
Chapter 7

Expected Value, Variance, and
Samples

7.1 Expected value and variance

Previously, we determined the expected value and variance for a random
variable Y , which we can think of as a single observation from a distribution.
We will now extend these concepts to a linear function of Y and also the
sum of n random variables. We will use these results to derive the expected
value and variance of the sample mean Ȳ and variance s2, and so describe
their basic statistical properties. The idea of an unbiased estimator is also
expressed in terms of expected values, and we will show that Ȳ and s2 are
unbiased estimators of the theoretical mean and variance of Y , i.e., E[Y ] and
V ar[Y ]. This is true regardless of the distribution of Y .

We begin by reviewing the definition of expected value and variance.
Recall that if Y has a discrete distribution, the expected value (theoretical
mean) of Y , or E[Y ], is given by the equation

E[Y ] =
∑
y

yP [Y = y] =
∑
y

yf(y). (7.1)

Here f(y) is the probability distribution of Y , with the summation is taken
over all possible values of y. If Y has a continuous distribution, the expected
value is defined as the integral

E[Y ] =

∫ ∞
−∞

yf(y)dy, (7.2)
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where f(y) is the probability density of Y . For both discrete and continuous
random variables, the expected value is essentially a weighted average of all
possible values of Y , with the weights being probabilities or densities.

We also defined the theoretical variance of a random variable using expec-
tation. The variance of a random variable Y , denoted by V ar[Y ], is defined
as

V ar[Y ] = E[(Y − E[Y ])2] =
∑
y

(y − E[Y ])2P [Y = y] (7.3)

=
∑
y

(y − E[Y ])2f(y). (7.4)

The variance is a measure of the dispersion of the distribution of Y . The
variance of a continuous random variable Y is similarly defined as

V ar[Y ] = E[(Y − E[Y ])2] =

∫ ∞
−∞

(y − E[Y ])2f(y)dy. (7.5)

Table 7.1 summarizes the expected value and variance for the different
distributions we have examined so far. These quantities are a function of the
parameters in the distribution. Note that for the binomial, Poisson, negative
binomial and uniform distributions, there is some relationship between E[Y ]
and V ar[Y ], because the formulas share the same parameters. For example,
in the Poisson distribution the theoretical mean and variance are both equal
to λ. This is not the case for the normal distribution, where the mean and
variance are two separate parameters.

Table 7.1: Expected value and variance for five common probability distri-
butions

Distribution Parameters E[Y ] V ar[Y ]
Binomial l, p lp lp(1− p)
Poisson λ λ λ

Negative binomial m, k m m+m2/k

Uniform a, b a+b
2

(b−a)2

12

Normal µ, σ2 µ σ2

The significance of this result is that many statistical procedures assume
the mean and variance are unrelated, because they are based on the normal
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distribution. If we wish to apply these procedures to other distributions, we
will need to transform the observations to reduce the relationship between
the mean and variance. This type of transformation is known as a variance-
stabilizing transformation (see Chapter 15).

7.2 Linear functions and sums - expected value

and variance

Before we turn to samples, we first need to determine the expected value of
a linear function of Y . Let Y be a random variable with any distribution,
and define a new variable Y ′ = aY + b, where a and b are constants. This
is called a linear function of Y because there is a straight-line relationship
between Y ′ and Y . What is the expected value of Y ′, or E[Y ′]? It can be
shown that

E[Y ′] = E[aY + b] = aE[Y ] + b. (7.6)

Thus, multiplying a random variable by a constant and then adding another
constant just shifts the theoretical mean in the same way (Mood et al. 1974).
This result holds for random variables with either a discrete or continuous
distribution.

Now suppose we have n random variables of any type, Y1, Y2, . . . , Yn,
which may or may not be independent. The random variables could also
have unequal means and variances, and even different distributions. What is
the expected value of the sum of these variables? One can show that

E[Y1 + Y2 + . . .+ Yn] = E[Y1] + E[Y2] + . . .+ E[Yn] =
∑

E[Yi]. (7.7)

So, the expected value of a sum is equal to the sum of the expected
values (Mood et al. 1974).

We will now examine how the theoretical variance is affected by a linear
function. Let Y be a variable with any distribution with an associated vari-
ance of V ar[Y ]. Define a new random variable Y ′ = aY + b, where a and b
are constants. What is the variance of Y ′, or V ar[Y ′]? It can be shown that

V ar[Y ′] = V ar[aY + b] = a2V ar[Y ]. (7.8)

This implies that a linear function of a random variable increases its variance
by a factor of a2, with b playing no role in the variance. This makes intuitive
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sense, because multiplying a random variable by a constant (a) should affect
its breadth or dispersion, while adding a constant (b) only shifts its location
and not its dispersion.

Now suppose we have n random variables of any type, Y1, Y2, . . . , Yn. The
random variables can have unequal means and variances, but we will assume
they are independent. What is the variance of the sum of these observations?
It can be shown that

V ar[Y1 + Y2 + . . .+ Yn] = V ar[Y1] + V ar[Y2] + . . .+ V ar[Yn] =
∑

V ar[Yi].

(7.9)
Thus, the variance of a sum is equal to the sum of the variances
(Mood et al. 1974). As you add more and more random variables together,
the variance of the sum also increases. This result only holds when the
random variables are independent of each other – if they were dependent a
much more complicated formula would be required. This is one advantage of
working with a random sample in which the observations are independent,
because it simplifies parameter estimation and other statistical procedures
(see Chapter 8).

7.3 Sample mean - expected value and vari-

ance

We will now use the preceding results to find the expected value and variance
of the sample mean. Suppose we have a set of observations Y1, Y2, . . . , Yn
drawn from some statistical population, say the body lengths of n randomly
selected individuals. The random variables Yi are independent, and because
they are drawn from the same population, they also have the same expected
value E[Yi] and variance V ar[Yi].

The sample mean is defined using the familiar formula:

Ȳ =

∑n
i=1 Yi
n

. (7.10)

What is the expected value of the sample mean or Ȳ ? Using our results for
sums of variables and linear transformations, we have

E[Ȳ ] = E

[∑
Yi
n

]
=
E[
∑
Yi]

n
=

∑
E[Yi]

n
=
nE[Yi]

n
= E[Yi]. (7.11)
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The expected value of the mean is thus equal to the expected value of the
individual variables (Mood et al. 1974).

The fact that E[Ȳ ] = E[Yi] means that Ȳ is an unbiased estimator
of the theoretical mean of the distribution of Yi. In less technical terms, it
implies that on average Ȳ will be equal to the underlying mean of the random
variable Yi. This is often a desirable property in an estimator, although there
are useful biased estimators as well.

We also need to calculate the theoretical variance of the sample mean,
written as V ar[Ȳ ]. Using the properties of the expected value and variance,
we have

V ar[Ȳ ] = V ar

[∑
Yi
n

]
=
V ar[

∑
Yi]

n2
=

∑
V ar[Yi]

n2
=
nV ar[Yi]

n2
=
V ar[Yi]

n
.

(7.12)
Thus, the variance of the sample mean is the variance of Yi divided by n
(Mood et al. 1974).

What does this result imply? As you collect larger and larger sam-
ples, the variance of the sample mean Ȳ becomes smaller. In other
words, Ȳ becomes less variable when it includes more data. This result
underlies many of the desirable effects of larger sample sizes in statistics,
including better estimates of parameters (Chapter 8), smaller confidence in-
tervals (Chapter 9), and statistical tests with more power (Chapter 10).

The standard deviation of the sample mean Ȳ is defined to be the square
root of the above quantity:√

V ar[Ȳ ] =

√
V ar[Yi]

n
=

√
V ar[Yi]√
n

. (7.13)

This formula makes it clear that the standard deviation of the mean is a
function of the standard deviation of the individual observations and the
sample size used in the mean. The common name for this quantity is the
standard error. In general, a standard error is the standard deviation of a
particular statistic, in this case the sample mean Ȳ .

7.4 Sample variance - expected value

Recall that the sample variance is defined using the formula

s2 =

∑n
i=1(Yi − Ȳ )2

n− 1
. (7.14)
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It can be shown that E[s2] = V ar[Yi], implying that the sample variance is
an unbiased estimator of the underlying variance of Yi.

It is important to note that all our results for the sample mean Ȳ and
variance s2 hold true for any distribution, not just the normal distribution.
The basic requirement is that the observations Y1, Y2, . . ., Yn are randomly
drawn from some statistical population, implying they are independent and
have the same expected value E[Yi] and variance V ar[Yi].

7.5 Sample calculations and simulation - SAS

demo

As an example of these rules of expectation and variance, suppose that Y
has a normal distribution with mean µ = 1 and variance σ2 = 1, namely
Y ∼ N(1, 1). Suppose we want to find the expected value and variance
of Y ′ = 2Y + 1. Note that Y ′ is a linear function of Y with a = 2 and
b = 1. Using the formulas for the expected value and variance of a linear
function, we have E[Y ′] = aE[Y ] + b = 2E[Y ] + 1 = 2(1) + 1 = 3, and also
V ar[Y ′] = a2V ar[Y ] = 22V ar[Y ] = 4(1) = 4.

Now suppose we have three variables Y1, Y2, and Y3 with the same dis-
tribution as above, and assumed to be independent. What is the expected
value and variance of the sum of these two variables, Y1 + Y2 + Y3? Us-
ing the formulas for sums of random variables, we have E[Y1 + Y2 + Y3] =
E[Y1] + E[Y2] + E[Y3] = 1 + 1 + 1 = 3, and V ar[Y1 + Y2 + Y3] = V ar[Y1] +
V ar[Y2] + V ar[Y3] = 1 + 1 + 1 = 3.

We can also calculate the expected value and variance of the sample mean
Ȳ for Y1, Y2, and Y3. Using the preceding results, we have E[Ȳ ] = E[Yi] = 1,
and V ar[Ȳ ] = V ar[Yi]/n = 1/3.

We can verify that these theoretical rules for the expected value and
variance have some basis in reality by conducting an experiment. Recall
that the expected value for a random variable can also be thought of as
the sample mean Ȳ for an infinite number of observations of that random
variable. Similarly, its theoretical variance is the sample variance s2 of an
infinite number of observations. It is easy to generate a very large number
of observations using SAS, and then compare the result predicted by these
theoretical rules with the sample mean and variance of the observations.
The SAS program listed below first generates 1,000 observations having the
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Table 7.2: Expected value and variance
Theory Simulation

Variable E[·] V ar[·] Ȳ s2

Y 1 1 1.032 0.980
Y ′ 3 4 3.063 3.919

Y1 + Y2 + Y3 3 3 3.052 3.069
Ȳ 1 1/3 1.017 0.341
s2 1 - 1.001 -

specified distribution [Y, Yi ∼ N(1, 1)] in a data step. Formulas are then used
to calculate Y ′, Y1 + Y2 + Y3, Ȳ , and s2. The SAS procedure proc univariate

is then used to calculate the sample mean and variance of these quantities.
See SAS output below.

If the theory involving expected values and variances is correct, it should
predict the behavior of the mean and variance in this large sample. A com-
parison between the results predicted using our expected value formulas and
the observed simulation results is given in Table 7.2. The theoretical predic-
tions and sample mean and variance are in close agreement.

Notice also from the SAS output that the distributions of Y ′, Y1 +Y2 +Y3,
and Ȳ appear to be normally distributed (see Fig. 7.8 - 7.10). In fact,
linear functions and sums of normal random variables are always normally
distributed, as is the sample mean. This may not be the case for variables
with other distributions. We also see that the variance of Ȳ is lower than Y
(1/3 vs. 1), an important property of this statistic (see Fig. 7.8 vs. 7.10).
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SAS Program

* Linear.sas;

title ’Demonstration of expected value and variance rules’;

data linear;

* Loop to generate 1000 random observations;

do i = 1 to 1000;

a = 2;

b = 1;

* Generate y, y1, y2, y3 with N(1,1) distribution;

mu = 1; sig2 = 1;

y = sqrt(sig2)*rannor(0) + mu;

y1 = sqrt(sig2)*rannor(0) + mu;

y2 = sqrt(sig2)*rannor(0) + mu;

y3 = sqrt(sig2)*rannor(0) + mu;

* Calculate a linear function of y, then sum, mean, and s2;

yprime = a*y + b;

ysum = y1 + y2 + y3;

ybar = ysum/3;

s2 = ((y1-ybar)**2+(y2-ybar)**2+(y3-ybar)**2)/(3-1);

output;

end;

run;

* Print simulated data, first 25 observations;

proc print data=linear(obs=25);

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=linear;

var y yprime ysum ybar s2;

histogram y yprime ysum ybar s2 / vscale=count normal midpoints=-6 to 12 by 0.5;

qqplot y yprime ysum ybar s2 / normal;

run;

quit;
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etc.

Figure 7.1: linear.sas - proc print

Figure 7.2: linear.sas - proc univariate
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Figure 7.3: linear.sas - proc univariate

Figure 7.4: linear.sas - proc univariate
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Figure 7.5: linear.sas - proc univariate

Figure 7.6: linear.sas - proc univariate
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Figure 7.7: linear.sas - proc univariate

Figure 7.8: linear.sas - proc univariate
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Figure 7.9: linear.sas - proc univariate

Figure 7.10: linear.sas - proc univariate
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7.6 Central limit theorem

Suppose we randomly draw a sample Y1, Y2, . . . , Yn of size n from some sta-
tistical population. In this situation, the observations are independent and
have a common expected value E[Yi] and variance V ar[Yi]. They may have
any probability distribution, known or unknown.

The central limit theorem states that the distribution of the sample
mean of these random variables, namely Ȳ , approaches a normal distribution
with mean E[Yi] and variance V ar[Yi]/n as the sample size n becomes large
(Mood et al. 1974). In particular, we have Ȳ ∼ N(E[Yi], V ar[Yi]/n) for large
n. The central limit theorem also holds for sums of random variables, and
in this case we have

∑
Yi ∼ N(nE[Yi], nV ar[Yi]) for large n. These results

are true for any probability distribution - Ȳ and
∑
Yi will have a

normal distribution for large sample sizes. Note also that the variance
of Ȳ decreases as the sample size n increases. We would also expect this
from our earlier results concerning the variance of Ȳ .

7.6.1 Central limit theorem - SAS demo

The operation of the central limit theorem can be demonstrated in a simple
experiment using a SAS program (see below). The program models Y as a
Poisson random variable with λ = 1, implying E[Yi] = 1 and V ar[Yi] = 1.
Sample means are then generated for different sample sizes, ranging from
n = 1 to n = 50, in a SAS data step. A total of 1,000 sample means are
generated for each value of n in the simulation. The program then used
proc univariate to calculate summary statistics for these data, as well as
histograms and normal quantile plots (not shown). See SAS output below.

Examining the histograms, we see that as n increases the distribution of
Ȳ approaches the normal distribution. A sample size of n = 50 appears suffi-
cient to produce a distribution almost indistinguishable from normal. What
is especially interesting here is that fact that the Poisson is a discrete ran-
dom variable, yet the distribution of Ȳ approaches the normal distribution,
a continuous random variable.

We also observe that the variance of Ȳ decreases as the sample size n
increases, as predicted by the central limit theorem and our earlier results
on the variance of Ȳ . See Table 7.3.



7.6. CENTRAL LIMIT THEOREM 191

Table 7.3: Mean and variance of Ȳ
Theory Simulation

n E[Yi] V ar[Yi]/n Mean of Ȳ Variance of Ȳ
1 1.000 1.000 0.993 1.036
5 1.000 0.200 0.994 0.213
10 1.000 0.100 1.001 0.111
50 1.000 0.020 0.995 0.019

SAS Program

* central_limit_theorem.sas;

title ’Demonstration of central limit theorem in action’;

data cntrlmt;

* Loop to generate 1000 random observations;

do i = 1 to 1000;

* A single Poisson observations with lambda = 1;

y1 = ranpoi(0,1);

* Mean of 5 Poisson observations;

y5 = 0;

do j = 1 to 5;

y5 = y5 + ranpoi(0,1);

end;

y5 = y5/5;

* Mean of 10 Poisson observations;

y10 = 0;

do j = 1 to 10;

y10 = y10 + ranpoi(0,1);

end;

y10 = y10/10;

* Mean of 50 Poisson observations;

y50 = 0;

do j = 1 to 50;

y50 = y50 + ranpoi(0,1);

end;

y50 = y50/50;

* Mean of 100 Poisson observations;

output;

end;

drop i j;

run;

* Print simulated data (first 25 observations);

proc print data=cntrlmt(obs=25);
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run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=cntrlmt;

var y1 y5 y10 y50;

histogram y1 y5 y10 y50 / vscale=count normal

qqplot y1 y5 y10 y50 / normal;

symbol1 h=3;

run;

quit;

etc.

Figure 7.11: central limit theorem.sas - proc print
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Figure 7.12: central limit theorem.sas - proc univariate

Figure 7.13: central limit theorem.sas - proc univariate
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Figure 7.14: central limit theorem.sas - proc univariate

Figure 7.15: central limit theorem.sas - proc univariate
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Figure 7.16: central limit theorem.sas - proc univariate

Figure 7.17: central limit theorem.sas - proc univariate
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Figure 7.18: central limit theorem.sas - proc univariate

Figure 7.19: central limit theorem.sas - proc univariate
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7.7 Applications of the central limit theorem

The central limit theorem provides a potential explanation why so many bio-
logical variables like the length of an organism and other continuous variables
are apparently normal in distribution. These variables are often under the
control of multiple genes and environmental factors that can behave like sums
and means of random variables, and so their combined effect should gener-
ate a normal distribution of outcomes by the central limit theorem (Hartl &
Clark 1989).

The theorem also applies to measurements of ecological variables like
population density. To estimate population density, we often average the
results of several quadrats (or whatever sampling units) to yield a single
number for a given location. By the central limit theorem, these average
densities will have a normal distribution for sufficiently large n.

Most of the statistical methods we will study are based on the assumption
that the observations in a study or experiment have a normal distribution.
This would seem a risky assumption, since many natural processes yield ran-
dom variables that are not strictly normal, some examples being count data
that are better modeled using the binomial and Poisson distributions. How-
ever, the tests themselves are often based on means that are assumed to have
a normal distribution. The central limit theorem guarantees these means are
normal provided sample sizes are sufficiently large. Thus, statistical tests
based on normality should be valid for non-normal data given large enough
sample sizes (see Stewart-Oaten 1995 for further discussion).

The central limit may not be sufficient to guarantee normality for smaller
sample sizes, and so other approaches may be needed. One possibility would
be a transformation of the observations to make their distribution closer
to normal (Chapter 15). If that fails, there are nonparametric statistical
procedures (Chapter 16) that are valid for any distribution, as well as ones
that allow the use of other probability distributions.
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7.9 Problems

1. Let Y1, Y2, and Y3 be three independent random variables with E[Yi] =
2 and V ar[Yi] = 1. Using the rules for expected value and variance,
calculate the expected value and variance of the following quantities:

(a) 3Y1 + 1.

(b) Y1 + Y2 + Y3.

(c) (Y1 + Y2 + Y3)/3.

2. Suppose that Y1, Y2, and Y3 are three independent random variables,
with E[Yi] = 3 and V ar[Yi] = 2. Using the rules for expected value
and variance, calculate the expected value and variance of the following
quantities:

(a) 0.5Y2 + 2.

(b) (Y1 + Y2 + Y3)/3.

(c) 2(Y1 + Y2) + 3.

3. The exponential distribution is often used to model the time until an
event happens, such as the radioactive decay of an atom or mortal-
ity processes in population models. The probability density for the
exponential distribution is defined as

f(y) =
e−y/λ

λ
(7.15)

for y ≥ 0. The distribution has one parameter, λ, which is the mean
decay time (E[Y ] = λ). A single random observation with an ex-
ponential distribution can be generated in SAS using the expression
ranexp(0)*lambda. Modify the program central_limit.sas so that is gen-
erates exponential observations instead of Poisson ones, using λ = 2.
Discuss how the distribution of Ȳ changes as the sample size increases.
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