5)

where f is some function. For example, with the Poisson distribution for
parameter λ we have V ar[Y ] = E[Y ] = λ (Chapter 7), and so v = m is the
functional relationship. It can then be shown that a function g that satisfies
the equation

g(m) =

∫
θdm√
f(m)

, (15.6)

where θ is a constant, will be a variance-stabilizing transformation (Bartlett
1947). To see how this process works, suppose that a random variable Y has
a Poisson distribution. We find that

g(m) =

∫
θdm√
m

= θ
m1/2

1/2
+ C = 2θ

√
m+ C ∝

√
m. (15.7)

Thus, the variance-stabilizing transformation for Poisson data is
√
Y .

As another example, suppose that v = m2 so that the variance increases
with the square of the mean. Negative binomial data will have this form for
large m, because v = m + m2/k for this distribution (Chapter 7). For this
relationship between v and m, we have

g(m) =

∫
θdm√
m2

=

∫
θdm

m
= θ logm+ C ∝ logm, (15.8)

implying that log Y is the variance-stabilizing transformation. Either natural
or base 10 log transformations can be used and will yield identical results
for the statistical tests in ANOVA. The log Y transformation is a ‘stronger’
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transformation than the
√
Y because it corrects for a stronger relationship

between v and m.
A variance-stabilizing transformation is also needed for proportions, be-

cause the variance of a proportion depends on its mean. To see this, suppose
that we observe l different individuals from some population and record their
sex. Let Y be the number of individuals in the sample that are female. The
variable Y would be a binomial random variable with parameters l and p,
where p is the proportion of females in the population, and so E[Y ] = lp
and V ar[Y ] = lp(1 − p) (see Chapter 5). Then, a binomial proportion
would be Y/l, the proportion of females in the sample. For this proportion,
we have E[Y/l] = lp/l = p while V ar[Y/l] = lp(1 − p)/l2 = p(1 − p)/l. If
we set m = p, then v = V ar[Y/l] = m(1 − m)/l and so v is a function of
m. Using the same method as above, we find that the variance-stabilizing
transformation for binomial proportions is sin−1(

√
Y ) or arcsin(

√
Y ). This

transformations maps proportions from 0 to 1 to the interval 0 to π/2. The
largest effect of the transformation is on proportions close to 0 or 1.

Table 15.1 lists the commonly used variance-stabilizing transformations.
Also listed are variants of the transformations that are useful when the data
include zeroes, as often occurs in count data. In the next section, we will
illustrate the use of these transformations, and how the appropriate trans-
formation can be determined through residual analysis.

Table 15.1: Variance-stabilizing transformations for various v = f(m) and
the data for which they are useful.

v = f(m) Transformation Comments

v = m
√
Y ,
√
Y + 1/2 (zeroes) Poisson data

v = m2 log Y, log(Y + 1) (zeroes) Overdispersed count data,
many other types

v = m(1−m)/l arcsin(
√
Y ) Proportions

15.3 Residual analysis

The details of residual analysis are presented in this section. We begin by
defining predicted and residual values using one-way ANOVA as an example,
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for both fixed and random effects (similar results hold for more complex de-
signs). We then illustrate residual analysis and the use of variance-stabilizing
transformations with some examples.

15.3.1 Models, estimates, and predictors

ANOVA is based on statistical models that contain a number of parameters.
For example, the statistical model for fixed effects one-way ANOVA has the
form

Yij = µ+ αi + εij, (15.9)

where µ is the grand mean, αi is the deviation from the µ caused by the
ith treatment, and εij ∼ N(0, σ2). We saw earlier how likelihood methods
could be used to estimate the parameters µ, αi, and σ2 for this model. For
the random effects version, the model contained a random variable Ai ∼
N(0, σ2

A), and is written as

Yij = µ+ Ai + εij. (15.10)

The parameters in this model are µ, σ2
A, and σ2, and these quantities can

also be estimated using likelihood methods. It is also possible to estimate the
random variable Ai itself, more specifically the value realized in a particular
group and study. Estimators of Ai are often called predictors in this con-
text, because they concern random variables rather than model parameters
(Searle et al. 1992).

15.3.2 Predicted and residual values

We can use these estimates to generate a predicted value for each observa-
tion Yij in the data set. For the fixed effects model listed above, the predicted

value of Yij is Ŷij = µ̂ + α̂i, where µ̂ and α̂i are the estimated values of µ
and αi. Note that all observations in the ith group would have the same
predicted value.

What actually are the predicted values here? Recall that for the fixed
effects model, the maximum likelihood estimates of these parameters are

µ̂ = ¯̄Y (15.11)

and
α̂i = Ȳi· − ¯̄Y. (15.12)
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Thus,

Ŷij = µ̂+ α̂i = ¯̄Y + Ȳi· − ¯̄Y = Ȳi·. (15.13)

So, the predicted value for the ith group is just the mean of that group.

Similarly, for the random effects model the predicted value of Yij is Ŷij =

µ̂+ Âi, where µ̂ = ¯̄Y and Âi is the predictor of Ai. It turns out that the best
predictor for the realized value of Ai is ‘shrunk’ relative to αi and has the
form

Âi =
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.14)

(Searle et al. 1992). It depends on σ2
A and σ2 as well as Ȳi· and ¯̄Y . It follows

that

Ŷij = µ̂+ Âi = ¯̄Y +
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.15)

for the random effects model. Thus, Ŷij is not equal to Ȳi· in this situation

but lies closer to the grand mean ¯̄Y , unless n is large. In practice, estimates
of the two variance components are used to generate the predicted value.

In assessing the validity of our statistical models, we will also be interested
in the residuals of the observations, which are defined as the difference
Yij − Ŷij. The residuals essentially provide an estimate of the error term εij
for each observation, which we can call ε̂ij. Why is this so? The model for
one-way ANOVA can be expressed as

Yij − (µ+ αi) = εij. (15.16)

If we insert estimates for µ and αi in this equation, we obtain an estimate of
εij:

Yij − (µ̂+ α̂i) = Yij − Ŷi = ε̂ij. (15.17)

There is an interesting relationship between these residual values and
MSwithin. Suppose that we use the sample variance of the ε̂ij values to
estimate the variance of εij, namely σ2. The sum of squares associated with
this sample variance is

SS =
a∑
i=1

n∑
j=1

(ε̂ij)
2 =

a∑
i=1

n∑
j=1

(Yij − (µ̂+ α̂i))
2 , (15.18)



15.3. RESIDUAL ANALYSIS 463

and the degrees of freedom are a(n − 1). Dividing SS by its degrees of
freedom, we obtain an estimator of σ2 based on the residuals:

σ̂2 =

∑a
i=1

∑n
j=1 (Yij − (µ̂+ α̂i))

2

a(n− 1)
. (15.19)

How is this quantity related to MSwithin, our other estimate of σ2? If we
plug µ̂ = ¯̄Y and α̂i = Ȳi· − ¯̄Y into this equation, we obtain

σ̂2 =

∑a
i=1

∑n
j=1

(
Yij − ( ¯̄Y + Ȳi· − ¯̄Y )

)2

a(n− 1)
(15.20)

=

∑a
i=1

∑n
j=1

(
Yij − Ȳi·)

)2

a(n− 1)
(15.21)

= MSwithin. (15.22)

Thus, MSwithin can be expressed in terms of the residuals from the ANOVA
estimation process. This relationship is true for all ANOVA models (and
regression as well). Because MSwithin can be expressed using the residual
or error terms, MSwithin is also called MSresidual or MSerror, and SSwithin
similarly named SSresidual or SSerror. This terminology is used in SAS output
as well.

It is also possible to express MSamong in terms of the maximum likelihood

estimates of the parameters. Because α̂i = Ȳi· − ¯̄Y , we have

MSamong =
n
∑a

i=1(Ȳi· − ¯̄Y )2

a− 1
=
n
∑a

i=1 α̂
2
i

a− 1
. (15.23)

From this result, it is clear that MSamong is an increasing function of the
values of α̂i, the estimated treatment effects (Winer et al. 1991).

15.3.3 Evaluating ANOVA assumptions

Residuals play a key role in determining if a particular data set satisfies the
assumptions of ANOVA. They can be used to evaluate three of the assump-
tions: (1) homogeneity of variances among groups, (2) absence of outliers,
and (3) normality of the error terms.

We can evaluate the homogeneity of variances assumption through a plot
of the residuals vs. predicted values. If the variances are homoge-
neous among groups, the points should be equally scattered for
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each group. This is because the residuals are estimates of the εij values
and are supposed to have the same variance across groups. If the residual vs.
predicted plot shows a definite pattern, such as a increase or decrease in the
scatter as the predicted values increase, this suggests a variance-stabilizing
transformation may be needed. This type of plot is also useful for detecting
any outliers in the data. If an outlier is present it will have a very
large residual value. The normality assumption can be evaluated using a
normal quantile plot of the residuals. If the residuals are normal, then
this plot will be a straight diagonal line.

15.3.4 Residual analysis and transformations - SAS
demo

We will illustrate residual analysis and the use of transformations with data
from a trapping study of the predatory insect Thanasiumus dubius (Reeve
et al. 2009). This study used a randomized block design with five bait
treatments and six blocks, previously analyzed in Chapter 14. Note that the
model for this design contains both fixed and random effects, but predicted
values and residuals can still be generated through a more complex process
(Searle et al. 1992)

The complete program for this example is listed below for reference. We
can generate a residual vs. predicted plot, and a normal quantile plot, by
adding the option plots=residualpanel to the proc mixed statement. We first
analyze the data using no transformation by setting y = count in the data

step. Examining the residual vs. predicted plot, we see an increase in the
scatter of the residuals as the predicted values increase (Fig. 15.1, top left),
especially for the largest predicted values. This implies that the variance
of the observations increases with their mean (v is some function of m). In
addition, the normal quantile plot (bottom left) does not appear to be a
straight diagonal line. Neither assumption appears to be satisfied in this
analysis.

We next analyze the data using a square root transformation by setting
y = sqrtcount in the data step. The residual vs. predicted plot shows less
scatter of the residuals for larger predicted values, although there is still
some spread (Fig. 15.2). The normal quantile plot is now a straight diagonal
line.

We then try a log transformation of the data, setting y = logcount in the
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data step. The residual vs. predicted plot shows the same scatter across
the range of predicted values (Fig. 15.3), and the normal quantile plot is
a straight diagonal line. This is the desired outcome with the data now
satisfying the homogeneity of variances and normality assumptions. There
also appear to be no outliers (extreme residual values) in these observations.
We can then proceed to interpret the rest of the analysis, such as
the F test and multiple comparisons. They should be valid at this
point because the ANOVA assumptions are satisfied. See Chapter
14 for the interpretation of this analysis.
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SAS Program

* TrapRCBD_clerids.sas;

title "Randomized block anova for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

2 AP 1

2 BLANK 0

2 FRAP 124

2 IDAP 13

2 ISAP 20

3 AP 0

3 BLANK 0

3 FRAP 14

3 IDAP .

3 ISAP 2

4 AP 0

4 BLANK 0

4 FRAP 15

4 IDAP 11

4 ISAP 7

5 AP 0

5 BLANK 0

5 FRAP 29

5 IDAP 7

5 ISAP 7

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;
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run;

* Print data set;

proc print data=trapexp;

run;

* Plot means, standard errors, and observations;

proc gplot data=trapexp;

plot y*treat=block / vaxis=axis1 haxis=axis1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Mixed model analysis;

proc mixed cl plots=residualpanel data=trapexp;

class treat block;

model y = treat / ddfm=kr;

random block;

lsmeans treat / pdiff=all adjust=tukey;

run;

quit;



468 CHAPTER 15. ASSUMPTIONS AND TRANSFORMATIONS

Figure 15.1: TrapRCBD.sas - proc mixed (no transform)

Figure 15.2: TrapRCBD.sas - proc mixed (
√
Y transform)
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Figure 15.3: TrapRCBD.sas - proc mixed (ln(Y + 1) transform)
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15.3.5 arcsin(
√
Y ) transformation - SAS demo

As another example of residual analysis and transformation, we will ana-
lyze the observations from an experiment involving an insect predator and
the survival of a pest insect on which it feeds. Plots are established each
containing 20 pest insects, and a predator treatment (0, 1, or 2 predators)
randomly assigned to each plot. There were n = 10 plots per predator treat-
ment. The proportion of pest insects surviving was determined for each plot.
We will analyze this experiment using one-way ANOVA and proc glm, with
the predator treatment a fixed effect. Residual plots can be requested using
the option plots=diagnostics. See complete program below.

We first analyze these data using untransformed proportions, using y = prop

in the data step, where prop is the proportion of surviving pest insects. Ex-
amining the residual vs. predicted plot (Fig. 15.4, top left), we see that
the variability of the observations for one treatment is smaller. This is the
0 predator treatment and has a very high survival rate. The normal quan-
tile plot (second row, left) is a straight diagonal line, so this assumption is
apparently satisfied.

We then analyze the experiment using the transformation arcsin(
√
Y )

where Y is the proportion, using y = arsin(sqrt(prop)) in the data step. The
residual vs. predicted plot shows an equal scatter of the residuals across
the predicted values, suggesting the homogeneity of variances assumption is
satisfied (Fig. 15.5). The normal quantile plot is a straight diagonal line
once more. What has happened here? The transformation has spread out
the survival rates for the 0 predator treatment, thus equalizing the variances
among the treatment groups.

Examining the ANOVA output (Fig. 15.8), we see there was a highly
significant effect of the predator treatment on the survival rate of the pest
insect (F2,27 = 21.26, P < 0.0001). Pest survival decreased as the number of
predators increased (Fig. 15.7).
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SAS Program

* arcsine.sas;

title ’One-way ANOVA for proportions’;

data arcsine;

input predators survivors;

prop = survivors/20;

* Apply transformations here;

y = arsin(sqrt(prop));

datalines;

0 18

0 18

0 18

0 16

0 19

0 19

0 17

0 18

0 20

0 17

1 14

1 17

1 15

1 10

1 17

1 14

1 13

1 17

1 14

1 15

2 12

2 16

2 16

2 12

2 6

2 12

2 13

2 10

2 9

2 10

;

run;

* Print data set;

proc print data=arcsine;

run;
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* Plot means, standard errors, and observations;

proc gplot data=arcsine;

plot y*predators=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with all fixed effects;

proc glm plots=diagnostics data=arcsine;

class predators;

model y = predators;

run;

quit;
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Figure 15.4: arcsine.sas - proc glm (no transform)
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Figure 15.5: arcsine.sas - proc glm (arcsin(
√
Y ) transform)
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etc.

Figure 15.6: arcsine.sas - proc print
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Figure 15.7: arcsine.sas - proc gplot
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Figure 15.8: arcsine.sas - proc glm
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15.3.6 Transformations when data are limited

In many real studies, we will have insufficent data to determine the appropri-
ate variance-stabilizing transformation using residual analysis. For example,
we may not have enough points to determine if the variance is related to
the mean, or whether the normality assumption is satisfied. In this situa-
tion you may have to guess the appropriate transformation. For count data
you would use the

√
Y or log Y transformation. Most count data are more

overdispersed or clumped than the Poisson distribution, however, and so the
log Y transformation will usually be a better choice than

√
Y . You would

use the arcsin(
√
Y ) transformation for proportion data, especially if there

are some proportions near 0 or 1.
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