
Chapter 17

Linear Regression

Linear regression is a statistical method for examining the relationship be-
tween two continuous variables, typically called Y and X. It assumes a linear
relationship between the two variables, with a slope and intercept. One com-
mon purpose of linear regression is to establish whether changes in X cause
changes in Y , by testing whether the slope of this line is significantly dif-
ferent from zero. Another purpose is prediction. Given a value of X, linear
regression can be used to predict the value of Y and generate a confidence
interval for this prediction. The variable X is sometimes under the control
of the investigator, similar to a fixed effect in ANOVA, but can also be a
random variable.

A basic assumption of linear regression is that X could be causing changes
in Y , but not the reverse. For this reason, Y is often called the dependent
variable while X is the independent variable in the analysis. The term
regressor is also used for the independent variable in this context. For exam-
ple, we might be interested in the effect of temperature on the growth rate of
fish. Temperature might cause an increased growth rate, but clearly growth
rate cannot influence temperature. This causal relationship is a distinguish-
ing feature of regression as opposed to correlation analysis. Correlation
is used to examine the association between two continuous variables and
no causal direction is assumed (see Chapter 18). For example, we might be
interested in the relationship between fish length and weight but there is no
obvious causal relationship between the two variables.

Although linear regression assumes a different statistical model than ANO-
VA, there are a number of similarities in the estimation process and statisti-
cal tests for the two types. For example, both ANOVA and linear regression
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models use likelihood methods for parameter estimation and test construc-
tion, and employ F statistics to test various hypotheses. Both are examples
of general linear models, in which the model parameters and error terms
enter the model in an additive (linear) fashion.

What do the data look like for linear regression? As an example, we
will use data from study on the southern pine beetle, Dendroctonus frontalis
(Reeve et al. 1998). The study used cages to experimentally manipulate the
density of D. frontalis attacking pine trees. The independent or X variable in
the study was the number of beetles added to the cages, while the dependent
or Y variable was the number of attacks the beetles made through the bark
into the tree (Table 17.1). The notation Yi and Xi refers to the values for
the ith pair of numbers. For example, Y2 = 2.660 and X2 = 1.000. We
will later see there is a positive relationship between the two variables, with
attack density increasing as more beetles are added to the cages. Besides
establishing the relationship between the two variables, there was also some
interest in predicting the attack density as a function of the number of beetles
added to the cage, for use in future studies. We will use the linear regression
model to predict attack density for X = 1.75, a value not occurring in the
data set.
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Table 17.1: Example 1 - Observations from an experiment in which different numbers of the bark beetle D.
frontalis were introduced into cages and the resulting attack density recorded (Reeve et al. 1998). Here Y
is the attack density (attacks per 100 cm2 of bark) while X is the number of beetles added (×103). Also
shown are some preliminary calculations for the regression analysis.

i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

1 1.250 0.100 0.740 2.779 2.206 -0.956 0.914 5.176 10.440
2 2.660 1.000 0.002 -0.073 4.586 -1.926 3.711 0.011 3.316
3 7.330 2.000 1.081 2.962 7.231 0.099 0.010 7.563 8.116
4 1.600 1.250 0.084 -0.835 5.248 -3.648 13.305 0.588 8.301
5 2.620 0.500 0.212 0.856 3.264 -0.644 0.415 1.481 3.464
6 1.000 0.200 0.578 2.646 2.471 -1.471 2.162 4.042 12.118
7 4.340 1.500 0.291 -0.076 5.909 -1.569 2.461 2.038 0.020
8 5.230 0.750 0.044 -0.157 3.925 1.305 1.702 0.309 0.561
9 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925

10 3.250 0.500 0.212 0.567 3.264 -0.014 0.000 1.481 1.516
11 6.000 2.000 1.081 1.579 7.231 -1.231 1.516 7.563 2.307
12 4.750 1.500 0.291 0.145 5.909 -1.159 1.343 2.038 0.072
13 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925
14 8.750 2.000 1.081 4.439 7.231 1.519 2.307 7.563 18.223
15 6.000 1.000 0.002 0.060 4.586 1.414 1.998 0.011 2.307
16 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269
17 7.150 1.000 0.002 0.106 4.586 2.564 6.572 0.011 7.123
18 6.750 1.500 0.291 1.225 5.909 0.841 0.708 2.038 5.158
19 7.500 1.500 0.291 1.630 5.909 1.591 2.532 2.038 9.114
20 2.500 0.500 0.212 0.912 3.264 -0.764 0.584 1.481 3.925
21 5.000 2.000 1.081 0.540 7.231 -2.231 4.979 7.563 0.269
22 2.250 0.250 0.504 1.585 2.603 -0.353 0.124 3.528 4.978



520
C
H
A
P
T
E
R

17.
L
IN

E
A
R

R
E
G
R
E
S
S
IO

N

i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

23 1.250 0.125 0.698 2.699 2.272 -1.022 1.045 4.879 10.440
24 4.750 1.000 0.002 0.011 4.586 0.164 0.027 0.011 0.072
25 4.500 0.250 0.504 -0.013 2.603 1.897 3.599 3.528 0.000
26 9.560 2.000 1.081 5.281 7.231 2.329 5.423 7.563 25.795
27 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269∑

11.798 31.203 63.486 82.528 146.014
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17.1 Linear regression model

Suppose that we want to model the observations in studies like Example 1,
where Y is observed for a number of X values. Let Yi and Xi stand for the
ith pair of values. The linear regression model takes the form

Yi = α + βXi + εi, (17.1)

where α is the intercept and β the slope of a line, while εi ∼ N(0, σ2) (Searle
1971). Thus, the linear regression model represents the relationship between
Yi and Xi as a line on which random deviations due to natural variability
(εi) are imposed. The slope β is also called the regression coefficient.

For the ith pair of values, we have E[Yi] = α+βXi and V ar[Yi] = σ2 using
the rules for expected values and variances. Thus, Yi ∼ N(α + βXi, σ

2) for
any Xi value. The behavior of the linear regression model can be illustrated
by plotting this distribution across a range of Xi values. When β is positive,
the mean of Yi will increase as Xi increases (Fig. 17.1), while if β is negative
the mean would decrease (not shown). The variance remains the same for
all Xi. Note that the linear regression model has assumptions similar to the
ANOVA models – the observations are assumed be normal and have the same
variance.

The first objective in linear regression is to estimate the model parame-
ters, especially the slope β, and then test whether it is different from zero.
In particular, we will be interested in testing H0 : β = 0. If a test of this hy-
pothesis is significant this suggests a causal relationship (positive or negative)
between Y and X. The alternative hypothesis can be written as H1 : β 6= 0.
It is also possible to test whether the intercept differs from zero although
this is less common. We will discuss how these parameters are estimated and
hypotheses tested in the next section.

17.2 Linear regression and likelihood

The maximum likelihood method can be used to estimate the parameters for
regression models, similar to ANOVA models. Suppose we have n observa-
tions conforming to the linear regression model

Yi = α + βXi + εi. (17.2)
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Figure 17.1: The linear regression model plotted across a range of X values,
with α = 2.0, β = 3.0, and σ2 = 2.5.

This model has three parameters to estimate, namely α, β, and σ2 (the
variance of εi). What would the likelihood function be for these data? Con-
sider the first observation in the D. frontalis cage experiment, for which
Y1 = 1.250 and X1 = 0.100. For this observation, the model states that
Y1 ∼ N(α + βX1, σ

2), and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(Y1−(α+βX1))
2

σ2 =
1√

2πσ2
e−

1
2

(1.250−(α+β0.100))2

σ2 (17.3)

The likelihood Li for the ith observation would be similar, and the overall
likelihood is defined as their product:

L(α, β, σ2) = L1 × L2 × . . .× Ln. (17.4)

Finding the maximum likelihood estimates involves maximizing this quantity
with respect to the parameters α, β, and σ2. Using some calculus to find the
maximum, it can be shown that estimators of these parameters are

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
, (17.5)

α̂ = Ȳ − β̂X̄ (17.6)
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and

σ̂2 =

∑n
i=1(Yi − (α̂ + β̂Xi))

2

n− 2
=

∑n
i=1(Yi − Ŷi)2

n− 2
. (17.7)

Here Ŷi = α̂ + β̂Xi, the value of Yi predicted by the model at Xi.
We can gain some insight into the estimation process by rearranging the

likelihood function. It can be written in the form

L(α, β, σ2) =

(
1√

2πσ2

)n
e−

1
2

∑n
i=1(Yi−(α+βXi))

2

σ2 . (17.8)

Now examine the terms in the sum, which are of the form (Yi− (α+ βXi))
2.

Values of α and β that minimize these terms will make the overall likelihood
larger, because of the negative sign in the exponent. The likelihood will
reach its maximum when this sum is smallest. Thus, values of α and β that
minimize

n∑
i=1

(Yi − (α + βXi))
2 (17.9)

are the maximum likelihood estimates. These estimates are also called least
squares estimates because they minimize the sum of these squared terms. In
fact, we could directly estimate α and β using this method without recourse
to likelihood (Searle 1971). The two methods yield the same results when
the data have a normal distribution.

A likelihood ratio test for linear regression can be constructed as follows.
Suppose we want to test H0 : β = 0 vs. H1 : β 6= 0, the latter implying a
linear relationship between Y and X. The statistical model under H0 would
be

Yi = α + βXi + εi (17.10)

= α + εi (17.11)

because β = 0 under H0. The statistical model under H1 would be the full
model including a slope term, namely

Yi = α + βXi + εi. (17.12)

We would need to find the maximum likelihood estimates under both H1 (see
previous section) and H0, as well as LH0 and LH1 , the maximum height of
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the likelihood function under H0 and H1. We would then use the likelihood
ratio test statistic

λ =
LH0

LH1

. (17.13)

There is a one-to-one correspondence between −2 ln(λ) and the statistic Fs
used to test this null hypothesis (McCulloch & Searle 2001).

We can gain further insight into this test by defining various sum of
squares and mean squares used to calculate Fs. In particular, we will define
SSerror, SSregression, and SStotal and their associated mean squares, which
have functions similar to those in ANOVA. We will also summarize the cal-
culations in an ANOVA table.

SSerror describes variation in the data around the regression line, or vari-
ation not explained by the model. It is defined as

SSerror =
n∑
i=1

(
Yi − (α̂ + β̂Xi)

)2

=
n∑
i=1

(Yi − Ŷi)2. (17.14)

SSerror has n− 2 degrees of freedom. We can therefore define

MSerror =
SSerror
n− 2

= σ̂2. (17.15)

Thus, MSerror is equivalent to σ̂2, the maximum likelihood estimate of σ2,
the same relationship as found in ANOVA. SSerror and MSerror will be small
if the data lie on a straight line and large if the data are scattered around
the line.

SSregression describes variation in the data explained by the regression
model. It is defined as

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 (17.16)

and has one degree of freedom. We therefore have

MSregression =
SSregression

1
= SSregression. (17.17)

SSregression and MSregression will be large if the data have a strong positive or

negative slope. To see this, recall that Ŷi = α̂ + β̂Xi. If the estimated slope
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β̂ is large, the values of Ŷi will vary strongly as Xi changes and so generate
a large sum of squares.

The total sum of squares is defined (as in ANOVA) to be

SStotal =
n∑
i=1

(Yi − Ȳ )2 (17.18)

and has n−1 degrees of freedom. There is also a familiar relationship among
the different sums of squares, namely

SSregression + SSerror = SStotal. (17.19)

The likelihood ratio statistic used to test H0 : β = 0 is defined as

Fs =
MSregression
MSerror

. (17.20)

Under H0, Fs has an F distribution with df1 = 1 and df2 = n− 2 the degrees
of freedom. Given the definitions of MSregression and MSerror, we can see that
Fs tends to be large when the data have a strong slope (the numerator of this
expression) relative to the amount of scatter in the data (the denominator).

We can organize the different sum of squares and mean squares into an
ANOVA table for linear regression. It lists the different sources of variation
in the data (regression, error, and total), their degrees of freedom, as well as
the F test. Table 17.2 shows the general layout for linear regression.
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Table 17.2: General ANOVA table for linear regression, showing formulas for different mean squares and
the F test.

Source df Sum of squares Mean square Fs
Regression 1 SSregression MSregression = SSregression/1 MSregression/MSerror
Error n− 2 SSerror MSerror = SSerror/(n− 2)
Total n− 1 SStotal

Table 17.3: ANOVA table for the Example 1 data set, including a P value for the test.

Source df Sum of squares Mean square Fs P
Regression 1 82.528 82.528 32.504 < 0.001
Error 25 63.486 2.539
Total 26 146.014
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17.2.1 Sample calculation - β̂, α̂, and F test

We will illustrate the above calculations using the Example 1 data set, where
Y is D. frontalis attack density and X is the number of beetles added to
the cage. We are interested in estimating the slope and intercept (β and α)
of the relationship between the two variables, and then testing whether the
slope is significantly different from zero (H0 : β = 0).

The first step is to calculate the sample mean for both Y and X, and
we obtain Ȳ = 4.481 and X̄ = 0.960. We then calculate (Xi − X̄)2 for each
value of Xi (see Table 17.1) and sum these values to obtain

n∑
i=1

(Xi − X̄)2 = 11.798. (17.21)

We then calculate (Yi− Ȳ )(Xi− X̄) for each pair of numbers and sum these
to obtain

n∑
i=1

(Yi − Ȳ )(Xi − X̄) = 31.203. (17.22)

The estimate of β can then be calculated, and we find

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
=

31.203

11.798
= 2.645. (17.23)

We can then estimate α using the formula

α̂ = Ȳ − β̂X̄ = 4.481− 2.645(0.960) = 1.942. (17.24)

The next step is to calculate the predicted values of Yi using the formula
Ŷi = α̂+ β̂Xi, for each value of Xi (see Table 17.1). We then calculate Yi− Ŷi
in another column - these are the residuals for each observation. Squaring
and summing the residuals, we find

SSerror =
n∑
i=1

(Yi − Ŷi)2 = 63.486, (17.25)

and

MSerror =
SSerror
n− 2

=
63.486

27− 2
= 2.539. (17.26)
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We next calculate a column consisting of (Ŷi− Ȳ )2 for each observation, then
sum these values to obtain

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 = 82.528, (17.27)

and so
MSregression = SSregression/1 = 82.528. (17.28)

We are now in a position to calculate Fs, the statistic used to test H0 :
β = 0. We have

Fs =
MSregression
MSerror

=
82.528

2.539
= 32.504. (17.29)

Under H0, Fs has an F distribution with df1 = 1 and df2 = 27 − 2 = 25
degrees of freedom. Using Table F, we find the P < 0.001. There was
a highly significant effect of beetles numbers on the attack density of D.
frontalis (F1,25 = 32.504, P < 0.001).

The last column in Table 17.1 calculates (Yi − Ȳ )2, the components of
SStotal. Summing these components we obtain SStotal = 146.014. It can also
be calculated using the formula SSregression + SSerror = SStotal. Table 17.3
shows the completed ANOVA table.

The observations for Example 1 and the fitted linear regression model
are shown in Fig. 17.2. The estimation procedure (maximum likelihood or
least squares) finds values of α and β that minimize the sum of the squared
differences between the data points and the line. In particular, it minimizes
the sum of the squared residuals, where the residuals are Yi− Ŷi = Yi− (α̂+
β̂Xi).
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Figure 17.2: Linear regression model fitted to the Example 1 data, where Y
is attack density and X is beetles added to the cages. The vertical dashed
line shows the residual Y4 − Ŷ4 = −3.648 for the i = 4 observation.
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17.3 Confidence and prediction intervals

In this section, we will derive confidence intervals for the parameters of the
regression model (α and β) that provide a measure of their precision (see
Chapter 9). We will also find confidence intervals for the mean value of Yi
at a given value of Xi. Another type of interval for linear regression are
prediction intervals. These are used to set limits for future Yi values given
some value of Xi. Both of these intervals are used in prediction, another
common purpose for linear regression. See Draper & Smith (1981) for further
details.

The confidence interval for the slope β is based on β̂, the maximum
likelihood estimate of β, and the standard error of this estimate sβ̂, given by
the formula

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
, (17.30)

where σ̂2 = MSerror. Note that sβ̂ depends on the scatter of the data around

the line (σ̂2) as well as the amount of variability in Xi. A study using a
larger range of Xi values will thus provide a more precise estimate
of β, because it reduces sβ̂. Increasing the sample size n would
also increase the precision, by increasing the sum of squares in the
denominator for sβ̂.

It can be shown that the quantity

β̂ − β
sβ̂

(17.31)

has a t distribution with n− 2 degrees of freedom, the same as for MSerror.
This fact can be used to derive a confidence interval for β. Using Table T, we
first find a value of cα,n−2 for n−2 degrees of freedom such that the following
equation is true:

P

[
−cα,n−2 <

β̂ − β
sβ̂

< cα,n−2

]
= 1− α. (17.32)

Rearranging this equation we obtain

P
[
β̂ − cα,n−2sβ̂ < β < β̂ + cα,n−2sβ̂

]
= 1− α. (17.33)
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It follows that the interval

(β̂ − cα,n−2sβ̂, β̂ + cα,n−2sβ̂) (17.34)

is a 100(1 − α)% confidence interval for β. The center of the confidence
interval would be β̂.

We may also want to test various null hypotheses concerning β. For
example, we may want to test H0 : β = β0 vs. H1 : β 6= β0, where β0 takes
some value of interest. Similar to the approach in Chapter 10, we would use
the test statistic

Ts =
β̂ − β0

sβ̂
. (17.35)

Under H0, Ts has a t distribution with n − 2 degrees of freedom, and we
would reject H0 for sufficiently large values of this statistic. For β0 = 0, this
test is equivalent to the F test we developed earlier for H0 : β = 0, and in
fact T 2

s = Fs. The t test is more general, however, because we can also test
H0 : β = β0 for any value of β0.

It is possible to derive similar t tests and confidence intervals for the
intercept parameter α. The t test is most commonly used to test H0 : α = 0.
If the test is significant this implies an intercept different from zero. We will
let SAS handle the calculations here.

We can also derive a confidence interval for the theoretical mean of Yi
at a given Xi value. Recall that according to the linear regression model,
E[Yi] = α + βXi. Thus, Yi has a mean of µi = α + βXi for any Xi value.
The confidence interval is based on Ŷi = α̂ + β̂Xi, the predicted value of Yi
at Xi. It also depends on the standard error sŶ of Ŷ , which is given by the
formula

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.36)

Note that the standard error sŶ depends on the value of (Xi − X̄)2, which
is the squared distance of Xi from X̄. The farther Xi is from X̄, the larger
the value of sŶ .

Using methods similar to the confidence interval for β, it can be shown
that a 100(1− α) confidence interval for µi = α + βXi has the form

(Ŷi − cα,n−2sŶ , Ŷi + cα,n−2sŶ ). (17.37)
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The interval will be broader for values of Xi far from X̄ because sŶ will be
larger. In other words, the precision of the confidence interval decreases with
the distance from X̄.

We next examine prediction intervals. Here, we are trying to find an
interval that contains a defined percentage of future Yi values for a given
value of Xi. These are similar in form to the intervals for the theoretical
mean µi = α + βXi, but are always wider because you are trying to enclose
a single future observation rather than a mean value.

The prediction interval is based on Ŷi = α̂ + β̂Xi, the predicted value of
Yi at Xi, and the standard error sŶ (1) of Ŷi, which is given by the formula

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.38)

Note the additional term (1+) within the square brackets, which makes this
standard error larger than sŶ . It also depends on the value of (Xi−X̄)2, and
so the farther Xi is from X̄, the larger the value of sŶ (1). It can be shown
that a 100(1− α) prediction interval for a single future Yi has the form

(Ŷi − cα,n−2sŶ (1), Ŷi + cα,n−2sŶ (1)). (17.39)

17.3.1 Sample calculation - confidence and prediction
intervals

We now illustrate the calculations for confidence intervals using the Example
1 data. We earlier found that β̂ = 2.645 and α̂ = 1.942. To find a confidence
interval for β, we first need to calculate sβ̂. From Table 17.1, we see that∑n

i=1(Xi − X̄)2 = 11.798, and we earlier calculated that σ̂2 = MSerror =
2.539. Inserting these quantities into the formula for sβ̂, we find

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
=

√
2.539

11.798
= 0.464. (17.40)

A 95% confidence interval for β has the form

(β̂ − c0.05,n−2sβ̂, β̂ + c0.05,n−2sβ̂) (17.41)
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From Table T with df = n − 2 = 27 − 2 = 25, we find that c0.05,25 = 2.060.

Inserting this value, β̂ = 2.645, and sβ̂ = 0.464 in the above formula, we
obtain

(2.645− 2.060(0.464), 2.645 + 2.060(0.464)) (17.42)

or
(1.689, 3.601). (17.43)

We next find a confidence interval for the theoretical mean µi = α+ βXi

at Xi = 1.75. We first need to find the predicted value Ŷi for this value of
Xi, using the estimated intercept and slope. We have

Ŷi = α̂ + β̂Xi = 1.942 + 2.645(1.75) = 6.571. (17.44)

The standard error sŶ for this interval also uses
∑n

i=1(Xi−X̄)2 = 11.798 and
σ̂2 = 2.539, and we earlier found that X̄ = 0.960. Inserting these quantities
into the formula for sŶ , we find that

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.45)

=

√
2.539

[
1

27
+

(1.75− 0.960)2

11.798

]
(17.46)

=

√
2.539

[
0.037 +

0.624

11.798

]
(17.47)

= 0.478. (17.48)

A 95% confidence interval for the theoretical mean µi = α + βXi has the
form

(Ŷ − c0.05,n−2sŶ , Ŷ + c0.05,n−2sŶ ) (17.49)

Inserting Ŷ = 6.571, sŶ = 0.478, and c0.05,25 = 2.060 in the above formula,
we find

(6.571− 2.060(0.478), 6.571 + 2.060(0.478)) (17.50)

or
(5.586, 7.556). (17.51)

Lastly, we calculate a prediction interval for a single future observation Yi
at Xi = 1.75. We earlier calculated that Ŷi = 6.571 for this value of Xi, and
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will again make use of
∑n

i=1(Xi − X̄)2 = 11.798, X̄ = 0.960 and σ̂2 = 2.539.
Inserting these quantities into the formula for sŶ (1), we obtain

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.52)

=

√
2.539

[
1 +

1

27
+

(1.75− 0.960)2

11.798

]
(17.53)

=

√
2.539

[
1 + 0.037 +

0.624

11.798

]
(17.54)

= 1.663. (17.55)

A 95% prediction interval for a single Yi has the form

(Ŷ − c0.05,n−2sŶ (1), Ŷ + c0.05,n−2sŶ (1)) (17.56)

Inserting Ŷ = 6.571, sŶ (1) = 1.663, and c0.05,25 = 2.060 in this formula, we
obtain

(6.571− 2.060(1.663), 6.571 + 2.060(1.663)) (17.57)

or
(3.145, 9.997). (17.58)

Note this interval is much wider than the interval for the theoretical mean
µi = α + βXi, which was (5.586, 7.556). This is because you are trying
to enclose a single future observation, a random variable Yi, rather than a
theoretical mean.

17.4 R2 values

R2 values are a measure of how well a statistical model explains the data.
Recall that the following relationship holds among the sum of squares in
linear regression:

SSregression + SSerror = SStotal. (17.59)

We can think of the different sum of squares as partitioning the variability in
the data into different sources. SSregression represents variability explained by
the regression line, SSerror represents variability of the observations around
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the regression line, while SStotal is the total amount of variability in the
data. The R2 value for a linear regression model is the proportion of total
variability explained by the model, or

R2 =
SSregression
SStotal

=
SSregression

SSregression + SSerror
. (17.60)

It is clear from this formula that R2 must range between 0 and 1 (0 ≤ R2 ≤
1). For the Example 1 data, we have

R2 = 82.528/146.014 = 0.565. (17.61)

Thus, 56.5% of the variation is explained by the regression model for these
data. Small R2 values indicate there is substantial variability in the data not
explained by the model, while large ones indicate the model explains most
of the variation.

More generally, we can define an R2 value for both ANOVA and regression
models as

R2 =
SSmodel
SStotal

=
SSmodel

SSmodel + SSerror
. (17.62)

For example, we have SSmodel = SSamong for one-way ANOVA while SSerror =
SSwithin. The R2 value here is the proportion of the variation explained by
the one-way ANOVA model, in particular the variation among the group
means. The SAS output for proc glm provides an R2 for ANOVA models of
this form.

17.5 Linear regression for Example 1 - SAS

demo

The linear regression analysis can be conducted using proc glm and a program
similar in structure to ANOVA ones (see SAS program below). We first input
the observations using a data step, with the first variable standing for attack
density (attacks) while the second is the number of beetles added (beetles).
The next two lines in the data step define which of these two variables are the
dependent and independent ones. The line y = attacks sets attack density as
the dependent variable, while x = beetles is the independent variable. The
remainder of the program then uses y and x rather than the original variables
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and so does not need to be changed for other data sets. Transformations of
the observations could also be applied at this point.

Note the additional observation at end of the data set, for which beetles

is 1.75 but attacks is a missing value. The purpose is to make proc glm calcu-
late confidence and prediction intervals for attack density for that particular
number of beetles.

The data are then plotted along with the fitted line plus confidence and
prediction intervals. This accomplished using the following proc gplot code
(SAS Institute Inc. 2016). The three y*x statements in the plot command
plot the same data in three different ways, which are then combined into one
graph using the overlay option. The first plot, using the symbol1 command,
draws the data points. The second plot, using the symbol2 command, draws
a regression line through the points and also plots 95% confidence intervals
for the mean of Yi at Xi, or µi = α+βXi, across the range of Xi values. The
third plot, using the symbol3 command, plots 95% prediction intervals for a
single future observation, again across the range of Xi values. A similar plot
is also generated by proc glm for linear regression models (see Fig. 17.9).

The regression analysis is conducted using proc glm as shown below (SAS
Institute Inc. 2018). There is no class statement because the independent
variable x is a continuous variable and does not fall into discrete groups
as with ANOVA. Note the similarity of the model statement to the linear
regression model. The option clparm is used to generate 95% confidence
intervals for α and β, while clm generates a 95% confidence interval for the
mean of Yi at each value of Xi. If we want prediction intervals it is necessary
to run proc glm a second time using the cli option in the model statement
(see below). This is necessary because proc glm cannot generate both types
of intervals at the same time.

The data points, regression line, and confidence or prediction intervals
are shown in Fig. 17.4. The prediction intervals are much wider than the
confidence intervals, because the prediction intervals are for single future Yi
while the confidence intervals enclose a mean. Note that both types of inter-
val increase in width as you move away from the center of the X values. This
follows from the fact that the standard errors involved in these calculations
are a function of (Xi − X̄)2, which increases as Xi moves away from X̄.

Examining the output for proc glm, first note that the slope β is labeled
as x while the intercept α is Intercept (Fig. 17.5). We see that attack density
y increases with beetle numbers x, because β̂ = 2.645 and is positive. The
effect of beetle numbers on attack density was highly significant (F1,25 =
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32.5, P < 0.0001). There are several F tests to chose from in the output, but
all give the same result for simple linear regression. Alternately, we could
report the t test for β (t25 = 5.70, P < 0.0001), which also tests H0 : β = 0.
We see that R2 = 0.565, indicating that 56.5% of the variation is explained
by the regression model.

The proc glm output also provides 95% confidence intervals for α and β.
A 95% confidence interval for the mean of Yi at each Xi value is also given
(Fig. 17.6), as well as 95% prediction intervals for a single future Yi (Fig.
17.7). These intervals were also calculated for Xi = 1.75 and match our
earlier results.

Note that the estimated intercept is some distance from zero (α̂ = 1.942),
and in fact the t test of H0 : α = 0 reported by SAS was highly significant
(t25 = 3.59, P = 0.0014). This cannot really be true because the addition of
zero beetles should give you an attack density of zero. A more resonable (and
possibly non-linear) model would require that the intercept be zero. This is
a potential pitfall when using linear regression. Many biological phenomenon
are approximately linear over some range of the data but the approximation
breaks down for more extreme values. A linear regression does not take this
possibility into account and so cannot provide a general explanation of some
phenomena.
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SAS Program

* SPBattack2.sas;

title ’Linear regression for D. frontalis attack density’;

data frontalis;

input attacks beetles;

* Apply transformations here;

y = attacks;

x = beetles;

datalines;

1.25 0.100

2.66 1.000

7.33 2.000

1.60 1.250

2.62 0.500

etc.

5.00 0.500

. 1.750

;

run;

* Print data set;

proc print data=frontalis;

run;

* Plot data and regression line;

proc gplot data=frontalis;

plot y*x y*x y*x / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=frontalis;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=frontalis;

model y = x / clparm cli;

run;

quit;
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etc.

Figure 17.3: SPBattack.sas - proc print



540 CHAPTER 17. LINEAR REGRESSION

Figure 17.4: SPBattack.sas - proc gplot
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Figure 17.5: SPBattack.sas - proc glm
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etc.

Figure 17.6: SPBattack.sas - proc glm

etc.

Figure 17.7: SPBattack.sas - proc glm
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Figure 17.8: SPBattack.sas - proc glm

Figure 17.9: SPBattack.sas - proc glm
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17.6 Assumptions and transformations

Linear regression makes the same assumptions as ANOVA, includ-
ing homogeneity of variances and normality, and the same types
of plots can be used to assess them. If the homogeneity of variances
assumption is satisfied, the points in a residual vs. predicted plot should
be equally scattered across the range of predicted values. Outliers can also
be identified using this plot. The normality assumption can be evaluated
using a normal quantile plot of the residuals, with a straight diagonal line
indicating this assumption is satisfied.

Examining the residuals from the Example 1 analysis, we see no obvious
pattern in the residual vs. predicted plot, suggesting the homogeneity of
variances assumption is satisfied (Fig. 17.8). No outliers were present. The
normal quantile plot suggests the normality assumption is satisfied.

Linear regression makes another key assumption, namely that
the relationship between Y and X is linear. This assumption can be
checked by examining a plot of Y vs. X. What can be done if the rela-
tionship seems nonlinear? We can sometimes fix this problem by applying a
transformation to Y , X, or both Y and X, so that linear regression can be
applied to the transformed data. This use of transformations greatly
extends the utility of linear regression. Some commonly used transfor-
mations are log Y vs. X, log Y vs. logX, Y vs. logX, and 1/Y vs. X. A
transformation that linearizes the data sometimes corrects for problems with
the homogeneity of variances and normality assumptions.

A transformation may be selected based on prior information about the
data and system. For example, a conservation biologist may be interested in
the relationship between island area A and the number of species S on the
island, and previous studies suggest that this relationship will be linear on a
log scale (MacArthur & Wilson 1967). Another approach is to try a number
of transformations and chose the one that makes the data most linear. We
will illustrate each approach with an example below.

In cases where no transformation can linearize the data, another possi-
bility would be nonlinear regression (Juliano 1993). This type of analysis
requires that the user specify a model Y = f(X, θ1, θ2, . . .) + ε for the data,
where f is a function with parameters θ1, θ2, . . . to be estimated. SAS imple-
ments this type of nonlinear regression in proc nlin, while proc nlmixed allows
for nonlinear functions as well as random effects and nonnormal distributions.
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17.6.1 Species-area data - SAS demo

For many organisms there is a relationship between a defined area of habitat,
such as an island, and the number of species found there. If S is the number
of species, and A the area of habitat, then the model S = cAz seems to
describe many data sets (MacArthur & Wilson 1967). Applying the log10

function to both sides of this equation, we obtain

log10 S = log10 c+ z log10A. (17.63)

This form of the model is linear and suggests linear regression could be used
to analyze species-area data. The SAS program listed below shows how
these transformations can be applied to the bird fauna on archipelagos and
islands of varying areas. The data are the number of species vs. island area
(square miles) for 23 islands. The data were simulated to resemble Fig. 9
in MacArthur & Wilson (1967). An extra observation is included with a
missing value for the number of species, but an island area of 5000 square
miles, to make proc glm calculate a confidence interval for the mean of this
island.

We first conduct the analysis without any transformation, with the line
y = species defining species as the dependent variable while x = area is the
independent one. Examining the proc gplot graph, note the nonlinear na-
ture of the relationship between the number of species and island area (Fig.
17.10). The picture improves after a log10 transformation is applied to both
variables (Fig. 17.11).

Now that the linearity assumption is satisfied, we can interpret the rest
of the SAS output (Fig. 17.13). We see that the number of species increased
with island area (β̂ = 0.241) and the effect was highly significant (F1,21 =
148.16, P < 0.0001). In terms of the original model, where S = cAz, we see
that β̂ = 0.241 is also an estimate of z. The R2 value is 0.876, indicating
that 87.6% of the variation is explained by the regression model. Confidence
intervals are also provided for the intercept and slope.

The proc glm output also includes a predicted value Ŷi = 1.800 at Xi =
3.699, which corresponds to an island area of 5000 (see Fig. 17.14). We
need to convert this predicted value to the original scale of measurement
using antilogs. We have Ŝi = 10Ŷi = 101.800 = 63.10 species. So, we predict
there would be 63 species on an island of 5000 square miles. The confidence
interval for the mean is (1.746, 1.855), which we can similarly convert to
(101.745, 101.855) or (55.72, 71.61).
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Examining the residual plots from this analysis, it appears the homogene-
ity of variances and normality assumptions were satisfied (Fig. 17.15).

SAS Program

* SAprob2.sas;

title ’Linear regression for species-area data’;

data sa;

input species area;

* Apply transformations here;

y = log10(species);

x = log10(area);

datalines;

15 28

104 113480

165 380358

116 33252

35 1010

33 305

78 37620

93 4762

50 213

76 2976

18 23

28 186

20 423

121 108512

53 364

22 269

102 11163

28 487

158 445409

19 70

111 38309

152 100873

55 1354

. 5000

;

run;

* Print data set;

proc print data=sa;

run;

* Plot data and regression line;

proc gplot data=sa;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;
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symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=sa;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=sa;

model y = x / clparm cli;

run;

quit;
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Figure 17.10: SAprob2.sas - proc gplot

Figure 17.11: SAprob2.sas - proc gplot
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etc.

Figure 17.12: SAprob2.sas - proc print
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Figure 17.13: SAprob2.sas - proc glm
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etc.

Figure 17.14: SAprob2.sas - proc glm

Figure 17.15: SAprob2.sas - proc glm
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17.6.2 Population growth rates - SAS demo

As another example of transformations, consider a study of the population
growth of phytophagous mites on leaf sections. An experiment was conducted
in which leaf sections are inoculated with a range of mite densities and the
number of offspring recorded one generation later. The number of offspring
per initial mite is the finite growth of the population, usually symbolized as
λ. This is the dependent variable in the analysis while mite density is the
independent one. The SAS program listed below gives the mite densities and
the λ values for this experiment.

We first conduct the analysis without any transformation. Looking at
the plot of Y (λ) vs. X (density), we see a curvilinear relationship (Fig.
17.16). A transformation is clearly needed, but which one? A natural log
transformation usually a good starting point for population data, both for
growth rates and numbers. We begin by log-tranforming the dependent
variable λ and find that the plot is now linear (Fig. 17.17).

Interpreting the proc glm output below (Fig. 17.19), we see that λ de-
creased with mite density (β̂ = −0.020) and the effect was highly significant
(F1,15 = 1695.22, P < 0.0001). The R2 value was 0.991, indicating that al-
most all the variation in the data was explained by the regression line. It
appears that the growth rate of the mites was adversely affected by their
density, probably through competition for resources or other intraspecific
interactions. The residual plots suggest the homogeneity of variances and
normality assumptions were satisfied (Fig. 17.20).

SAS Program

* logistic.sas;

title ’Linear regression for growth rate-density data’;

data grd;

input lambda density;

* Apply transformations here;

y = log(lambda);

x = density;

datalines;

7.32 5

4.82 15

4.69 25

3.90 35

2.65 45

2.52 55

1.70 65
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1.68 75

1.43 85

1.07 95

0.74 105

0.72 115

0.64 125

0.47 135

0.40 145

0.38 155

0.25 165

;

run;

* Print data set;

proc print data=grd;

run;

* Plot data and regression line;

proc gplot data=grd;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=grd;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=grd;

model y = x / clparm cli;

run;

quit;
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Figure 17.16: logistic.sas - proc gplot

Figure 17.17: logistic.sas - proc gplot



17.6. ASSUMPTIONS AND TRANSFORMATIONS 555

Figure 17.18: logistic.sas - proc print
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Figure 17.19: logistic.sas - proc glm
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Figure 17.20: logistic.sas - proc glm
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17.8 Problems

1. An experiment was conducted to measure the effect of density on the
rate of egg laying in cowpea weevils. Ten different densities were used in
the experiment, and the rate of egg laying determined for each density.
The following data were obtained:

Density Eggs per day
100 7.629
200 4.530
500 3.820
700 2.718

1200 2.403
1500 1.756
1700 1.772
2000 1.508
2200 1.518
2500 1.359

(a) Plot the rate of egg laying (Y ) vs. density (X), and observe the
nonlinear relationship between Y and X. Find a transformation
of Y and/or X that linearizes this relationship using SAS.

(b) For the transformed data, use SAS to plot a 95% confidence inter-
val for the mean of Yi and a 95% prediction interval for a single
value of Yi. Label the intervals (confidence or prediction) on the
gplot graph.

(c) Analyze the transformed data set using linear regression and SAS.
In your SAS output, label the 95% confidence intervals for the
intercept (α) and slope (β) in your SAS printout.

(d) Interpret the results of the regression analysis. Is there a sig-
nificant effect of density on the rate of egg production? What
direction is the effect?

2. A zoologist wants to establish the relationship between the length of
an animal and its weight. He wants to use length to predict weight in
future studies, because length is easier to measure. The lengths and
weights of a random sample of 20 animals were determined, yielding
the following data:
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Length (mm) Weight (g)
14.7 1.65
19.9 4.86
15.8 2.04
19.0 3.53
8.4 0.32

10.2 0.46
13.5 1.68
22.1 6.24
16.2 1.85
8.2 0.28

10.1 0.48
19.8 4.18
20.6 4.77
22.0 6.10
18.1 2.78
22.4 5.26
10.5 0.55
14.5 1.56
11.9 1.07
14.7 1.74

(a) Plot the weight (Y ) vs. length (X) using SAS, and observe the
nonlinear relationship between Y and X. Attach your graph of
this relationship. Then, find a transformation of Y and/or X
that linearizes this relationship. What transformation did you
use? Attach your graph showing the transformed relationship.

(b) Analyze the transformed data using linear regression and SAS.
Briefly interpret your results using P values. Is there a significant
effect of length on weight? What direction is the effect? Attach
your program and output.

(c) For animals that are 21 mm long, find a 95% confidence interval
for the mean weight.


