
Chapter 3

Populations and Statistics

This chapter covers two topics that are fundamental in statistics. The first
is the concept of a statistical population, which is the basic unit on which
statistics are conducted and inferences made. We then examine descriptive
statistics and frequency distributions, which are used quantify the properties
of samples from a statistical population.

3.1 Statistical populations

Suppose we want to estimate the body length of an insect species in a partic-
ular location, say a forest stand. We sample the insects in some way (traps,
sweep nets, locate them visually, etc.), and average their lengths to obtain an
estimate of insect length. We can therefore make some inference about insect
lengths in this particular forest stand, which we can call a statistical pop-
ulation. A statistical population is defined by both the question of interest
(insect length) as well as the sampling method. If we sample insects in only a
single forest stand, then the statistical population is length in that stand, not
other stands. This is commonly called the scope of inference of the study.
If we sampled within multiple stands in a forest, then we could potentially
examine length for the forest as whole, which would be a different statisti-
cal population and the scope of inference would be broader. The sampling
technique itself can also affect the statistical population. For example, only
a subset of insects might be caught with sweep nets (maybe slower, smaller
ones) and this would be a different set than those found visually. The two
sampling techniques might therefore define different statistical populations.
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Biologists are continually searching for better methods of sampling organ-
isms, ones that better represent their true properties. In many cases the
idea is to approximate what is known as random sample of the statistical
population (see Chapter 8).

In the insect length example above, the statistical population coincides
with individual insects in a location. However, the observations compris-
ing a statistical population can be other quantities. For example, suppose
we want to estimate the abundance of these insects using traps. We could
deploy several traps in the stand, and then average the number of insects
caught to estimate their abundance. The statistical population in this case
would consist of number of insects caught in traps deployed at that location,
rather than individual insects. Or one might be interested in soil nitrogen
levels in the stand, estimated using core samples. In this case, the statistical
population would be the nitrogen levels in core samples at this location.

Another type of statistical population involves experiments. Suppose
we are interested in trapping the same insects in the forest stand, but now
have traps baited with different attractants, say A, B, and C. Several traps
are baited with each attractant, and the number of insects caught observed
for each trap. We are interested in whether the number of insects caught
varies with the attractant used. In this case, the statistical population would
be trap catches for the different attractants. Similarly, suppose we were
interested in the effect of different commercial diets on the growth rate of fish.
Different fish would be fed the various diets and their growth rate observed.
Here the statistical population would be the growth rate of individual fish
for the different diets. Experiments also have a scope of inference. If we use
four particular diets to grow fish, our conclusions are restricted to these four
diets and not other diets. If the experiment used a particular strain of fish,
our inferences would also be restricted to this strain.

3.2 Descriptive statistics and frequency

Given a sample from a statistical population, the first step in understand-
ing its properties is to calculate a number of descriptive statistics. Some
statistics give you an idea of the overall magnitude or location of the data,
and are traditionally called statistics of location. We will examine two
such statistics, the sample mean and the median. Other statistics give an
indication of the scatter or spread of the data, and are called statistics of
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dispersion. These include the sample variance, standard deviation, the co-
efficient of variation, and range of the data. Another important tool is the
frequency distribution of the sample, often plotted as a histogram indi-
cating the frequency of different values in the sample. Three other statistics,
the mode, skewness, and kurtosis, provide information on the shape of this
frequency distribution.

To illustrate how the various descriptive statistics are calculated, we will
use a small subset of a larger data set on the elytra length for a predatory
beetle, Thanasimus dubius (Coleoptera: Cleridae). This predator attacks
insects known as bark beetles, some species of which are serious pests of
coniferous forests (Berryman 1988). Beetles have two pairs of wings. The
first pair, the elytra, act as covers for a membraneous second pair that are
used in flight. The data are drawn from a rearing study of T. dubius, in
which elytra length (mm) was used as a overall index of body size (Reeve
et al. 2003). The subset data are for eight female T. dubius and are listed
below:

5.2 4.2 5.7 5.4 4.0 4.5 5.2 4.2

We will later examine the full data set consisting of 130 individuals using
SAS programs.

3.2.1 Sample mean

The sample mean is the average of the values in the sample, and is symbolized
as Ȳ . It is commonly used as a measure of the location or center of the
observations. If Y1, Y2, . . . , Yn represent the observations in a sample from
a statistical population, where n is the sample size, the sample mean is
calculated using the formula

Ȳ =
Y1 + Y2 + . . .+ Yn

n
=

∑n
i=1 Yi
n

. (3.1)

The symbol
∑n

i=1 stands for summing the observations, beginning with i = 1
and ending with i = n. The units of Ȳ are the same as those for the Yi values.

For our sample data set involving n = 8 elytra from female T. dubius
beetles, we have

Ȳ =
5.2 + 4.2 + 5.7 + 5.4 + 4.0 + 4.5 + 5.2 + 4.2

8
=

38.4

8
= 4.8 mm. (3.2)
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3.2.2 Median

The median is defined as the middle value of the sample, after ordering the
sample from the smallest to the largest value. Suppose that Y[j] is the jth
value in the ordered data set, with Y[1] the smallest value and Y[n] the largest.
If n is odd, the median is equal to the middle value in the ordered data set,
or Y[n/2+1/2]. If n is even then the median is the average of the two middle
values, or (Y[n/2] + Y[n/2+1])/2.

To find the median for the elytra data set, we first order the observations
from smallest to largest. We have

j (order): 1 2 3 4 5 6 7 8
Y[j]: 4.0 4.2 4.2 4.5 5.2 5.2 5.4 5.7

Because n = 8 is even, the median is the average of the middle two ob-
servations, or (Y[n/2] + Y[n/2+1])/2 = (Y[8/2] + Y[8/2+1])/2 = (Y[4] + Y[5])/2 =
(4.5 + 5.2)/2 = 4.85.

Suppose now we had only n = 7 observations, with the ordered data set
equal to

j (order): 1 2 3 4 5 6 7
Y[j]: 4.0 4.2 4.2 4.5 5.2 5.2 5.4

Because n = 7 is odd, the median is the middle observation, or Y[n/2+1/2] =
Y[7/2+1/2] = Y[4] = 4.5 mm.

The median is also a measure of the location of the data, like the sample
mean Ȳ , but is less sensitive to very large or small values in the sample. For
example, suppose that the largest observation in the elytra data set was 100.0.
The median would be unchanged because the ordering of the observations is
unchanged, but now Ȳ = 16.8 mm, much larger than before.

The median represents a value that essentially divides the data in half,
with 50% of the observations lying above or below it. This is an example of a
statistic generically called quantiles or percentiles, with the median a 50%
quantile. Other commonly used quantiles are the 25% and 75% quantiles.
They and the median are sometime called quartiles because they divide the
data into four quarters.
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3.2.3 Sample variance

The sample variance, written as s2, is a measure of the dispersion or scatter
in the data around the sample mean. It is calculated using the formula

s2 =

∑n
i=1(Yi − Ȳ )2

n− 1
(3.3)

The sample variance s2 will be small if the observations cluster tightly around
Ȳ , because this makes (Yi − Ȳ )2 small. Conversely, if the observations are
widely scattered these terms will be large, making s2 large. The units of s2

are those of Yi, but squared.
To find s2 for the elytra data set, we first need to calculate the sample

mean. We previously found that Ȳ = 4.8 mm. We then calculate s2 using
the above formula. We have

s2 =
(5.2− 4.8)2 + (4.2− 4.8)2 + . . .+ (4.2− 4.8)2

8− 1
(3.4)

=
0.16 + 0.36 + 0.81 + 0.36 + 0.64 + 0.09 + 0.16 + 0.36

7
(3.5)

=
2.94

7
= 0.42 mm2. (3.6)

3.2.4 Standard deviation

The sample standard deviation, written as s, is simply the square root of s2.
We have

s =
√
s2 (3.7)

For the elytra example, we have s =
√
s2 =

√
0.42 = 0.645 mm. The units of

s are the same as those of Yi, which makes it more comparable to statistics
of location like Ȳ .

3.2.5 Coefficient of variation

The coefficient of variation, or CV , provides a measure of the variability
of the observations expressed as a percentage of the sample mean. It is
calculated using the formula

CV = 100%× s

Ȳ
. (3.8)
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Using the elytra data where s = 0.645 mm and Ȳ = 4.8 mm, we have

CV = 100%× 0.645

4.8
= 13.4% (3.9)

The CV allows one to compare the variability of observations on variables
that have different means. For example, suppose that we want to compare
variability in T. dubius elytra length with variability in another predator that
has a longer overall length. For biological variables like length, the standard
deviation s often seems proportional to the sample mean Ȳ . If we divide s
by Ȳ , as in the CV, we can control to some extent the influence of Ȳ on
variability. This allows us to compare variability in length across the two
predators on a more even basis.

3.2.6 Range

The range is defined as the difference between the largest and smallest ob-
servations, i.e.,

range = Ymax − Ymin, (3.10)

where Ymax is the largest observation and Ymin is the smallest. For the
elytra data, we have Ymax = 5.7 and Ymin = 4.0, so

range = 5.7− 4.0 = 1.7 mm. (3.11)

The range is another statistic of dispersion, but has some problems. The
range tends to increase in size as the sample size n increases, because larger
samples are more likely to yield very small or large observations. This is not
the case for s2 or s.

3.2.7 Frequency distributions - SAS demo

Frequency distributions are another way of summarizing and describing a
sample from a statistical population. They typically take the form of a
histogram showing the frequency of different observations in the sample.
We will use SAS to construct frequency distributions as well as calculate
descriptive statistics like Ȳ , s2, and so forth. We will use the full elytra
data set for T. dubius (Reeve et al. 2003) to illustrate these calculations (see
Chapter 22). This data set contains both male and female beetles, and we
will conduct separate analyses for each sex.
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The program first uses a data step to read in the observations and make
a data file (SAS Institute Inc. 2016a). The line

data elytra;

tells SAS to set up a data file named elytra. If you omit a name from this
statement, SAS will automatically generate one for you. The line

input sex $ length;

tells SAS to read in two variables and give them the names sex and length. It
also tells SAS to expect the data in the form of two columns. The $ symbol
after sex tells SAS that it is a character variable, consisting of a word or
letters rather than a number. The default is for a numeric variable. The line

datalines;

tells SAS that the following lines in the program are the actual data. The
program then lists the data, followed by another semicolon and then a run

statement (see below). The etc. in the data is not SAS code, but shorthand
for a longer data set. The run statement tells SAS the data step is over, and
also that it should process the data and generate a SAS data file.

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

We are now ready to do something with our newly minted SAS data file,
named elytra. It is usually a good idea just to print the data file to make
sure SAS correctly read the data. This is accomplished using the proc print

code listed below.



56 CHAPTER 3. POPULATIONS AND STATISTICS

* Print data set;

proc print data=elytra;

run;

The final lines of the SAS program invoke proc univariate to generate the
histogram and calculate a number of descriptive statistics (SAS Institute Inc.
2016b). The first and third lines are comments. The second line tells SAS
to call proc univariate using the elytra data set. The class statement tells
the procedure to conduct a separate analysis for each sex in the data set,
while the var statements tells it which variable to analyze, in this case the
variable length. The histogram statement asks for a histogram of length. The
option vscale=count tells SAS to make the vertical axis using counts of the
observations (the default uses percentages).

* Descriptive statistics and histograms;

proc univariate data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length / vscale=count;

run;

quit;

After running the program, we obtain output with various statistics of loca-
tion and dispersion, including the sample mean, median range, variance, and
standard deviation, as well as a graph showing the frequency distribution.
A separate analysis is generated for each sex (M or F) of the beetles. We see
that females have somewhat longer elytra than males (Ȳ = 4.940 mm vs.
4.713 mm), and there are small differences in other statistics. See a com-
plete program listing below and selected portions of the SAS output. The
complete output can be found on the website for this textbook.
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SAS Program

* descriptive.sas;

title ’Descriptive statistics for the elytra data’;

data elytra;

input sex $ length;

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Print data set;

proc print data=elytra;

run;

* Descriptive statistics and histograms;

proc univariate data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length / vscale=count;

run;

quit;
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etc.

Figure 3.1: descriptive.sas - proc print
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Figure 3.2: descriptive.sas - proc univariate
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Figure 3.3: descriptive.sas - proc univariate
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Figure 3.4: descriptive.sas - proc univariate
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3.2.8 Mode

The mode is defined to be the most frequent value in the data set, and
is another statistic of location. The mode in itself does not have many
applications in biology, but is commonly used to describe the shape of a
frequency distribution for the sample (see above). For example, we describe
a frequency distribution as being unimodal if it has a single peak, and bimodal
if there are two peaks. Examining the SAS output listed above, we see that
female T. dubius beetles have a mode of 5.2 mm, while the mode for males
is 5.0 mm. Both distributions appear to be unimodal.

3.2.9 Skewness

Skewness is a measure of the symmetry of the frequency distribution. Distri-
butions that show an extended left tail to the frequency distribution, as well
as the pattern mode > median > mean, are said to be skewed to the left.
Fig. 3.5 shows an example of a left-skewed frequency distribution for some
variable y. Conversely, distributions with an extended right tail and the pat-
tern mean > median > mode are skewed to the right (Fig. 3.6). Skewness
can be quantified by calculating the statistic g1, given by the formula

g1 =
n

(n− 1)(n− 2)

n∑
i=1

(
Yi − Ȳ
s

)3

. (3.12)

The cubic terms here measure the asymmetry of the distribution. If the
distribution is skewed to the left, with more values farther to the left than
the right of Ȳ , there will tend to be large negative cubic terms, making
g1 < 0. Conversely, distributions skewed to the right will have large positive
cubic terms and g1 > 0. For distributions that are symmetrical we have
g1 ≈ 0. For example, a frequency distribution for normally-distributed data
would be symmetrical with g1 ≈ 0 (Fig. 3.7). For the elytra example, both
male and female T. dubius have frequency distributions that appear skewed
to the left, and also have negative g1 values. Skewness is most often used as
a description of the general shape of a distribution.
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Figure 3.5: Frequency distribution that is skewed left (g1 < 0).

Figure 3.6: Frequency distribution that is skewed right (g1 > 0).
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Figure 3.7: Frequency distribution for normal data (g1 ≈ 0).
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3.2.10 Kurtosis

Kurtosis is a measure of how peaked or flat is a frequency distribution relative
to the normal distribution. Distributions with a stronger central peak than
the normal, and heavier left and right tails, are called leptokurtic (compare
Fig. 3.8 and 3.10). Conversely, distributions with a weak peak and tails are
called platykurtic (see Fig. 3.9 vs. 3.10). Kurtosis is quantified by calculating
the statistic g2:

g2 =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(
Yi − Ȳ
s

)4

− 3(n− 1)2

(n− 2)(n− 3)
. (3.13)

The behavior of the terms in g2 is less intuitive than those in the skewness
statistic g1. In any event, distributions that are leptokurtic have values of
g2 > 0, while platykurtic ones have g2 < 0, with g2 ≈ 0 for distributions
resembling the normal. For the elytra example, male T. dubius have a lep-
tokurtic distribution with g2 = 1.003, and the frequency distribution shows
a strong central peak with heavy tails. The value of g2 = 0.161 is smaller
for female T. dubius, suggesting a shape more similar to the normal distri-
bution. Like skewness, kurtosis is used to describe the general shape of the
distribution.
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Figure 3.8: Frequency distribution that is leptokurtic (g2 > 0).

Figure 3.9: Frequency distribution that is platykurtic (g2 < 0).
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Figure 3.10: Frequency distribution for normal data (g2 ≈ 0).
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3.2.11 Development time - SAS demo

We now examine another data set involving the development time of T.
dubius reared under laboratory conditions (Reeve et al. 2003). Two different
development times were measured, the time from the first larval stage until
the prepupal stage, and the prepupal to adult stage. The program used
to analyze these data is listed below. The input line is different than our
previous program, because there are two variables (time_pp and time_adult)
to analyze for each insect listed, which occur in two columns. The var and
histogram statements in proc univariate are similar, listing the two variables
so that descriptive statistics and frequency distributions are generated for
both.

Note the periods (. values) given in the data set - these indicate missing
values to SAS. In this study, observations were missing usually because the
insect died before reaching the adult stage, but missing values can also be
used to indicate lost data. The full data set for this example is listed in
Chapter 22.

After running the program, we obtain output with statistics of loca-
tion and dispersion as well as a frequency distribution, with a separate
analysis for each variable. Clearly the larval-prepupal development time
(time_pp) is shorter than the prepupal adult (time_adult) one (Ȳ = 31.354
vs. 75.353 days), and also shows less variability as indicated by the sam-
ple standard deviation (s = 3.328 vs. 26.347 days). Both variables appear
to be skewed to the right, as indicated by positive values of g1 as well as
the result that mean > median > mode. Larval-prepupal development time
shows little kurtosis (g2 = 0.047), while prepupal-adult time apparently has
a platykurtic distribution (g2 = −0.624). This can also be observed in the
frequency distribution for this variable, which is relatively flat compared to
previous examples. Note that the distribution also appears to be somewhat
bimodal, with two peaks of development time.
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SAS Program

* descriptive_2.sas;

title ’Descriptive statistics for the development data’;

data devel_time;

input time_pp time_adult;

datalines;

34 65

31 48

29 .

30 55

32 62

etc.

29 .

29 108

31 103

33 .

29 92

;

run;

* Print data set;

proc print data=devel_time;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=devel_time;

var time_pp time_adult;

histogram time_pp time_adult / vscale=count;

run;

quit;
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etc.

Figure 3.11: descriptive2.sas - proc print

Figure 3.12: descriptive2.sas - proc univariate
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Figure 3.13: descriptive2.sas - proc univariate

Figure 3.14: descriptive2.sas - proc univariate
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Figure 3.15: descriptive2.sas - proc univariate
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3.2.12 Frequency distributions for categorical data -
SAS demo

The descriptive statistics we have developed so far are appropriate for con-
tinuous or discrete data. What about categorical data? One common way of
summarizing categorical data is a frequency distribution, showing the num-
ber of occurrences in each category and possibly also their percentages. We
can illustrate this process using the elytra data. There is one categorical
variable in this data set, the sex of the beetle, and we might be interested
in whether there were equal numbers of males and females. It also possible
to derive categorical variables from the observations themselves. Suppose we
classify a beetle as being ‘small’ if length is less than 5.0 mm, and ‘large’
otherwise. We can define this new variable within the SAS data set using an
if-then-else statement. The code necessary to generate this new variable for
the elytra data is shown below. It generates a new variable called size that
takes the value small or large depending on the value of length.

* descriptive_freq.sas;

title ’Frequency distribution for the elytra data’;

data elytra;

input sex $ length;

* Classify insects into two groups by size;

if length < 5.0 then size="small"; else size="large";

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

We can then generate a frequency distribution for both sex and size using
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proc freq (SAS Institute Inc. 2016b). The tables sex*size statement will
generate a two-way table of frequencies, classifying each observation into one
of four categories (female-large, female-small, male-large, male-small). See
below.

* Frequency distribution;

proc freq data=elytra;

table sex*size;

run;

The complete program and output are listed below. From the frequency table
generated by proc freq, we see that there are more males than females in the
data set, and more small vs. large insects. Female beetles have a greater
proportion of large insects than males.
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SAS Program

* descriptive_freq.sas;

title ’Frequency distribution for the elytra data’;

data elytra;

input sex $ length;

* Classify insects into two groups by size;

if length < 5.0 then size="small"; else size="large";

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Print data set;

proc print data=elytra;

run;

* Frequency distribution;

proc freq data=elytra;

table sex*size;

run;

quit;
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etc.

Figure 3.16: descriptive freq.sas - proc print

Figure 3.17: descriptive freq.sas - proc freq
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3.4 Problems

1. For the data below, find the mean, median, variance, standard devia-
tion and CV using the formulas for these quantities and a calculator.
Show the steps in your calculations. Feel free to check your answers
using SAS.

88.6 88.0 89.8 92.0 108.1 113.6 103.4 109.9 94.5 96.7 101.7

2. Ten adult females of the zooplankton species Daphnia ambigua were
selected and their carapace length measured (µm) (Lei & Armitage
1980). The following data were obtained:

487 429 428 378 410 401 358 392 414 480

Calculate the mean, median, variance, standard deviation, and CV for
these data by hand. Show all your calculations. Check your answers
using SAS.

3. A laboratory study was conducted on the development time of another
bark beetle predator, Temnochila virescens (Coleoptera: Trogositidae).
The numbers listed below are the larval development time (days) of 35
insects.

73 65 58 54 78 57 90

103 59 52 73 67 67 53

59 55 58 78 64 60 52

96 68 81 76 77 57 79

71 74 65 65 64 56 62

(a) Use SAS to find the mean, median, mode, variance, standard de-
viation, and CV of these data, then plot a frequency distribution.
Attach your program, output, and graph.

(b) Examine the frequency distribution and skewness value (g1) for
these data. Do the data appear to be skewed, and if so in what
direction? Explain your answer.


