
Chapter 20

Methods for Categorical Data

Categorical data are observations that fall into two or more discrete cate-
gories, such as female vs. male organisms, age or size classes, or different
phenotypes in genetic studies (Chapter 1). This requires a different type of
statistical model than in previous chapters, where the observations were as-
sumed to have a normal distribution. We will instead use the binomial and
multinomial distributions to model categorical data, and derive likelihood
ratio and chi-square tests of various hypotheses. Recall that the binomial
distribution can be used to model data with two categories (see Chapter 5).
The multinomial distribution is a generalization of the binomial to
data with more than two categories.

One class of test we will examine are called goodness-of-fit tests. These
tests compare the observed frequencies of different categories of observations
with those expected under some null hypothesis. For example, recall the
laboratory rearing study of Thanasimus dubius described in Chapter 3. We
might be interested in whether the sex ratio for these predatory beetles is
close to 1:1 (50% females, 50% males), as occurs in many diploid sexual
organisms. This is our null hypothesis and it implies that the probability
p a sampled individual is female is 0.5, or H0 : p = 0.5. Suppose we have
a sample of n = 130 beetles as in this data set. What are the expected
frequencies of females and males in this sample? Recall that E[Y ] = np for
the binomial distribution, where n is the sample size (Chapter 5). Under
H0, we would therefore expect E1 = np = 130(0.5) = 65 females and E2 =
n(1 − p) = 130(0.5) = 65 males. The observed frequencies are O1 = 60
females and O2 = 70 males for this data set. It is common to organize these
results into following form (Table 20.1):
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Table 20.1: Observed and expected frequencies of female and male T. dubius
from a laboratory rearing study (Reeve et al. 2003).

Females Males
∑

i 1 2
Oi 60 70 130
Ei 65 65 130

A goodness-of-fit test for H0 : p = 0.5 provides a way of comparing these
observed and expected frequencies, generating a test statistic and P value for
the test. Based on these results we may accept or reject this null hypothesis,
and in this case the result was non-significant (P = 0.3805). We will later
see how goodness-of-fit tests may be applied to data with more categories
and cases where certain model parameters are estimated from the data.

Tests of independence are a second class of tests for categorical data.
Suppose that the observations in a data set can be classified in two different
ways. For example, a sample of amphibians could be classified into differ-
ent species and whether individuals of a given species are infected with a
pathogen. Using a test of independence, we can test whether species and
infection status are independent events (see Chapter 4). Equivalently, we
can test whether the probability of being infected is the same across species.
To make things more concrete, suppose that four amphibian species (A, B,
C, and D) are randomly sampled and scored for infection, yielding Table
20.2. The null hypothesis of independence, or an equal probability of being
infected across all species, can be expressed as follows. Let pA be the overall
probability an individual of species A is sampled (infected or not), while pI is
the probability it is infected (across all four species). If species and infection
status are independent, we would expect by definition that the probability
of sampling an infected individual of species A would be pApI (see Chapter
4). A similar relationship would hold for the other possible outcomes, and
the null hypothesis of independence can be expressed in this form.

Tests of independence also make use of observed and expected frequen-
cies, with the expected frequencies calculated under the null hypothesis of
independence (see Table 20.2). Subscripts are commonly used to indicate the
observed and expected frequencies in particular cells of the table, with the
first subscript indicating the row and the second the column in the table. For
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example, in Table 20.2 we have O11 = 7, O21 = 18, O12 = 12, O22 = 38, and
so forth. We will later see how to calculate the expected frequencies under
the null hypothesis of independence. There appear to be substantial differ-
ences between the observed and expected frequencies in this table, and in
fact the test of independence was highly significant (P = 0.0002), suggesting
that amphibian species and infection status are not independent. We will
focus on two-way tables like the one below, but it is also possible to conduct
tests of independence for three-way or higher tables. However, these prob-
lems are more commonly addressed using loglinear models, which have an
ANOVA-like structure and feel but focus on testing the interactions between
factors, which are equivalent to tests of independence (Agresti 1990).

Table 20.2: Observed frequencies of infected and non-infected individuals
in four amphibian species. Below each observed frequency is the expected
frequency under the null hypothesis of independence.

Species
Infected A B C D

∑
Yes 7 12 15 27 61

10.167 20.333 14.233 16.267
No 18 38 20 13 89

14.833 29.667 20.767 23.733∑
25 50 35 40 150

20.1 Goodness-of-fit tests

As a simple example of a goodness-of-fit test, consider the data set involving
male and female T. dubius. Suppose we want to test the hypothesis that
the sex ratio is 1:1 (50% female, 50% male) in this species. The population
falls into two categories, female or male, which suggests using the binomial
distribution to model the observations. Suppose that we have a sample of
size n from this population and let Y be the number of females in the sample,
a binomial random variable. If p is the probability that a T. dubius adult is
female, then the probability the sample will have y females is given by the
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formula

P [Y = y] =

(
n

y

)
py(1− p)n−y. (20.1)

The null hypothesis that the sex ratio is 1:1 implies that p = 0.5, which
can be written as H0 : p = 0.5. The alternative is that the sex ratio differs
from 1:1, or H1 : p 6= 0.5. More generally, we will be interested in testing
H0 : p = p0 vs. H1 : p 6= p0 where p0 is some probability.

We now develop a likelihood ratio test for H0 : p = p0 vs. H1 : p 6= p0,
assuming the observations have a binomial distribution. It is a goodness-of-
fit test because we will be comparing the observed frequencies of females and
males with that expected under H0, and if observed and expected frequencies
are substantially different we will reject H0. The likelihood ratio test uses
the ratio of the likelihoods under H0 and H1 as the test statistic (see Chapter
10).

Recall that the likelihood function for discrete distributions is just the
probability of the observed data (see Chapter 8). The data are fixed quanti-
ties in this function, while the parameters of the distribution are free to vary.
In this case, the value of y (the number of females in the sample) is the data
while p is the parameter that is free to vary, and so the likelihood function
for binomial data would be

L(p) =

(
n

y

)
py(1− p)n−y. (20.2)

We first need to find the maximum value of the likelihood under H0. Under
the null hypothesis the parameter p is set equal to p0, and so we have

LH0 =

(
n

y

)
py0(1− p0)n−y. (20.3)

This is the only value that can be taken by LH0 , because all the other quan-
tities are fixed, and so this is also its maximum. Under H1, the parameter
p is free to vary in L(p). The maximum value of the likelihood function
occurs at p̂ = y/n, the maximum likelihood estimate of p. This is simply the
proportion of females in the sample. Thus,

LH1 =

(
n

y

)
p̂y(1− p̂)n−y =

(
n

y

)
(y/n)y(1− y/n)n−y. (20.4)
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The test statistic is the ratio of these two likelihoods:

λ =
LH0

LH1

(20.5)

=

(
n
y

)
py0(1− p0)n−y(

n
y

)
(y/n)y(1− y/n)n−y

(20.6)

=
py0(1− p0)n−y

(y/n)y(1− y/n)n−y
(20.7)

=

(
p0

y/n

)y (
1− p0

1− y/n

)n−y
(20.8)

=

(
np0

y

)y (
n(1− p0)

n− y

)n−y
(20.9)

=

(
E1

O1

)O1
(
E2

O2

)O2

. (20.10)

Here O1 and O2 would be the observed frequencies of females and males, while
E1 = np0 and E2 = n(1−p0) are the corresponding expected frequencies (see
Table 20.1). Under H0, the quantity

G2 = −2 lnλ (20.11)

has approximately a χ2 distribution with one degree of freedom, with the
approximation improving as n increases (Agresti 1990). In terms of the
observed and expected frequencies, we have

G2 = −2 lnλ (20.12)

= −2 ln

[(
E1

O1

)O1
(
E2

O2

)O2
]

(20.13)

= −2[O1 ln(E1/O1) +O2 ln(E2/O2)] (20.14)

= 2[O1 ln(O1/E1) +O2 ln(O2/E2)]. (20.15)

Similar to other likelihood ratio tests that utilize the χ2 distribution, the
degrees of freedom are equal to the difference in the number of parameters free
between the H1 and H0 models (see Chapter 14). There is one free parameter
under H1, namely p, but under H0 we have p = p0, a fixed quantity. Thus,
there is a difference of one parameter between the two models, implying one
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degree of freedom. G2 values will become large if the observed and expected
frequencies are different.

Another commonly used statistic for this goodness-of-fit test is the quan-
tity

X2 =
(O1 − E1)2

E1

+
(O2 − E2)2

E2

(20.16)

(Agresti 1990). Under H0, X2 has approximately a χ2 distribution with one
degree of freedom. Although the two test statistics G2 and X2 are different
in form, they usually yield similar values and test results. X2 values also
become large as the observed and expected frequencies diverge. This test is
often called a ‘chi-square’ or ‘χ2’ test, although the likelihood ratio test also
uses the χ2 distribution.

Goodness-of-fit test - sample calculation

We now conduct a goodness-of-fit test for the Table 20.1 data, testing H0 :
p = 0.5. We have

G2 = 2[O1 ln(O1/E1) +O2 ln(O2/E2)] (20.17)

= 2[60 ln(60/65) + 70 ln(70/65)] (20.18)

= 2[−4.803 + 5.188] (20.19)

= 0.770. (20.20)

We next find the P value from Table C and obtain a non-significant result
(G2 = 0.770, df = 1, P < 0.5). Thus, there was no evidence against a 1:1 sex
ratio in this study.

We next calculate the equivalent X2 statistic for these data. We have

X2 =
(O1 − E1)2

E1

+
(O2 − E2)2

E2

(20.21)

=
(60− 65)2

65
+

(70− 65)2

65
(20.22)

= 0.385 + 0.385 (20.23)

= 0.770. (20.24)

The result is identical to G2 and so the P value is the same (X2 = 0.770, df =
1, P < 0.5). The test results are often similar for these two statistics, al-
though seldom identical as in this case.
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Goodness-of-fit test - SAS demo

We can use proc freq in SAS to conduct a goodness-of-fit test for the Table
20.1 data using the X2 statistic (SAS Institute Inc. 2016). This procedure
does not provide the likelihood ratio test involving G2, but there is another
option that is actually better than both. SAS can conduct an exact chi-square
(X2) test where the distribution of the test statistic under H0 is determined
exactly, instead of approximating it with a χ2 distribution. This approach
is computationally intensive and may be impractical for large sample sizes,
but in this case the chi-square (X2) test would be valid and the exact test
unnecessary.

The first step in the analysis is to make a SAS data set using the observed
frequencies in Table 20.1. The variable obsfreq contains this information for
each value of sex (see SAS program below). The data could also have been
entered as individual observations with a single data line for each observation,
as in the original data set (see Chapter 3). We would then use proc freq to
tabulate the data.

Now examine the proc freq portion of the program. The order=data option
asks SAS to use the order of the categories (values of sex) given by the data,
rather than alphabetically. The tables line requests a frequency table for sex.
The next step is to tell SAS the probabilities under H0 for each sex, which
are p = 0.5 for females and 1− p = 0.5 for males. This is accomplished using
the option testp = (0.5 0.5). The order of the probabilities in the testp

statement should match the order of the categories in the data. The weight

command tells proc freq that the data are in the form of frequencies, and
the name of the variable containing these frequencies (obsfreq). An exact
chi-square (X2) test is requested by the command exact chisq.

Examining the SAS output (Fig. 20.2), we find that the exact chi-square
(X2) test was non-significant (X2 = 0.769, df = 1, P = 0.4300). There is no
evidence that the sex ratio differs from 1:1 in this organism.
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SAS Program

* gof_clerids.sas;

title ’Goodness-of-fit test for T. dubius data’;

data elytra;

input sex \$ obsfreq;

datalines;

F 60

M 70

;

run;

* Print data set;

proc print data=elytra;

run;

* Goodness-of-fit test (Chi-square only);

proc freq data=elytra order=data;

tables sex / testp=(0.5 0.5) chisq cellchi2 expected;

weight obsfreq;

* Compute exact test if frequencies low, takes too long for large data sets;

exact chisq;

run;

quit;

Figure 20.1: gof clerids.sas - proc print
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Figure 20.2: gof clerids.sas - proc freq
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20.1.1 Goodness-of-fit tests for a categories

We now examine goodness-of-fit tests for data with a different categories. A
common type occurs in genetic studies where different genotypes are crossed,
such as Mendel’s classic experiments involving pea plants (Mendel 1865).
One of his experiments created hybrids for two genes governing the shape
(round or wrinkled) and color (yellow or green) of the peas, which were then
crossed and the phenotypes of the offspring scored. A total of n = 556 peas
were observed (Table 20.3).

Table 20.3: Observed and expected frequencies for a dihybrid cross (Mendel
1865).

Round Round Wrinkled Wrinkled
∑

yellow green yellow green
i 1 2 3 4
Oi 315 101 108 32 556
Ei 312.75 104.25 104.25 34.75 556

This table has a = 4 categories. If we assume Mendelian genetics, with
the round allele dominant over the wrinkled one and yellow color dominant
over green, we would expect to see these four phenotypes in a 9:3:3:1 ratio.
This forms the null hypothesis for this problem. We can express it in the
form H0 : p1 = 9/16 = 0.5625, p2 = 3/16 = 0.1875, p3 = 3/16 = 0.1875,
and p4 = 1/16 = 0.0625. The alternative H1 is that the probabilities differ
from these values. More generally, we will be interested in testing H0 : p1 =
p10, p2 = p20, p3 = p30, and p4 = p40 vs. some alternative hypothesis H1

where the probabilities differ from these values.

Also shown in Table 20.3 are the expected frequencies under H0, calcu-
lated using the formula Ei = npi. We have E1 = 556(0.5625) = 312.75,
E2 = 556(0.1875) = 104.25 = E3, and E4 = 556(0.0625) = 34.75. These are
the expected numbers of peas for each phenotype assuming that H0 is true.

We need a different distribution to model these observations, a general-
ization of the binomial called the multinomial distribution. Suppose that
n total peas are sampled, and let Y1, Y2, Y3 and Y4 be random variables corre-
sponding to the four phenotypes, with y1 the observed number of round and
yellow peas, y2 the number of round and green, y3 the number of wrinkled
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and yellow, while y4 is wrinkled and green. Because n = Y1 + Y2 + Y3 + Y4

there is some dependence among the four variables (if we know three, the
fourth is determined by this relationship). Let p1 be the probability that
a pea is round and yellow, with p2, p3, and p4 similarly defined. The four
probabilities sum to one (p1 + p2 + p3 + p4 = 1), which implies the distri-
bution really has only three parameters. Then, the probability of observing
y1, y2, y3, and y4 peas of each type is given by the multinomial distribution,
which has the form

P [Y1 = y1, Y2 = y2, Y3 = y3, Y4 = y4] =
n!

y1!y2!y3!y4!
py11 p

y2
2 p

y3
3 p

y4
4 . (20.25)

This distribution can be readily extended to any number of categories.

Using the multinomial distribution as a model for the observations, we
can extend the G2 goodness-of-fit statistic to a categories by adding more
terms of the form Oi ln(Oi/Ei). For a table with a categories, we have

G2 = 2
a∑
i=1

Oi ln(Oi/Ei). (20.26)

Under H0, G2 has a χ2 distribution with a− 1 degrees of freedom. They are
equal to a− 1 because there are a− 1 free parameters (p1, p2, etc.) under H1

but none free under H0. Similarly, the X2 statistic can be generalized as

X2 =
a∑
i=1

(Oi − Ei)2

Ei
. (20.27)

This statistic also has a− 1 degrees of freedom under H0.

Goodness-of-fit test - sample calculation

We illustrate a goodness-of-fit test for a = 4 categories using the pea data,
testing H0 : p1 = 0.5625, p2 = 0.1875, p3 = 0.1875, and p4 = 0.0625. Table
20.3 presents the observed and expected frequencies, from which we can
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calculate G2. We have

G2 = 2
a∑
i=1

Oi ln(Oi/Ei) (20.28)

= 2[315 ln(315/312.75) + 101 ln(101/104.25) (20.29)

+ 108 ln(108/104.25) + 32 ln(32/34.75)] (20.30)

= 2[2.258− 3.199 + 3.817− 2.638] (20.31)

= 0.476. (20.32)

The degrees of freedom for the test are a− 1 = 4− 1 = 3. We next find the
P value from Table C and obtain a non-significant result (G2 = 0.476, df =
3, P < 0.95). The observed frequencies apparently agree with the Mendelian
ratios of 9:3:3:1.

We next conduct a chi-square (X2) test for these data. We have

X2 =
a∑
i=1

(Oi − Ei)2

Ei
(20.33)

=
(315− 312.75)2

312.75
+

(101− 104.25)2

104.25
(20.34)

+
(108− 104.25)2

104.25
+

(32− 34.75)2

34.75
(20.35)

= 0.016 + 0.101 + 0.135 + 0.218 (20.36)

= 0.470 (20.37)

We also obtain a non-significant result with this test (X2 = 0.470, df =
3, P < 0.95).

Goodness-of-fit test - SAS demo 2

The chi-square (X2) test for the Table 20.3 data can also be conducted in
SAS. A data set is first made using the observed frequencies, with proc freq

then used to carry out the test. The testp statement lists the probabilities
under H0 : p1 = 0.5625, p2 = 0.1875, p3 = 0.1875, and p4 = 0.0625. The
order of the probabilities matches the order of the phenotypes in the data
set. See SAS program and output below. An exact chi-square test is also
requested which may take SAS some period of time to calculate.

We see from the SAS output (Fig. 20.4) that the exact chi-square (X2)
test was non-significant (X2 = 0.470, df = 3, P = 0.9272). There is no
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evidence that the ratios of the phenotypes differ from the Mendelian 9:3:3:1
ratio.

SAS Program

* gof_peas.sas;

title ’Goodness-of-fit test for Mendel data’;

data peas;

input phenotype :\$12. obsfreq;

datalines;

round_yellow 315

round_green 101

wrink_yellow 108

wrink_green 32

;

run;

* Print data set;

proc print data=peas;

run;

* Goodness-of-fit test (Chi-square only);

proc freq data=peas order=data;

tables phenotype / testp=(0.5625 0.1875 0.1875 0.0625) chisq cellchi2 expected;

weight obsfreq;

* Compute exact test if frequencies low, takes too long for large data sets;

exact chisq;

run;

quit;

Figure 20.3: gof peas.sas - proc print
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Figure 20.4: gof peas.sas - proc freq
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20.1.2 Goodness-of-fit tests with estimated parame-
ters

Another common type of goodness-of-fit test compares the observed frequen-
cies with that expected for some theoretical distribution, such as the Pois-
son. We previously fitted a Poisson distribution to count data and compared
graphically the observed and expected frequencies (Chapter 5). We now
compare these frequencies using a goodness-of-fit test similar to previous ex-
amples. The null hypothesis in this case is that the observations are Poisson
in distribution, while the alternative is that some other distribution describes
them.

There are two additional considerations with these goodness-of-fit tests.
One is that the Poisson parameter λmust be estimated from the observations,
using the estimator λ̂ = Ȳ . This requires an adjustment to the degrees of
freedom for the test (Agresti 1990). In particular, one degree of freedom
is subtracted from the total for every parameter estimated. For the
Poisson distribution we have to estimate λ, and so the degrees of freedom are
a− 1− 1 = a− 2. A second consideration involves the expected frequencies
in the tests. The distributions of both G2 and X2 are approximately χ2

under H0, but this approximation works better if the expected frequencies
are not too small, although there is no universal rule on what constitutes
small (Agresti 1990). One commonly used but overly conservative
rule is Ei ≥ 5 - the expected frequencies must equal or exceed five
for all cells. We have not encountered this problem in previous examples
but it does occur with goodness-of-fit tests for the Poisson and other discrete
distributions. The solution is to combine adjacent cells in the table
until the expected frequencies equal or exceed five. The observed
frequencies are also combined to match the expected ones.

20.1.3 Corn borers - SAS demo

We will use a SAS program to automate most of the calculations for this
goodness-of-fit test. The test cannot be totally automated, however, because
the expected frequencies need to be manually combined at some point. Recall
the corn borers data and SAS program from Chapter 5. The program listed
below is similar, except that some additional quantities needed for the tests
are calculated in the second data step. In particular, the program calculates
the individual terms for the X2 and G2 tests, defined as the SAS variables
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cellchi2 and olnoe, and keeps a running total of these values in the variables
sumchi2 and sumlike. See Fig. 20.6 for the results of these calculations.

As before, define E1 to be the expected frequency for the first cell (y = 0),
E2 the expected frequency for the second cell (y = 1), and so forth. We see
that the expected frequency E8 = 3.2041 < 5, as are the remaining values.
We therefore add them together so that the combined expected frequency is
greater than five. We have

Ecombined = 3.204 + 1.268 + 0.446 (20.38)

+ 0.141 + 0.041 + 0.011 (20.39)

= 5.111. (20.40)

We also need to combine the observed frequencies for these cells, to obtain

Ocombined = 5 + 3 + 4 + 3 + 0 + 1 (20.41)

= 16. (20.42)

We then calculate an overall G2 statistic as follows. First, we calculate the
component of this test statistic for the combined cells, obtaining

Ocombined ln(Ocombined/Ecombined) = 16 ln(16/5.111) = 18.259. (20.43)

We then find the running total of these components (sumlike) prior to the
combined cells from the SAS output, which is 13.078. The overall test statis-
tic is therefore equal to

G2 = 2[13.078 + 18.259] = 62.674. (20.44)

There are a = 8 categories in the test, so the degrees of freedom are a− 2 =
8 − 2 = 6. Using Table C, we find that the test was highly significant
(G2 = 62.674, df = 6, P < 0.001). This result strongly suggests the obser-
vations do not have a Poisson distribution. Instead, they appear to have an
overdispersed pattern with an excess of zeros and large values relative to the
Poisson (Fig. 20.7).

We now calculate a chi-square (X2) goodness-of-fit test for these obser-
vations. We first calculate the component of this statistic for the combined
cells, obtaining

(Ocombined − Ecombined)2

Ecombined

=
(16− 5.111)2

5.111
= 23.199. (20.45)
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The running total of these components (sumchi2) prior to the combined cells
is 80.705, and so the overall test statistic is

X2 = 80.705 + 23.199 = 103.904. (20.46)

The degrees of freedom are a− 2 = 7− 2 = 6, the same as above. The test
was again highly significant (X2 = 103.904, df = 6, P < 0.001).

SAS Program

* Poisson_fit2_gof.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;
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* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

* Calculate test values for each cell;

cellchi2 = ((obsfreq - expfreq)**2)/expfreq;

sumchi2 + cellchi2;

olnoe = obsfreq*log(obsfreq/expfreq);

sumlike + olnoe;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 20.5: Poisson fit2 gof.sas - proc print

Figure 20.6: Poisson fit2 gof.sas - proc print



652 CHAPTER 20. METHODS FOR CATEGORICAL DATA

Figure 20.7: Poisson fit2 gof.sas - proc gplot
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20.2 Tests of independence

We now develop tests of independence for tables in which the observations are
classified in two different ways, known as two-way tables. The test statistics
are similar to previous likelihood ratio (G2) and chi-square (X2) goodness-
of-fit tests, and use the multinomial distribution to model the observations.
Because the null hypothesis is different for tests of independence, however,
the expected frequencies are calculated differently as are the degrees of free-
dom. Further details are provided in Agresti (1990).

We first examine how the expected frequencies are constructed for tests
of independence, but these calculations will require estimates of the proba-
bilities for certain events. Recall the Table 20.2 example where amphibians
were sampled and classified by species and infection status. What is the
overall probability of sampling species A, regardless of infection status? Let
the quantity p+1 stand for this probability, where the + symbol indicates
the overall probability combining infected and uninfected individuals while
‘1’ stands for the first column in Table 20.2, which is species A. We can es-
timate this probability by summing the number of infected and uninfected
individuals for species A and dividing by the sample size n. If we let O+1

stand for this sum, we have

p̂+1 =
O+1

n
=

25

150
= 0.167. (20.47)

This is just the column total for species A divided by the sample size n. We
can similarly calculate the probability of sampling species B, obtaining

p̂+2 =
O+2

n
=

50

150
= 0.333. (20.48)

For species C, we obtain p̂+3 = 0.233, while for species D we have p̂+4 = 0.267.
What about the overall probability of being infected, across all species?

Let the quantity p1+ stand for this probability, where ‘1’ stands for the first
row in Table 20.2, while + indicates the overall probability combining species
A through D. We can estimate this probability by summing the infected
individuals across all four species and dividing by the sample size n. If we
let O1+ stand for this sum, we obtain

p̂1+ =
O1+

n
=

61

150
= 0.407. (20.49)



654 CHAPTER 20. METHODS FOR CATEGORICAL DATA

This is just the row total of the infected amphibians divided by n. The
overall probability of not being infected, p2+, is estimated using the formula

p̂2+ =
O2+

n
=

89

150
= 0.593. (20.50)

We are now in a position to calculate the expected frequencies under the
null hypothesis of independence. If p11 is the probability of sampling an
individual of species A that is infected, then if species and infection status
are independent we can estimate this probability using

p̂11 = p̂1+p̂+1. (20.51)

The expected frequency for this cell, E11, would be n times this probability,
or

E11 = np̂11 (20.52)

= np̂1+p̂+1 (20.53)

= n
O1+

n

O+1

n
(20.54)

=
O1+O+1

n
. (20.55)

Thus, the expected frequency for this cell is the product of its column and
row totals divided by the sample size. Using the Table 20.2 data, we find
that

E11 =
61(25)

150
= 10.167. (20.56)

All other cells are calculated in a similar manner. For example, we have

E13 =
O1+O+3

n
=

61(35)

150
= 14.233. (20.57)

The remaining expected values are given in Table 20.2. The general formula
for any cell would be

Eij =
Oi+O+j

n
. (20.58)

This formula says that the expected value for any cell is the product
of the row and column totals for that cell, divided by the sample
size n.
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Now suppose a particular two-way table has r rows and c columns. The
likelihood ratio test statistic (G2) for a test of independence is given by the
general formula

G2 = 2
r∑
i=1

c∑
j=1

Oij ln(Oij/Eij). (20.59)

G2 has a χ2 distribution under H0 with (r−1)(c−1) degrees of freedom. The
explanation for the degrees of freedom is as follows (Agresti 1990). Under H1,
where the observations are not independent, the probability of an observation
falling into a particular cell could be anything. Thus, there are rc values of
pij that are free to vary except that they must sum to one, so there are rc−1
free parameters under H1. Under H0 there are r values of pi+ but only r− 1
free to vary because these probabilities also sum to one. Similarly, there
are c − 1 values of p+j free to vary. The difference in the number of free
parameters under H1 vs. H0 is the degrees of freedom for the test, similar to
goodness-of-fit tests. We therefore have

df = rc− 1− (r − 1)− (c− 1) = rc− r − c+ 1 = (r − 1)(c− 1). (20.60)

The chi-square (X2) statistic for a test of independence is given by the
general formula

X2 =
r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
. (20.61)

Under H0, X2 also has a χ2 distribution with (r−1)(c−1) degrees of freedom.

20.2.1 Test of independence - sample calculation

We illustrate these tests of independence using the Table 20.2 data, for which
the expected frequencies have already been calculated. For the likelihood
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ratio test, we have

G2 = 2
r∑
i=1

c∑
j=1

Oij ln(Oij/Eij) (20.62)

= 2[7 ln(7/10.167) + 12 ln(12/20.333) + 15 ln(15/14.233) (20.63)

+ 27 ln(27/16.267) + 18 ln(18/14.833) + 38 ln(38/29.667) (20.64)

+ 20 ln(20/20.767) + 13 ln(13/23.733)] (20.65)

= 2[−2.613− 6.328 + 0.787 + 13.681 (20.66)

+ 3.483 + 9.407− 0.753− 7.825] (20.67)

= 2[9.839] (20.68)

= 19.678. (20.69)

There are r = 2 rows and c = 4 columns in the table, so the degrees of
freedom are (r − 1)(c − 1) = (2 − 1)(4 − 1) = 3. From Table C, we see
that the test was highly significant (G2 = 19.678, df = 3, P < 0.001). This
provides some evidence that species and infection status are not independent.

For the chi-square (X2) version of this test, we have

X2 =
r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
(20.70)

=
(7− 10.167)2

10.167
+

(12− 20.333)2

20.333
+

(15− 14.233)2

14.233
(20.71)

+
(27− 16.267)2

16.267
+

(18− 14.833)2

14.833
+

(38− 29.667)2

29.667
(20.72)

+
(20− 20.767)2

20.767
+

(13− 23.733)2

23.733
(20.73)

= 0.987 + 3.415 + 0.041 + 7.082 + 0.676 + 2.341 (20.74)

+ 0.028 + 4.854 (20.75)

= 19.424. (20.76)

The test was also highly significant (X2 = 19.424, df = 3, P < 0.001), similar
to the likelihood ratio test.

20.2.2 Test of independence - SAS demo

We can carry out the same calculations using SAS and proc freq (SAS Insti-
tute Inc. 2016). See program below. A two-way table of infection status and
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species is requested using the command tables infected*species. Likelihood
ratio (G2) and chi-square (X2) tests are then requested using the chisq op-
tion. Because sample sizes are relatively small in this example, we can also
request an exact version of both tests using the exact chisq option.

The option out=percents outpct requests an output data file called percents

that contains various percentages, including the column percents from the
two-way table. This file is used by proc gchart to generate a vertical bar
chart with species on the x-axis (SAS Institute Inc. 2018). The percentage
of infected and uninfected amphibians shown within each bar are generated
using the option subgroup=infected.

Examining the SAS output in Fig. 20.9, we see that both tests were
highly significant (G2 = 19.618, df = 3, P = 0.0002;X2 = 19.425, df =
3, P = 0.0002). The exact tests gave similar results in this case. The graph
generated by proc gchart suggests that the infection rate is low for species A
and B, intermediate for species C, and highest for species D (Fig. 20.10).
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SAS Program

* chytrid.sas;

title "Tests of independence - species vs. infection";

data chytrid;

input species $ infected $ obsfreq;

datalines;

A yes 7

A no 18

B yes 12

B no 38

C yes 15

C no 20

D yes 27

D no 13

;

run;

* Print data set;

proc print data=chytrid;

run;

* Tests of independence;

proc freq data=chytrid order=data;

tables infected*species / chisq cellchi2 expected out=percents outpct;

weight obsfreq;

* Can compute an exact test if frequencies are low;

* Not recommended for large data sets;

exact chisq;

run;

* Print output data file containing percents;

proc print data=percents;

run;

* Generate bar chart showing percentages;

proc gchart data=percents;

vbar species / sumvar=pct_col subgroup=infected width=10 woutline=3

raxis=axis1 maxis=axis2 legend=legend1;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

axis2 label=(height=2) value=(height=2) width=3;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 20.8: chytrid.sas - proc print
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Figure 20.9: chytrid.sas - proc freq
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Figure 20.10: chytrid.sas - gchart
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20.2.3 Test of independence - SAS demo 2

Ecologists often study the age structure of plant or animal populations, be-
cause this can provide clues about their birth and death rates. For example,
a population with a higher proportion of young individuals could indicate
the population is increasing through higher birth rates. Suppose that an
ecologist wants to compare the age structure of three different populations of
a bird species. One hundred individuals from each population are sampled
and classified by age. There are five age classes, beginning with the nestlings
(age 0) and individuals 1, 2, 3, or 4+ years old. See Table 20.4 for the results.

Table 20.4: Observed frequencies of age 0, 1, 2, 3, and 4 year old individuals
for three different populations.

Population
Age class 1 2 3

∑
0 36 48 60 144
1 22 24 21 67
2 18 14 12 44
3 13 10 12 28
4 11 4 2 17∑

100 100 100 300

These data were obtained using a sampling scheme that selected 100 indi-
viduals for each population, so that the column totals are fixed at 100 while
the row totals are free to vary. This differs from the previous example (Ta-
ble 20.2), where amphibians in general were sampled and the number of each
species was a random quantity. It turns out the multinomial distribution can
be used to describe both sampling methods, and the tests for independence
are the same (Agresti 1990).

We will conduct tests of independence for these data using SAS and
proc freq (see program below). As before, we will conduct both the likelihood
ratio (G2) and chi-square (X2) tests. One difference in this program is that
the option for exact tests is turned off, because they are quite time consuming
(and unnecessary) for large data sets. An output file is used by proc gchart

to generate a vertical bar chart with pop on the x-axis, with the divisions
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within each bar the percentages of each age group. These were generated
using the option subgroup=age.

The likelihood ratio test of independence was significant (G2 = 18.920, df =
8, P = 0.0153) as was the chi-square test (X2 = 18.864, df = 8, P = 0.0156)
(see Fig. 20.13). Examining the bar chart, we see that the percentage of
younger individuals was lowest for population 1 and highest for population 3
(Fig. 20.14). One possible explanation is that population 3 has the highest
birth rate while population 1 has the lowest.
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SAS Program

* age_structure.sas;

title "Tests of independence - age structure";

data age;

input pop $ age $ obsfreq;

datalines;

1 0 36

1 1 22

1 2 18

1 3 13

1 4 11

2 0 48

2 1 24

2 2 14

2 3 10

2 4 4

3 0 60

3 1 21

3 2 12

3 3 5

3 4 2

;

run;

* Print data set;

proc print data=age;

run;

* Tests of independence;

proc freq data=age order=data;

tables age*pop / chisq cellchi2 expected out=percents outpct;

weight obsfreq;

* Can compute an exact test if frequencies are low;

* Not recommended for large data sets;

*exact chisq;

run;

* Print output data file containing percents;

proc print data=percents;

run;

* Generate bar chart showing percentages;

proc gchart data=percents;

vbar pop / sumvar=pct_col subgroup=age width=10 woutline=3

raxis=axis1 maxis=axis2 legend=legend1;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

axis2 label=(height=2) value=(height=2) width=3;

legend1 label=(height=2) value=(height=2);
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run;

quit;

Figure 20.11: age structure.sas - proc print
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Figure 20.12: age structure.sas - proc freq
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Figure 20.13: age structure.sas - proc freq

Figure 20.14: age structure.sas - proc gchart
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20.4 Problems

1. An ecologist wants to characterize the spatial distribution of an uncom-
mon plant species in the forest. One hundred quadrats are established
and the number of plants counted in each quadrat. The following data
were obtained:

Plants Frequency
0 42
1 23
2 12
3 8
4 4
5 3
6 3
7 2
8 1
9 1
10 0
11 0
12 0

Test whether these data have a Poisson distribution, using both likeli-
hood ratio (G2) andX2 (χ2) tests, using the program Poisson_fit2_gof.sas

to help with the calculations. Discuss your results. Do the data appear
to be Poisson, overdispersed, or underdispersed?
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2. Some species of snakes can imitate a rattlesnake and thereby avoid
being eaten by predators, a phenomenon known as Batesian mimicry.
Individuals of one such species were randomly selected from locations
where rattlesnakes were absent, at moderate density, and at high den-
sity. Each snake was then scored for whether or not it imitated a
rattlesnake when disturbed. The following results were obtained.

Rattlesnake density
Imitated a rattlesnake? Absent Moderate High
Yes 65 76 82
No 35 24 18

(a) Test if imitation of a rattlesnake is independent of rattlesnake
density using a manual likelihood ratio (G2) test. Show your cal-
culations.

(b) Test if imitation of a rattlesnake is independent of rattlesnake
density using a manual X2(χ2) test. Show your calculations.

(c) Check your above answers by having SAS carry out the same two
tests.

(d) Interpret the results of your tests. Does the frequency of rat-
tlesnake imitation vary significantly with the density of rattlesnakes,
and if so what is the pattern?


