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Chapter 1

Introduction

1.1 Why this textbook?

Welcome to Biostatistics: Data and Models! This textbook provides a
survey of statistical methods commonly used in the life sciences, an introduc-
tion to statistical theory, and significant exposure to the statistical software
package SAS 9.4 (©2020 SAS Institute Inc.). The textbook is designed for
graduate students and upper division undergraduates in the life sciences,
and assumes some familiarity with mathematical notation, functions, and
algebra. A review of these topics is also presented early in the textbook.
Knowledge of calculus is helpful but not essential. No previous courses in
statistics are needed.

There are many useful introductory statistical textbooks (e.g., Sokal &
Rohlf 1995, Steel et al. 1997, Schork & Remington 2000), so what is different
about this one? One is the close integration of the text with SAS programs
and output. Many texts do not discuss a particular software package, provide
only abbreviated examples, or present them under separate cover. However,
these packages play an essential role in modern statistical analyses, and flu-
ency in a statistical language is a basic tool for the practicing scientist. I
selected SAS as the statistical package for this textbook because of its pop-
ularity, extensive documentation, and strong support of mixed models, a
common statistical procedure. An alternative is the free software package
called R (R Core Team 2021). For those interested in learning this software,
R programs similar in function to the SAS code can be downloaded at the
website for this text.

13
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Another difference in this textbook is the integration of statistical proce-
dures and theory. Most introductory textbooks present the statistical proce-
dures and a mechanistic explanation of how they work, without discussing the
underlying theory. The theory is typically presented in advanced courses to
a more mathematically inclined audience. However, I feel that some knowl-
edge of the theory is essential for students in the life sciences, and so some
theoretical concepts are included in this text. For example, likelihood is used
throughout the text to explain how parameters are estimated and statistical
tests derived. Besides many basic statistical procedures, likelihood theory
also plays a role in model building and selection using information criteria,
as well as Bayesian statistics, an expanding field of statistical analysis.

As part of this integration of theory, statistical models are presented
throughout the text. What is a statistical model? Suppose we are interested
in fitting a line through some data points, which are in the form of (Y,X)
pairs. A standard statistical model for fitting a line through such data is the
linear regression model:

Y = α + βX + ε, (1.1)

where α is the intercept of the line, β is the slope, and ε represents random
variation of the data around the line. There is always some random
variation around the line, especially with biological data. If there
were no random variation, a statistical approach would not be needed – one
could simply draw a line through the data.

Fig. 1.1 shows an example of this model, fitted to data on the number of
reptile species on islands of varying size in the West Indies (Wright 1981). We
will examine how the parameters of such models (α and β) can be estimated
using likelihood theory, and how to test whether there is indeed a relationship
between Y and X (as it appears in Fig. 1.1). It is also possible to make
predictions from statistical models. For example, we could use this model to
potentially predict the number of reptile species expected on other islands,
ones not included in this data set.
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Figure 1.1: Number of reptile species vs. island area in the West Indies
(Wright 1981). The number of species and island area were log-transformed
before analysis. The fitted line and model equation are also shown.
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1.2 Types of data

The first step faced by the statistical analyst is determining the form of the
data. There are four types of data frequently encountered by scientists and
statisticians: continuous, discrete, rank, and categorical data. Continuous
data are quantities like the length and weight of an organism, concentrations
of chemicals in the environment, or the growth rate of a population. The
distinguishing feature of continuous data is that the observations can be
described using real numbers. For example, the length of an organism might
be 4.53 cm, while its weight 1.23 g. In contrast, discrete data always
take integer values. They can be counts of organisms in a location, the
number of vertebra in the spine, or quantities like the number of disease
cases in a month. Typically, discrete data are non-negative integers, i.e.,
0, 1, 2, 3, 4 and so forth. The number of species in Fig. 1.1 could be treated
as either continuous or discrete - although they are integer values, they are
large enough to take many potential values and approximated as continuous
data.

Rank or ordinal data are observations that indicate the relative or-
dering of the data. For example, suppose an entomologist wants to rapidly
assess the level of damage caused by caterpillars to their host plants. It may
be easy to quickly assess whether the plants have no damage (a rank of 1),
or light (2), medium (3), and heavy damage (4), but finer gradations would
be difficult. Rank data also play an important role in a set of procedures
called nonparametric statistics, because these procedures often convert con-
tinuous or discrete data to rank data. Categorical data are observations
that fall into separate categories. For example, we might classify specimens
of an animal as male, female, or juvenile. No numbers are associated with
these categories, although we would likely be interested in how many animals
occur in each category, i.e., their frequencies.

1.3 Data and models

Once the data are classified into one of the above types, this determines
to a large extent the statistical analysis. For example, suppose the data
are (Y,X) pairs as in Fig. 1.1. A linear regression model like Eq. 1.1
would seem appropriate, because the data lie near a straight line. How could
we model the random variation around the line? One common choice is
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to assume that ε has a normal or bell-shaped distribution, which we later
examine in detail. Once a statistical model is chosen, this largely determines
the analysis including how model parameters (α, β, and parameters for ε)
are estimated and statistical tests conducted, often using likelihood theory.
Another important task in statistics is model building, in which a number
of different models are fitted to the data and the best-fitting one selected
(there are various criteria for determining which is best). Fig. 1.2 shows this
general process.

Figure 1.2: Sequence of analysis for many statistical problems.

1.4 Sequence of topics

The next chapter in this text is a brief review of the mathematics useful in
statistics, and an introduction to SAS programming (Chapter 2). We then
introduce descriptive statistics, which are quantities like the mean or average,
designed to summarize the properties of a data set (Chapter 3). The next
topic is probability theory, which provides an explanation for many natural
processes that apparently have random components, and provides a founda-
tion for statistics (Chapter 4). We then turn to probability distributions for
both discrete and continuous data, which are essentially models for random
processes (Chapter 5 and 6), and how means and other quantities are de-
fined for these distribution (Chapter 7). We then examine how parameters
for these distributions are estimated using likelihood, along with a measure
of the reliability of these estimates (Chapter 8, 9), and how hypotheses con-
cerning the parameters are tested (Chapter 10).

Several chapters are devoted to analysis of variance, or ANOVA, used to
compare the means of different groups (Chapter 11-15). These groups are of-
ten generated by different experimental treatments, and ANOVA and related
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techniques provide a way of examining whether the treatments produces dif-
ferences among these groups. Nonparametric alternatives to ANOVA are also
considered (Chapter 16). We then examine linear regression and correlation,
which are alternate methods of examining the relationship between two vari-
ables (Chapter 17, Chapter 18). These methods are designed for continuous
variables, but can be adapted to discrete ones. Chapter 19 presents more
complicated designs including three-way and nested ANOVA, and analysis
of covariance (ANCOVA). In Chapter 20, we examine several techniques use-
ful for analyzing categorical data. Chapter 21 provides an introduction to
multiple regression, which examines how one continuous variable is affected
by several other variables. Several large data sets used as examples are listed
in Chapter 22, while Chapter 23 contains statistical tables used throughout
the text.
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Chapter 2

Review of Mathematics

In this chapter, we will briefly review some of the mathematical concepts
used in this textbook. Knowing these concepts will make it much easier to
understand the mathematical underpinnings of statistics, especially the for-
mulas used in statistics as well as their derivations. A particularly important
concept is that of a function. We will commonly encounter several types of
functions in statistics, including probability densities or distributions, like-
lihood functions, the functions used in statistical models, and ones used to
transform the observations before statistical analysis.

2.1 Exponents

This section provides a brief summary of useful rules concerning exponents
that often appear in statistical functions. Let a and b be two real numbers
(numbers of any kind between −∞ and ∞) that form the base of the expo-
nent. This includes the special numbers e ≈ 2.71828 and π ≈ 3.14159 that
often occur in statistics. As exponents or powers, let m and n be any positive

21
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integers (1, 2, 3, ...). We then have

aman = am+n (2.1)

(am)n = amn (2.2)

am

an
= am−n (2.3)

(a× b)n = anbn (2.4)(a
b

)n
=
an

bn
(2.5)

(Schmidt & Ayres 2003). For example, suppose that a = 2, b = 3, m = 5,
and n = 4. We have

aman = am+n (2.6)

2524 = 25+4 = 29 = 512 (2.7)

(am)n = amn (2.8)

(25)4 = 25×4 = 220 = 1048576 (2.9)

am

an
= am−n (2.10)

25

24
= 25−4 = 21 = 2 (2.11)

(a× b)n = anbn (2.12)

(2× 3)5 = 2535 = 32× 243 = 7776 (2.13)

(a
b

)n
=
an

bn
(2.14)(

2

3

)5

=
25

35
=

32

243
= 0.132 (2.15)

These rules also hold for m and n any real number provided a and b are
positive. Some special cases of the above rules are also commonly encountered
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in statistics. We have

a0 = 1, a 6= 0 (2.16)

00 = 0 (2.17)

a1/2 =
√
a (2.18)

a−m =
1

am
, a 6= 0 (2.19)

Now suppose that a = 4 and m = 2. We have

40 = 1 (2.20)

41/2 =
√

4 = 2 (2.21)

4−2 =
1

42
=

1

16
= 0.0625 (2.22)

2.2 Inequalities

Statistical statements often involve the use of inequalities. For example,
suppose that you are interested in the size distribution of a fish population.
You might be interested in estimating the probability or proportion of fish
that equal or exceed the legal catch size, say 12 inches. If y stands for fish
size, then you would be interested in estimating the probability of fish for
which y ≥ 12 inches. You might also be interested in fish which lie within a
certain range of size, say 6 to 12 inches. This could be written as 6 < y < 12
inches using inequalities. The results of statistical tests are often reported
using inequalities as well. You will commonly encounter statements of the
form ‘P < 0.05’ in scientific papers, which says that the probability P of a
certain event occurring is less than 5%, or 1 chance in 20.

Inequalities can be manipulated much like equalities in algebra, with some
exceptions. Let x and y stand for any two numbers, or more complex math-
ematical quantities. If x < y, then

x+ b < y + b (2.23)

where b is another number or quantity, and

ax < ay (2.24)
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where a is a positive number or other quantity. If a is negative, then

ax > ay. (2.25)

Thus, multiplying an inequality by a negative number flips the direction of
the inequality. For example, let x = 5, y = 6, and a = −2. We have x < y,
but clearly −2(5) = −10 is greater than −2(6) = −12.

Another exception involves the inverse or reciprocal of an inequality. If
x < y and both are positive (or both negative), then

1

x
>

1

y
. (2.26)

Note the changed direction of the inequality. For example, if x = 5 and
y = 6 so that x < y, the inequality is reversed because we have 1/5 > 1/6.
However, if x < y and x is negative, then

1

x
<

1

y
. (2.27)

For example, if x = −5 and y = 6 then we have 1/−5 < 1/6, or −1/5 < 1/6.
These results can also be obtained through direct application of Eq. 2.24
and 2.25.

2.3 Functions

A variable is a symbol such as x or y chosen to represent a set of numbers,
typically real numbers. A function is a relationship between x and y such
that each value of x generates a single value of y (Schmidt & Ayres 2003).
When such a relationship holds, it is customary to say that y is a function
of x. An example of a function is the equation

y = 2x+ 1 (2.28)

This happens to be the equation of a line with a slope of 2 and an intercept
of 1. In general, we can write a function using the notation

y = f(x) (2.29)

where f(x) stands for any possible function of x. In this context, x is often
called the independent variable and y the dependent variable.
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2.3.1 Functions in Statistics

One commonly used function in statistics is the equation for a line, namely

y = ax+ b (2.30)

where a is the slope and b is the intercept of the line. This function plays
an important role in linear regression, a statistical procedure that fits a line
to a series of points of the form (x, y) (see Chapter 17). Also common are
quadratic functions of the form

y = ax2 + bx+ c (2.31)

where a, b, and c are constants. Rather than a straight line, quadratic
functions are shaped like a parabola.

Exponential and log functions are also commonly used in statistics. Ex-
amples of exponential functions are

y = 10x (2.32)

and
y = ex, (2.33)

where e = 2.71828 . . ., also written as

y = exp(x). (2.34)

Examples of log functions are the natural log and base 10 log, written as

y = ln(x) (2.35)

and
y = log(x). (2.36)

Confusingly, the natural log is sometimes written as log(x), while base 10
log is written as log10(x). SAS uses this notation for log functions. The log
functions are only defined for x > 0.

The exponential and log functions are inverses, meaning they reverse the
action of each other. For example, we have

exp(ln(x)) = x (2.37)
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and
ln(exp(x)) = x. (2.38)

For example, if you find ln(x) for some value of x, then apply the exp function
to ln(x), you get the original value of x as the answer. Suppose that x = 2.
We have ln(x) = ln(2) = 0.693, and then exp(ln(2)) = exp(0.693) = 2. The
same thing happens for the functions 10x and log(x).

Another common function in statistics is the absolute value function,
written as

y = |x|. (2.39)

It is defined as follows. If x is positive or zero then |x| is simply equal
to x, while if x is negative then |x| = −x. For example, if x = −2 then
y = | − 2| = −(−2) = 2. A common use of the absolute value in statistics
is to define a symmetric interval around zero. For example, the inequality
−3 < x < 3 can also be written as |x| < 3.

The most commonly used distribution in statistics is the normal distri-
bution, which can be written as a combination of several simpler functions:

y =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.40)

Here µ and σ2 are two parameters that govern the shape of the normal
distribution, in particular its mean and variance (see Chapter 6).

2.3.2 Plotting functions using SAS - SAS demo

It can be difficult to discern the shape of a function without a graph. For
example, the function describing the normal distribution gives you the famous
bell-shaped curve, but this is not obvious from the equation. We will develop
a SAS program that will plot any function, given its mathematical form, the
values of any constants, and the range of x values for which a plot is needed.
We will examine this plotting program in some detail, because it illustrates
the structure of the programs used throughout this textbook.

SAS programs consist of a series of steps or instructions that enable you to
input and manipulate data and then generate statistical results and graphs.
Data are entered and manipulated using SAS data steps, while statistical
results and graphs are generated using SAS procedures or proc steps. Note
that SAS is not case-sensitive, so programs can be in either upper or lower
case.
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The first line of the program is a comment, used here to give the file name
of the program. Any line of a SAS program beginning with an asterisk (*) is
a comment, which are used to describe the program and its actions but are
not executed by SAS.

* fplot.sas;

The next three lines consist of the instructions

title "Plot a function y = f(x)";

title2 "Linear function";

The two title lines add a main title and subtitle to the output. Note that
each of the lines ends with a semicolon (;). This is absolutely critical in
SAS programming, because it tells SAS where a particular statement or
command ends. A misplaced or absent semicolon will typically cause errors
when running the program.

The next part of the SAS code is a data step (SAS Institute Inc. 2016a).
The idea here is to generate a data set with a sequence of x and y = f(x)
values that will later be plotted. The minimum and maximum values of x
are set by specifying values for xmin and xmax, while the number of divisions
is set by xdiv (the more divisions the finer the x scale and the smoother
the graph). The program then calculates the step length between x values
(xlength) using these quantities. The values of x and y = f(x) are calculated
in a programming loop using a do statement . Each pass through the loop
calculates a new value of x, then finds y = f(x) for that value of x. The
results are then sent to a SAS data file using an output statement. You can
set the name of the data file in the first line of the data step, which in this
case is fplot. Note that six different functions are listed in this data step,
but only one would be active (the line function) because the remainder are
comments. This is a useful programming trick to deactivate sections of code.
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data fplot;

* Minimum and maximum values of x;

xmin = -5;

* Use for ln function, must have x > 0;

*xmin = 0.001;

xmax = 5;

* Divisions between xmin and xmax (more = smoother graph);

xdiv = 100;

* Calculate step length;

xlength = (xmax-xmin)/xdiv;

* Find x and y = f(x) values for the plot;

do i=0 to xdiv;

x = xmin + i*xlength;

* Insert f(x) formula here;

* line function;

y = 2*x + 1;

* quadratic function;

*y = -x**2 + 2*x + 5;

* exponential function;

*y = exp(x);

* ln function;

*y = log(x);

* absolute value function;

*y = abs(x);

* normal distribution;

*mu = 1;

*sig2 = 1;

*y = (1/sqrt(2*3.14159*sig2))*exp(-((x-mu)**2)/(2*sig2));

* Output x and y to SAS data file;

output;

end;

run;

The resulting data are then printed using the SAS print procedure (SAS
Institute Inc. 2016b), using the syntax below. The option data=fplot tells the
print procedure to use this particular data file. If this option were omitted,
the last data file created would automatically be used. The run statement
tells SAS that the proc print command is complete and that it should get
busy printing the data file.

* Print data;

proc print data=fplot;

run;
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The gplot procedure is used to plot the function using the new data set
(see below) (SAS Institute Inc. 2016c). The plot statement tells SAS which
of your SAS variables are the x and y variables - the variable before the
asterisk (*) is the y variable, after it the x variable (it is the position that is
important, not the name of the variable). The href = 0 and vref = 0 options
make SAS draw vertical and horizontal lines through the origin (0, 0). The
symbol1 statement tells SAS to join the points with a line (i=join), draw no
symbol for each data point (v=none), and make the line connecting the points
red (c=red). The remainder of the options listed in the program are intended
to make the graph more legible by increasing the thickness of the lines and
size of the axes labels. If you are curious how they work, try experimenting
with the numbers given in the options. The quit statement returns control
to SAS after running the program.

* Plot y = f(x);

proc gplot data=fplot;

plot y*x=1 / href=0 vref=0 whref=3 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

See the full program listing below, a portion of the printed output, and
graphs for the various functions included in the program. Both the program
and complete output can be found on the website for this textbook.
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SAS program

* fplot.sas;

title "Plot a function y = f(x)";

title2 "Linear function";

data fplot;

* Minimum and maximum values of x;

xmin = -5;

* Use for ln function, must have x > 0;

*xmin = 0.001;

xmax = 5;

* Divisions between xmin and xmax (more = smoother graph);

xdiv = 100;

* Calculate step length;

xlength = (xmax-xmin)/xdiv;

* Find x and y = f(x) values for the plot;

do i=0 to xdiv;

x = xmin + i*xlength;

* Insert f(x) formula here;

* line function;

y = 2*x + 1;

* quadratic function;

*y = -x**2 + 2*x + 5;

* exponential function;

*y = exp(x);

* ln function;

*y = log(x);

* absolute value function;

*y = abs(x);

* normal distribution;

*mu = 1;

*sig2 = 1;

*y = (1/sqrt(2*3.14159*sig2))*exp(-((x-mu)**2)/(2*sig2));

* Output x and y to SAS data file;

output;

end;

run;

* Print data;

proc print data=fplot;

run;

* Plot y = f(x);

proc gplot data=fplot;

plot y*x=1 / href=0 vref=0 whref=3 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;
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run;

quit;

etc.

Figure 2.1: fplot.sas - proc print
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Figure 2.2: fplot.sas - proc gplot

Figure 2.3: fplot.sas - proc gplot
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Figure 2.4: fplot.sas - proc gplot

Figure 2.5: fplot.sas - proc gplot
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Figure 2.6: fplot.sas - proc gplot

Figure 2.7: fplot.sas - proc gplot
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2.4 Solving linear equations

We next review how to solve a linear equation for x, a procedure that will
be useful in later developments. A linear equation has the general form

ax+ b = cx+ d (2.41)

where a, b, c, and d are constants that are possibly zero, while x is a variable.
We want to find a value of x that makes this equation true, meaning the two
sides of the equation are equal. To solve this problem, you perform the same
operations on both sides of the equation until you have x alone on one side
of the equation. The other side is then the answer to this problem (Schmidt
& Ayres 2003). More generally, a-d and x could also be more complicated
expressions that one manipulates to obtain an expression for x.

To illustrate this procedure, suppose we have the equation

5x− 4 = 3x− 3. (2.42)

Subtracting 3x from both sides of the equation, we get

2x− 4 = −3. (2.43)

We next add 4 to both sides to obtain

2x = 1. (2.44)

Dividing both sides by 2 we obtain the solution

x = 1/2. (2.45)

If you want to check if the solution is correct, you can always substitute it
back into the original equation. We have

5(1/2)− 4 = 3(1/2)− 3 (2.46)

2.5− 4 = 1.5− 3 (2.47)

−1.5 = −1.5. (2.48)

So x = 1/2 is in fact the correct solution.
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2.5 Roots of equations

For a particular function y = f(x), it is often useful to find the values of x
for which y = f(x) = 0. Values of x for which this is true are called the roots
of the equation f(x) = 0 (Schmidt & Ayres 2003). Graphically, the roots
are the values of x where the function crosses the x-axis, i.e., the function is
equal to zero. It is possible to find the roots for many functions algebraically,
but not every function has roots, and for some functions they can only be
found numerically using software and a computer.

Roots are easy to find for linear functions. Recall that a linear function
takes the general form

y = a+ bx (2.49)

where a and b are constants. We want to find values of x for which

a+ bx = 0 (2.50)

We then use the rules for solving linear equations to find x. Subtracting a
from both sides and dividing by b, we obtain

x =
−a
b

(2.51)

Suppose that a = 1 and b = 2, so that our function is

y = 1 + 2x. (2.52)

It follows that the root of this function is x = −a/b = −1/2. If we examine
the graph generated earlier for this function, we see that the function indeed
crosses the x-axis at x = −1/2.

We can also find the roots for quadratic functions using, logically enough,
the quadratic formula. Recall that a quadratic function takes the general
form

y = ax2 + bx+ c (2.53)

We want to find values of x for which

ax2 + bx+ c = 0. (2.54)

The quadratic formula says that the roots are given by the equation

x =
−b±

√
b2 − 4ac

2a
(2.55)



2.6. CALCULUS 37

We previously plotted a quadratic function of the form

y = −x2 + 2x+ 5 (2.56)

To find the roots, we need to solve the equation

−x2 + 2x+ 5 = 0 (2.57)

Inspecting this equation, we see that a = −1, b = 2, and c = 5. Inserting
these values in the quadratic formula, we obtain

x =
−2±

√
22 − 4(−1)5

2(−1)
=
−2±

√
24

−2
(2.58)

=
−2± 4.90

−2
=
−6.90

−2
,
2.90

−2
= 3.45,−1.45 (2.59)

The roots of this quadratic equation are therefore equal to 3.45, 1.45. This
result agrees with the graph drawn earlier.

2.6 Calculus

We will make only limited use of calculus in this course, but it is useful
to review the concepts of derivatives and integrals. Derivatives are often
used in estimating the parameters of statistical models through a method
called maximum likelihood (Chapter 8). Integrals are used to generate the
probabilities associated with confidence intervals, statistical tests, and other
procedures. For example, the statistical tables given in Chapter 23 were all
generated using integrals.

2.6.1 Derivatives

A derivative of a function y = f(x) is defined to be the slope of the function
at a particular value of x. Recall that the slope is defined as the change in
y divided by the change in x. The mathematical definition of a derivative is
given by the equation

lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(2.60)
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Figure 2.8: Definition of a derivative

where ∆x is the change in x, while ∆y is the change in y, defined as f(x +
∆x)− f(x) (Schmidt & Ayres 2003). This equation says that the derivative
is given by the limit, as ∆x goes to zero, of the slope ∆y/∆x. See also Fig.
2.8. The derivative of a function may be written as dy

dx
or f ′(x).

Now suppose we have a linear function like

y = ax+ b. (2.61)

The derivative of this function is simply a, the slope of the line. It is equal to
a regardless of the value of x, because a line has the same slope everywhere.
We would write this as dy

dx
= a or f ′(x) = a.

Assume now that we have a quadratic function. There is a formula for
the derivative of a power of x that is often useful. If y = f(x) = kxn, where
k and n are any constants, then

dy

dx
= knxn−1. (2.62)

We can use this formula to find the derivative of a quadratic function of the
form

y = ax2 + bx+ c. (2.63)
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We have
dy

dx
= a(2)x2−1 + b(1)x1−1 + 0 = 2ax+ b. (2.64)

To obtain this result, we also made use of the fact that the derivative of a
constant (c in this case) is always zero (because it is unchanging), and that
the derivative of a sum of functions is the sum of the derivatives.

One important application of the derivative in statistics is to find the
maximum or minimum of a function. In particular, the derivative of a func-
tion is equal to zero at the maximum or minimum. This follows because a
function that has a maximum must eventually stop rising and begin to fall,
and at that point the slope is equal to zero. The same reasoning applies to
a minimum.

To find the maximum or minimum for our general quadratic function, we
set dy/dx = 0 and solve for x. We have

dy

dx
= 2ax+ b = 0. (2.65)

Solving this linear equation for x, we find that the maximum or minimum
will occur at x = −b

2a
.

2.6.2 Function plot with derivative - SAS demo

We will plot a quadratic function and its derivative to observe the relationship
between the two. Suppose that we have the following quadratic function:

y = −x2 + 2x+ 5. (2.66)

The derivative of this function is

dy

dx
= −2x2−1 + 2(1)x1−1 + 0 = −2x+ 2. (2.67)

We can find the minimum or maximum of this function by setting the deriva-
tive equal to zero and solving for x. We have

−2x+ 2 = 0 (2.68)

for which the solution is x = 1.
We will now plot both y and dy/dx using a revised version of our plotting

program. This program calculates both y and dy/dx within the do loop,
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then plots both sets of points on the same graph using the overlay option in
proc gplot. See SAS program and output below.

Note that the derivative of this quadratic function is a straight line with a
slope of -2 and an intercept of 2. It equals zero at the point where it intercepts
the x-axis, which also corresponds to the maximum of the quadratic function.
Our calculation above shows this occurs at x = 1.
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SAS program

* fplot_deriv.sas;

title "Plot a function and its derivative";

title2 "Quadratic function";

data fplot2;

* Minimum and maximum values of x;

xmin = -5;

xmax = 5;

* Divisions between xmin and xmax (more = smoother graph);

xdiv = 100;

* Calculate step length;

xlength = (xmax-xmin)/xdiv;

* Find x, y = f(x), and dy/dx values for the plot;

do i=0 to xdiv;

x = xmin + i*xlength;

* quadratic function;

y = -x**2 + 2*x + 5;

* derivative of this function;

dydx = -2*x + 2;

* Output x, y, and dydx to SAS data file;

output;

end;

run;

* Print data;

proc print data=fplot2;

run;

* Plot y = f(x) and dydx;

proc gplot data=fplot2;

plot y*x=1 dydx*x=2 / href=0 vref=0 overlay whref=3 wvref=3 vaxis=axis1

haxis=axis1;

symbol1 i=join v=none c=red width=3;

symbol2 i=join v=none c=blue width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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etc.

Figure 2.9: fplot deriv.sas - proc print
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Figure 2.10: fplot deriv.sas - proc gplot
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2.6.3 Integrals

Statistics makes heavy use of integrals in working with the normal and other
statistical distributions, although statistical tables or software typically do
the work for the end user. For example, tables of the normal distribution
provide probabilities for certain intervals - these probabilities are actually
areas under the bell-shaped curve and are calculated by integration.

One kind of integral often encountered in statistics is a called a definite
integral. It is basically the area A under a function f(x) over some range of
x values, say a < x < b. It is written mathematically as the equation

A =

∫ b

a

f(x)dx. (2.69)

Here the symbol
∫

is the integral sign, with the range of x values (a < x < b)
shown as sub- and superscripts of the integral sign.

To make things more concrete, we will illustrate definite integrals using
the normal distribution function. Consider this function for µ = 5 and
σ2 = 1, and the area A under it from x = 5 to x = 6 (Fig. 2.11). If we
were modeling the behavior of some biological variable (say body mass of a
small animal) using this distribution, the area A would be the probability
that an animal falls within this range of x values. It would be expressed in
mathematical terms as the integral

A =

∫ b

a

1√
2πσ2

e−
(x−µ)2

2σ2 dx =

∫ 6

5

1√
2π
e−

(x−5)2

2 dx. (2.70)

How is the area A actually calculated through integration? We can approxi-
mate this area by dividing it into strips of width ∆x = 0.25 and height f(x)
given by the normal distribution function (Fig. 2.12). Adding the areas of
these strip, we obtain A ≈ 0.099 + 0.093 + 0.080 + 0.068 = 0.340. If we
increased the number of strips while simultaneously decreasing the width of
the strips ∆x, we would get an even more accurate approximation to A.
The integral is defined as the limit of this process, as the number of strips
approaches infinity and their width ∆x → 0 (Schmidt & Ayres 2003). The
exact value of the area obtained through this process is A = 0.341.
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Figure 2.11: Plot of the normal distribution for µ = 5 and σ2 = 1.

Figure 2.12: Plot of the normal distribution for µ = 5 and σ2 = 1.
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2.8 Problems

1. Suppose that you have the quadratic function y = x2 − 2x − 8. Find
the roots of this function, then determine the value of x that minimizes
it. Plot the function using SAS, attaching your program, output, and
graph.

2. Consider the quadratic function y = −2x2 + 5x+ 5. Find the roots of
this function, then determine the value of x that maximizes it. Plot the
function and its derivative dy/dx using SAS, attaching your program,
output, and graph.

3. Plot the function y = 0.5λ3x2 exp(−λx) for λ = 2 and 0 ≤ x ≤ 5
using SAS. Attach your program, output, and graph. This function
is a special case of the gamma distribution, a probability distribution
often used to model continuous data (see Chapter 6).
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Chapter 3

Populations and Statistics

This chapter covers two topics that are fundamental in statistics. The first
is the concept of a statistical population, which is the basic unit on which
statistics are conducted and inferences made. We then examine descriptive
statistics and frequency distributions, which are used quantify the properties
of samples from a statistical population.

3.1 Statistical populations

Suppose we want to estimate the body length of an insect species in a partic-
ular location, say a forest stand. We sample the insects in some way (traps,
sweep nets, locate them visually, etc.), and average their lengths to obtain an
estimate of insect length. We can therefore make some inference about insect
lengths in this particular forest stand, which we can call a statistical pop-
ulation. A statistical population is defined by both the question of interest
(insect length) as well as the sampling method. If we sample insects in only a
single forest stand, then the statistical population is length in that stand, not
other stands. This is commonly called the scope of inference of the study.
If we sampled within multiple stands in a forest, then we could potentially
examine length for the forest as whole, which would be a different statisti-
cal population and the scope of inference would be broader. The sampling
technique itself can also affect the statistical population. For example, only
a subset of insects might be caught with sweep nets (maybe slower, smaller
ones) and this would be a different set than those found visually. The two
sampling techniques might therefore define different statistical populations.

49
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Biologists are continually searching for better methods of sampling organ-
isms, ones that better represent their true properties. In many cases the
idea is to approximate what is known as random sample of the statistical
population (see Chapter 8).

In the insect length example above, the statistical population coincides
with individual insects in a location. However, the observations compris-
ing a statistical population can be other quantities. For example, suppose
we want to estimate the abundance of these insects using traps. We could
deploy several traps in the stand, and then average the number of insects
caught to estimate their abundance. The statistical population in this case
would consist of number of insects caught in traps deployed at that location,
rather than individual insects. Or one might be interested in soil nitrogen
levels in the stand, estimated using core samples. In this case, the statistical
population would be the nitrogen levels in core samples at this location.

Another type of statistical population involves experiments. Suppose
we are interested in trapping the same insects in the forest stand, but now
have traps baited with different attractants, say A, B, and C. Several traps
are baited with each attractant, and the number of insects caught observed
for each trap. We are interested in whether the number of insects caught
varies with the attractant used. In this case, the statistical population would
be trap catches for the different attractants. Similarly, suppose we were
interested in the effect of different commercial diets on the growth rate of fish.
Different fish would be fed the various diets and their growth rate observed.
Here the statistical population would be the growth rate of individual fish
for the different diets. Experiments also have a scope of inference. If we use
four particular diets to grow fish, our conclusions are restricted to these four
diets and not other diets. If the experiment used a particular strain of fish,
our inferences would also be restricted to this strain.

3.2 Descriptive statistics and frequency

Given a sample from a statistical population, the first step in understand-
ing its properties is to calculate a number of descriptive statistics. Some
statistics give you an idea of the overall magnitude or location of the data,
and are traditionally called statistics of location. We will examine two
such statistics, the sample mean and the median. Other statistics give an
indication of the scatter or spread of the data, and are called statistics of
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dispersion. These include the sample variance, standard deviation, the co-
efficient of variation, and range of the data. Another important tool is the
frequency distribution of the sample, often plotted as a histogram indi-
cating the frequency of different values in the sample. Three other statistics,
the mode, skewness, and kurtosis, provide information on the shape of this
frequency distribution.

To illustrate how the various descriptive statistics are calculated, we will
use a small subset of a larger data set on the elytra length for a predatory
beetle, Thanasimus dubius (Coleoptera: Cleridae). This predator attacks
insects known as bark beetles, some species of which are serious pests of
coniferous forests (Berryman 1988). Beetles have two pairs of wings. The
first pair, the elytra, act as covers for a membraneous second pair that are
used in flight. The data are drawn from a rearing study of T. dubius, in
which elytra length (mm) was used as a overall index of body size (Reeve
et al. 2003). The subset data are for eight female T. dubius and are listed
below:

5.2 4.2 5.7 5.4 4.0 4.5 5.2 4.2

We will later examine the full data set consisting of 130 individuals using
SAS programs.

3.2.1 Sample mean

The sample mean is the average of the values in the sample, and is symbolized
as Ȳ . It is commonly used as a measure of the location or center of the
observations. If Y1, Y2, . . . , Yn represent the observations in a sample from
a statistical population, where n is the sample size, the sample mean is
calculated using the formula

Ȳ =
Y1 + Y2 + . . .+ Yn

n
=

∑n
i=1 Yi
n

. (3.1)

The symbol
∑n

i=1 stands for summing the observations, beginning with i = 1
and ending with i = n. The units of Ȳ are the same as those for the Yi values.

For our sample data set involving n = 8 elytra from female T. dubius
beetles, we have

Ȳ =
5.2 + 4.2 + 5.7 + 5.4 + 4.0 + 4.5 + 5.2 + 4.2

8
=

38.4

8
= 4.8 mm. (3.2)
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3.2.2 Median

The median is defined as the middle value of the sample, after ordering the
sample from the smallest to the largest value. Suppose that Y[j] is the jth
value in the ordered data set, with Y[1] the smallest value and Y[n] the largest.
If n is odd, the median is equal to the middle value in the ordered data set,
or Y[n/2+1/2]. If n is even then the median is the average of the two middle
values, or (Y[n/2] + Y[n/2+1])/2.

To find the median for the elytra data set, we first order the observations
from smallest to largest. We have

j (order): 1 2 3 4 5 6 7 8
Y[j]: 4.0 4.2 4.2 4.5 5.2 5.2 5.4 5.7

Because n = 8 is even, the median is the average of the middle two ob-
servations, or (Y[n/2] + Y[n/2+1])/2 = (Y[8/2] + Y[8/2+1])/2 = (Y[4] + Y[5])/2 =
(4.5 + 5.2)/2 = 4.85.

Suppose now we had only n = 7 observations, with the ordered data set
equal to

j (order): 1 2 3 4 5 6 7
Y[j]: 4.0 4.2 4.2 4.5 5.2 5.2 5.4

Because n = 7 is odd, the median is the middle observation, or Y[n/2+1/2] =
Y[7/2+1/2] = Y[4] = 4.5 mm.

The median is also a measure of the location of the data, like the sample
mean Ȳ , but is less sensitive to very large or small values in the sample. For
example, suppose that the largest observation in the elytra data set was 100.0.
The median would be unchanged because the ordering of the observations is
unchanged, but now Ȳ = 16.8 mm, much larger than before.

The median represents a value that essentially divides the data in half,
with 50% of the observations lying above or below it. This is an example of a
statistic generically called quantiles or percentiles, with the median a 50%
quantile. Other commonly used quantiles are the 25% and 75% quantiles.
They and the median are sometime called quartiles because they divide the
data into four quarters.
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3.2.3 Sample variance

The sample variance, written as s2, is a measure of the dispersion or scatter
in the data around the sample mean. It is calculated using the formula

s2 =

∑n
i=1(Yi − Ȳ )2

n− 1
(3.3)

The sample variance s2 will be small if the observations cluster tightly around
Ȳ , because this makes (Yi − Ȳ )2 small. Conversely, if the observations are
widely scattered these terms will be large, making s2 large. The units of s2

are those of Yi, but squared.
To find s2 for the elytra data set, we first need to calculate the sample

mean. We previously found that Ȳ = 4.8 mm. We then calculate s2 using
the above formula. We have

s2 =
(5.2− 4.8)2 + (4.2− 4.8)2 + . . .+ (4.2− 4.8)2

8− 1
(3.4)

=
0.16 + 0.36 + 0.81 + 0.36 + 0.64 + 0.09 + 0.16 + 0.36

7
(3.5)

=
2.94

7
= 0.42 mm2. (3.6)

3.2.4 Standard deviation

The sample standard deviation, written as s, is simply the square root of s2.
We have

s =
√
s2 (3.7)

For the elytra example, we have s =
√
s2 =

√
0.42 = 0.645 mm. The units of

s are the same as those of Yi, which makes it more comparable to statistics
of location like Ȳ .

3.2.5 Coefficient of variation

The coefficient of variation, or CV , provides a measure of the variability
of the observations expressed as a percentage of the sample mean. It is
calculated using the formula

CV = 100%× s

Ȳ
. (3.8)
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Using the elytra data where s = 0.645 mm and Ȳ = 4.8 mm, we have

CV = 100%× 0.645

4.8
= 13.4% (3.9)

The CV allows one to compare the variability of observations on variables
that have different means. For example, suppose that we want to compare
variability in T. dubius elytra length with variability in another predator that
has a longer overall length. For biological variables like length, the standard
deviation s often seems proportional to the sample mean Ȳ . If we divide s
by Ȳ , as in the CV, we can control to some extent the influence of Ȳ on
variability. This allows us to compare variability in length across the two
predators on a more even basis.

3.2.6 Range

The range is defined as the difference between the largest and smallest ob-
servations, i.e.,

range = Ymax − Ymin, (3.10)

where Ymax is the largest observation and Ymin is the smallest. For the
elytra data, we have Ymax = 5.7 and Ymin = 4.0, so

range = 5.7− 4.0 = 1.7 mm. (3.11)

The range is another statistic of dispersion, but has some problems. The
range tends to increase in size as the sample size n increases, because larger
samples are more likely to yield very small or large observations. This is not
the case for s2 or s.

3.2.7 Frequency distributions - SAS demo

Frequency distributions are another way of summarizing and describing a
sample from a statistical population. They typically take the form of a
histogram showing the frequency of different observations in the sample.
We will use SAS to construct frequency distributions as well as calculate
descriptive statistics like Ȳ , s2, and so forth. We will use the full elytra
data set for T. dubius (Reeve et al. 2003) to illustrate these calculations (see
Chapter 22). This data set contains both male and female beetles, and we
will conduct separate analyses for each sex.
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The program first uses a data step to read in the observations and make
a data file (SAS Institute Inc. 2016a). The line

data elytra;

tells SAS to set up a data file named elytra. If you omit a name from this
statement, SAS will automatically generate one for you. The line

input sex $ length;

tells SAS to read in two variables and give them the names sex and length. It
also tells SAS to expect the data in the form of two columns. The $ symbol
after sex tells SAS that it is a character variable, consisting of a word or
letters rather than a number. The default is for a numeric variable. The line

datalines;

tells SAS that the following lines in the program are the actual data. The
program then lists the data, followed by another semicolon and then a run

statement (see below). The etc. in the data is not SAS code, but shorthand
for a longer data set. The run statement tells SAS the data step is over, and
also that it should process the data and generate a SAS data file.

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

We are now ready to do something with our newly minted SAS data file,
named elytra. It is usually a good idea just to print the data file to make
sure SAS correctly read the data. This is accomplished using the proc print

code listed below.
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* Print data set;

proc print data=elytra;

run;

The final lines of the SAS program invoke proc univariate to generate the
histogram and calculate a number of descriptive statistics (SAS Institute Inc.
2016b). The first and third lines are comments. The second line tells SAS
to call proc univariate using the elytra data set. The class statement tells
the procedure to conduct a separate analysis for each sex in the data set,
while the var statements tells it which variable to analyze, in this case the
variable length. The histogram statement asks for a histogram of length. The
option vscale=count tells SAS to make the vertical axis using counts of the
observations (the default uses percentages).

* Descriptive statistics and histograms;

proc univariate data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length / vscale=count;

run;

quit;

After running the program, we obtain output with various statistics of loca-
tion and dispersion, including the sample mean, median range, variance, and
standard deviation, as well as a graph showing the frequency distribution.
A separate analysis is generated for each sex (M or F) of the beetles. We see
that females have somewhat longer elytra than males (Ȳ = 4.940 mm vs.
4.713 mm), and there are small differences in other statistics. See a com-
plete program listing below and selected portions of the SAS output. The
complete output can be found on the website for this textbook.
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SAS Program

* descriptive.sas;

title ’Descriptive statistics for the elytra data’;

data elytra;

input sex $ length;

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Print data set;

proc print data=elytra;

run;

* Descriptive statistics and histograms;

proc univariate data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length / vscale=count;

run;

quit;
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etc.

Figure 3.1: descriptive.sas - proc print
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Figure 3.2: descriptive.sas - proc univariate
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Figure 3.3: descriptive.sas - proc univariate



3.2. DESCRIPTIVE STATISTICS AND FREQUENCY 61

Figure 3.4: descriptive.sas - proc univariate



62 CHAPTER 3. POPULATIONS AND STATISTICS

3.2.8 Mode

The mode is defined to be the most frequent value in the data set, and
is another statistic of location. The mode in itself does not have many
applications in biology, but is commonly used to describe the shape of a
frequency distribution for the sample (see above). For example, we describe
a frequency distribution as being unimodal if it has a single peak, and bimodal
if there are two peaks. Examining the SAS output listed above, we see that
female T. dubius beetles have a mode of 5.2 mm, while the mode for males
is 5.0 mm. Both distributions appear to be unimodal.

3.2.9 Skewness

Skewness is a measure of the symmetry of the frequency distribution. Distri-
butions that show an extended left tail to the frequency distribution, as well
as the pattern mode > median > mean, are said to be skewed to the left.
Fig. 3.5 shows an example of a left-skewed frequency distribution for some
variable y. Conversely, distributions with an extended right tail and the pat-
tern mean > median > mode are skewed to the right (Fig. 3.6). Skewness
can be quantified by calculating the statistic g1, given by the formula

g1 =
n

(n− 1)(n− 2)

n∑
i=1

(
Yi − Ȳ
s

)3

. (3.12)

The cubic terms here measure the asymmetry of the distribution. If the
distribution is skewed to the left, with more values farther to the left than
the right of Ȳ , there will tend to be large negative cubic terms, making
g1 < 0. Conversely, distributions skewed to the right will have large positive
cubic terms and g1 > 0. For distributions that are symmetrical we have
g1 ≈ 0. For example, a frequency distribution for normally-distributed data
would be symmetrical with g1 ≈ 0 (Fig. 3.7). For the elytra example, both
male and female T. dubius have frequency distributions that appear skewed
to the left, and also have negative g1 values. Skewness is most often used as
a description of the general shape of a distribution.
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Figure 3.5: Frequency distribution that is skewed left (g1 < 0).

Figure 3.6: Frequency distribution that is skewed right (g1 > 0).
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Figure 3.7: Frequency distribution for normal data (g1 ≈ 0).
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3.2.10 Kurtosis

Kurtosis is a measure of how peaked or flat is a frequency distribution relative
to the normal distribution. Distributions with a stronger central peak than
the normal, and heavier left and right tails, are called leptokurtic (compare
Fig. 3.8 and 3.10). Conversely, distributions with a weak peak and tails are
called platykurtic (see Fig. 3.9 vs. 3.10). Kurtosis is quantified by calculating
the statistic g2:

g2 =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(
Yi − Ȳ
s

)4

− 3(n− 1)2

(n− 2)(n− 3)
. (3.13)

The behavior of the terms in g2 is less intuitive than those in the skewness
statistic g1. In any event, distributions that are leptokurtic have values of
g2 > 0, while platykurtic ones have g2 < 0, with g2 ≈ 0 for distributions
resembling the normal. For the elytra example, male T. dubius have a lep-
tokurtic distribution with g2 = 1.003, and the frequency distribution shows
a strong central peak with heavy tails. The value of g2 = 0.161 is smaller
for female T. dubius, suggesting a shape more similar to the normal distri-
bution. Like skewness, kurtosis is used to describe the general shape of the
distribution.
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Figure 3.8: Frequency distribution that is leptokurtic (g2 > 0).

Figure 3.9: Frequency distribution that is platykurtic (g2 < 0).
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Figure 3.10: Frequency distribution for normal data (g2 ≈ 0).
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3.2.11 Development time - SAS demo

We now examine another data set involving the development time of T.
dubius reared under laboratory conditions (Reeve et al. 2003). Two different
development times were measured, the time from the first larval stage until
the prepupal stage, and the prepupal to adult stage. The program used
to analyze these data is listed below. The input line is different than our
previous program, because there are two variables (time_pp and time_adult)
to analyze for each insect listed, which occur in two columns. The var and
histogram statements in proc univariate are similar, listing the two variables
so that descriptive statistics and frequency distributions are generated for
both.

Note the periods (. values) given in the data set - these indicate missing
values to SAS. In this study, observations were missing usually because the
insect died before reaching the adult stage, but missing values can also be
used to indicate lost data. The full data set for this example is listed in
Chapter 22.

After running the program, we obtain output with statistics of loca-
tion and dispersion as well as a frequency distribution, with a separate
analysis for each variable. Clearly the larval-prepupal development time
(time_pp) is shorter than the prepupal adult (time_adult) one (Ȳ = 31.354
vs. 75.353 days), and also shows less variability as indicated by the sam-
ple standard deviation (s = 3.328 vs. 26.347 days). Both variables appear
to be skewed to the right, as indicated by positive values of g1 as well as
the result that mean > median > mode. Larval-prepupal development time
shows little kurtosis (g2 = 0.047), while prepupal-adult time apparently has
a platykurtic distribution (g2 = −0.624). This can also be observed in the
frequency distribution for this variable, which is relatively flat compared to
previous examples. Note that the distribution also appears to be somewhat
bimodal, with two peaks of development time.
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SAS Program

* descriptive_2.sas;

title ’Descriptive statistics for the development data’;

data devel_time;

input time_pp time_adult;

datalines;

34 65

31 48

29 .

30 55

32 62

etc.

29 .

29 108

31 103

33 .

29 92

;

run;

* Print data set;

proc print data=devel_time;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=devel_time;

var time_pp time_adult;

histogram time_pp time_adult / vscale=count;

run;

quit;
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etc.

Figure 3.11: descriptive2.sas - proc print

Figure 3.12: descriptive2.sas - proc univariate
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Figure 3.13: descriptive2.sas - proc univariate

Figure 3.14: descriptive2.sas - proc univariate
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Figure 3.15: descriptive2.sas - proc univariate
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3.2.12 Frequency distributions for categorical data -
SAS demo

The descriptive statistics we have developed so far are appropriate for con-
tinuous or discrete data. What about categorical data? One common way of
summarizing categorical data is a frequency distribution, showing the num-
ber of occurrences in each category and possibly also their percentages. We
can illustrate this process using the elytra data. There is one categorical
variable in this data set, the sex of the beetle, and we might be interested
in whether there were equal numbers of males and females. It also possible
to derive categorical variables from the observations themselves. Suppose we
classify a beetle as being ‘small’ if length is less than 5.0 mm, and ‘large’
otherwise. We can define this new variable within the SAS data set using an
if-then-else statement. The code necessary to generate this new variable for
the elytra data is shown below. It generates a new variable called size that
takes the value small or large depending on the value of length.

* descriptive_freq.sas;

title ’Frequency distribution for the elytra data’;

data elytra;

input sex $ length;

* Classify insects into two groups by size;

if length < 5.0 then size="small"; else size="large";

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

We can then generate a frequency distribution for both sex and size using
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proc freq (SAS Institute Inc. 2016b). The tables sex*size statement will
generate a two-way table of frequencies, classifying each observation into one
of four categories (female-large, female-small, male-large, male-small). See
below.

* Frequency distribution;

proc freq data=elytra;

table sex*size;

run;

The complete program and output are listed below. From the frequency table
generated by proc freq, we see that there are more males than females in the
data set, and more small vs. large insects. Female beetles have a greater
proportion of large insects than males.
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SAS Program

* descriptive_freq.sas;

title ’Frequency distribution for the elytra data’;

data elytra;

input sex $ length;

* Classify insects into two groups by size;

if length < 5.0 then size="small"; else size="large";

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Print data set;

proc print data=elytra;

run;

* Frequency distribution;

proc freq data=elytra;

table sex*size;

run;

quit;
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etc.

Figure 3.16: descriptive freq.sas - proc print

Figure 3.17: descriptive freq.sas - proc freq
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3.4 Problems

1. For the data below, find the mean, median, variance, standard devia-
tion and CV using the formulas for these quantities and a calculator.
Show the steps in your calculations. Feel free to check your answers
using SAS.

88.6 88.0 89.8 92.0 108.1 113.6 103.4 109.9 94.5 96.7 101.7

2. Ten adult females of the zooplankton species Daphnia ambigua were
selected and their carapace length measured (µm) (Lei & Armitage
1980). The following data were obtained:

487 429 428 378 410 401 358 392 414 480

Calculate the mean, median, variance, standard deviation, and CV for
these data by hand. Show all your calculations. Check your answers
using SAS.

3. A laboratory study was conducted on the development time of another
bark beetle predator, Temnochila virescens (Coleoptera: Trogositidae).
The numbers listed below are the larval development time (days) of 35
insects.

73 65 58 54 78 57 90

103 59 52 73 67 67 53

59 55 58 78 64 60 52

96 68 81 76 77 57 79

71 74 65 65 64 56 62

(a) Use SAS to find the mean, median, mode, variance, standard de-
viation, and CV of these data, then plot a frequency distribution.
Attach your program, output, and graph.

(b) Examine the frequency distribution and skewness value (g1) for
these data. Do the data appear to be skewed, and if so in what
direction? Explain your answer.



Chapter 4

Probability Theory

Probability theory is a branch of mathematics that is an essential component
of statistics. It originally evolved from efforts to understand the odds and
probabilities involved in games of chance, called classical probability theory
(Weatherford 1982). The modern theory is developed from a small number
of a priori axioms (like other mathematical theories) from which the rest
the theory is deduced, including the behavior of probabilities and various
rules for calculating them (Kolmogorov 1951, Weatherford 1982). While
theoretical in origin, probability theory has proven to be spectacularly useful
because it provides explanations for many natural processes, as well as the
mathematical underpinnings for an enormous range of statistical procedures
in the sciences.

4.1 Probability theory

4.1.1 Events

We can develop many elements of probability theory using a simple example,
a single throw of a dice cube. If we throw the cube once, there are six possible
outcomes corresponding to 1, 2, . . ., or 6 spots appearing on the cube. We
call the possible outcomes of this single throw of a dice cube a sample space
S, commonly written using set notation as

S = {1, 2, 3, 4, 5, 6} (4.1)

We now define as events various subsets of the elements in S. Simple
events contain exactly one element of S. For S defined above, the simple

79
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events are {1}, {2}, {3}, {4}, {5}, and {6}. More specifically, the event {2}
signifies that a single throw of a dice cube showed two spots. More complex
events contain more than one element of S. For example, consider the event
A that the number of spots is odd, meaning that either one, three, or five
spots showed on the dice cube after a single throw. We would write this
event as the set A = {1, 3, 5}. Another possible event B is that the number
of spots is less than or equal to three, or B = {1, 2, 3}. An event C such that
number of spots is even would be written as C = {2, 4, 6}. Technically, both
S itself and the empty set φ = {} are also possible events. S would always
happen no matter the outcome of the throw, because some number of spots
always occurs. The event corresponding to the empty set φ = {} would
never happen because some number of spots always occurs after a throw.
Sometimes certain events are subsets of other ones. For example, the event
A defined above is a subset of S because every element of A is contained in
S. This is written as A ⊂ S using set notation.

4.1.2 Union, intersection, and complement of events

We now consider various combinations of events, again using our dice exam-
ple. The union of two events A and B is defined to be the set containing
all the simple events in A and B. The union is written using the notation
A ∪ B. For example, consider two of the events defined above for the dice
example, A = {1, 3, 5} (the number of spots is odd) and B = {1, 2, 3} (the
number of spots is less than or equal to three). We have

A ∪B = {1, 3, 5} ∪ {1, 2, 3} = {1, 2, 3, 5}. (4.2)

The union of two events can also be visualized using Venn diagrams, with
the events A and B represented by circles and the shaded area their union
(Fig. 4.1). The rectangle labeled S represents the entire sample space.

The intersection of two events A and B is defined to be the set contain-
ing simple events present in both A and B. The intersection is written using
the notation A ∩ B or just AB. For example, consider the events A and B
from the dice example. We have

A ∩B = {1, 3, 5} ∩ {1, 2, 3} = {1, 3}. (4.3)

The intersection of these two events is shown by the shaded area in Fig.
4.2. It is possible to have the intersection of two events be the empty set φ.
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Consider the events A (spots is odd) and C (spots even) for the dice example.
We have

A ∩ C = {1, 3, 5} ∩ {2, 4, 6} = {} = φ. (4.4)

Fig. 4.3 shows this outcome, with no shaded area because the intersection is
empty. When the intersection of two events is the empty set, we say the two
events are mutually exclusive. This means either one or the other event
has occurred – it is impossible for them to happen at the same time.

The complement of an event A is the set of simple events in S remaining
after we subtract those in A, typically written as Ac. For the event A =
{1, 3, 5} from the dice example, we have Ac = {2, 4, 6}, the simple events
remaining in S after we substract those in A. Using set notation, Ac =
S − A = {1, 2, 3, 4, 5, 6} − {1, 3, 5} = {2, 4, 6}. We can also represent Ac in
a diagram with the shaded area representing all outcomes outside of A (Fig.
4.4). Complements of events frequently arise in the use of statistical tables.

Figure 4.1: A ∪B = {1, 2, 3, 5}.
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Figure 4.2: A ∩B = {1, 3}.

Figure 4.3: A ∩ C = φ.
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Figure 4.4: AC = {2, 4, 6}.
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4.1.3 Probability distributions

We now describe how probabilities are attached to events using a probability
distribution, which can be mathematically defined based on certain axioms
(Mood et al. 1974). Here, we simply list a number of properties of probability
distributions that are useful to the practicing statistician. Let the symbol
P [A] stand for the probability of some event A. For a sample space S and
any two events A and B, we have

1. P [A] ≥ 0.

2. P [S] = 1.

3. P [φ] = 0, where φ is the empty set.

4. P [A ∪B] = P [A] + P [B]− P [A ∩B].

5. P [Ac] = 1− P [A].

While we have listed some of the properties of a probability distribution,
we have not actually defined one yet. Recall the dice example, in which a
single dice cube is thrown and the number of spots observed. If the cube
is fair, then it is reasonable to assume that each number is equally likely to
occur, and there are six possible numbers, so we assign a probability of 1/6
to each number. In particular, we have

P [{1}] = P [{2}] = P [{3}] = P [{4}] = P [{5}] = P [{6}] = 1/6 (4.5)

How should we assign probabilities to events like A = {1, 3, 5}? We define
these events to have a probability equal to the sum of the probabilities for
each simple event within them. For example, we have

P [A] = P [{1, 3, 5}] = P [{1}] + P [{3}] + P [{5}] (4.6)

= 1/6 + 1/6 + 1/6 = 3/6 = 1/2. (4.7)

This result also makes intuitive sense for the event A, because we would
expect the dice cube to produce an odd number of spots half of the time. We
can view this probability distribution as a model of the dice cube’s behavior,
which would be accurate if the dice cube is fair. This is a common task
faced by a statistician in analyzing a problem – determine an appropriate
probability distribution to describe a particular type of data.
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We will now calculate the probabilities for certain events to illustrate
how this probability distribution can be used. Recall that the sample space
for this distribution is S = {1, 2, 3, 4, 5, 6}. Suppose we have three events,
namely A = {1, 3, 5} (an odd number of spots), B = {1, 2, 3} (less than or
equal to three spots), and C = {2, 4, 6} (an even number of spots).

We have already illustrated how to find the probability for A. For B, we
have

P [B] = P [{1, 2, 3}] = P [{1}] + P [{2}] + P [{3}] (4.8)

= 1/6 + 1/6 + 1/6 = 3/6 = 1/2. (4.9)

For C the probability is

P [C] = P [{2, 4, 6}] = P [{2}] + P [{4}] + P [{6}] (4.10)

= 1/6 + 1/6 + 1/6 = 3/6 = 1/2. (4.11)

For the sample space S, which is also an event, we have

P [S] = P [{1, 2, 3, 4, 5, 6}] (4.12)

= P [{1}] + P [{2}] + P [{3}] + P [{4}] + P [{5}] + P [{6}] (4.13)

= 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6 = 1. (4.14)

We also have P [{}] = P [φ] = 0 because it is impossible to have no spots
showing on the dice cube.

What is the probability for A ∩B? We have

P [A ∩B] = P [{1, 3, 5} ∩ {1, 2, 3}] = P [{1, 3}] (4.15)

= P [{1}] + P [{3}] = 1/6 + 1/6 = 1/3. (4.16)

For A∪B we can calculate the probability in two ways. We can directly find
it as follows. We have

P [A ∪B] = P [{1, 3, 5} ∪ {1, 2, 3}] = P [{1, 2, 3, 5}] (4.17)

= P [{1}] + P [{2}] + P [{3}] + P [{5}] (4.18)

= 1/6 + 1/6 + 1/6 + 1/6 = 2/3. (4.19)

We can also use the formula listed in Property 4 to find this probability. We
have

P [A ∪B] = P [A] + P [B]− P [A ∩B] (4.20)

= 1/2 + 1/2− 1/3 = 2/3. (4.21)
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We obtain the same answer as by direct calculation.
We can understand how the Property 4 formula works by considering the

diagram for A ∪ B (Fig. 4.1). Suppose that the shaded area for event A
represents the probability for A, and similarly for event B. If we add P [A]
and P [B] together, this would actually be greater than P [A ∪ B] because it
counts the area of the intersection (A∩B) twice. This explains why we need
to subtract P [A ∩B] in Property 4 to obtain P [A ∪B].

We now find the probability for Ac. We can directly calculate it by finding
the probability for Ac = S − A = {1, 2, 3, 4, 5, 6} − {1, 3, 5} = {2, 4, 6}, so
P [Ac] = P [{2, 4, 6}] = 1/2. Alternately, by Property 5 above,

P [Ac] = 1− P [A] = 1− 1/2 = 1/2. (4.22)

Property 5 can also be explained by a diagram. The rectangle in Fig. 4.4
represents the sample space S, and by Property 2 we have P [S] = 1. If the
circle for event A represents P [A], then clearly P [Ac] = 1− P [A].

4.1.4 Probability spaces

The combination of a sample space S, a collection of all possible events on
the sample space (A,B, S, φ, etc.), and a probability distribution is called a
probability space.

4.1.5 Independence of events

Independence of events is an important concept in statistics, and basically
implies that an event A has no effect on whether B occurs, and vice versa.
In terms of probabilities, two events A and B are defined to be independent
if

P [A ∩B] = P [A]P [B]. (4.23)

Are the events A = {1, 3, 5} and B = {1, 2, 3} defined for the dice cube
example independent? We have

P [A ∩B] = P [{1, 3, 5} ∩ {1, 2, 3}] = P [{1, 3}] = 1/3. (4.24)

However,
P [A]P [B] = 1/2× 1/2 = 1/4. (4.25)

This implies thatA andB are not independent because P [A∩B] 6= P [A]P [B].
To see why this happens, observe that when the number of spots is less than
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or equal to three (B occurs), the number of spots is more likely to be odd
(A occurs) because two of the three outcomes in B are odd.

We now work an example where the two events are independent. Suppose
that D = {1, 2, 3, 4}, the event that the number of spots is less than or equal
to four. Are A and D independent? We have

P [A ∩D] = P [{1, 3, 5} ∩ {1, 2, 3, 4}] (4.26)

= P [{1, 3}] = 1/6 + 1/6 = 1/3, (4.27)

and

P [A]P [D] = 1/2× P [{1, 2, 3, 4}] (4.28)

= 1/2× (1/6 + 1/6 + 1/6 + 1/6) (4.29)

= 1/2× 2/3 = 1/3. (4.30)

This implies that A and D are independent because P [A ∩D] = P [A]P [D].
This outcome seems reasonable – when the number of spots is less than or
equal to four (D occurs), the probability of the number of spots being odd
is still equal to 1/2 because half of the outcomes in D are odd.

4.1.6 Conditional probability

Suppose that an event B has already happened, so that we have some infor-
mation on a particular system or situation. Could this affect the probability
that some other event A would occur? This is the idea behind conditional
probability, an important concept in statistics that is related to indepen-
dence. The conditional probability of an event A, given that B has occurred,
is given by the formula

P [A|B] =
P [A ∩B]

P [B]
. (4.31)

The notation ‘A|B’ is read as A given B. For the dice cube example, what
is the conditional probability of A = {1, 3, 5} given that B = {1, 2, 3} has
occurred? We have

P [A|B] =
P [A ∩B]

P [B]
=

1/3

1/2
= 2/3. (4.32)

Note that the P [A|B] > P [A] because 2/3 > 1/2. Thus, if B has occurred it
is more likely that A occurs, because two of three outcomes in B are odd.
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If two events are independent, implying that P [A∩B] = P [A]P [B], then
we have

P [A|B] =
P [A ∩B]

P [B]
=
P [A]P [B]

P [B]
= P [A]. (4.33)

Thus, if two events are independent then the fact that B has occurred does
not alter the probability for A. We can illustrate this for the dice cube
example using the events A = {1, 3, 5} and D = {1, 2, 3, 4}, which we earlier
showed to be independent. We have

P [A|D] =
P [A ∩D]

P [D]
=
P [A]P [D]

P [D]
(4.34)

=
1/3

2/3
= 1/2 = P [A]. (4.35)

Thus, if D has occurred it has no effect on the probability of A occurring.
This follows because half the events in D are odd, and so the probability of
obtaining an odd number (1/2) is exactly the same as the original probability.

4.1.7 A biological probability distribution

We now examine a more biological example involving the infection of amphib-
ians by the chytrid fungus Batrachochytrium dendrobatidis , which appears
responsible for the decline of amphibians in some regions (Lips et al. 2006).
Certain amphibian species appear less susceptible than others by virtue of
natural immunity or their ecological traits (Lips et al. 2003), and we would
expect infection rates to therefore vary among species. Suppose we know that
at a particular location the amphibians can be classified into three common
species (A, B, and C) that can also be divided into infected and uninfected
individuals, with the frequency of individuals in each category having the
distribution given in Table 4.1. In practice, we would need to estimate these
proportions, but we will assume they are already known.
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Table 4.1: Proportions of individuals from three amphibian species (A, B,
and C), classified as infected (Yes) or free of chytrid fungus (No).

Species
A B C

Infected
No 0.25 0.2 0.15
Yes 0.25 0.1 0.05

Suppose we now sample a single individual from this location. The sample
space would be S = {A-Yes, A-No, B-Yes, B-No, C-Yes, C-No}. Here ‘A-No’
stands for an amphibian of species A that is free of fungus, and is one of
six simple events. The probability of sampling an A-No individual would
be P [A-No] = 0.25, with the probabilities for other simple events given by
the entries in Table 4.1. Note that P [S] = P [{A-No, A-Yes, B-No, B-Yes,
C-No, C-Yes} = 0.25 + 0.25 + 0.2 + 0.1 + 0.15 + 0.05 = 1 as is necessary for
a probability distribution.

We now calculate the probabilities for certain events. Suppose that A is
the event that species A is sampled, implying that A = {A-No, A-Yes}. We
have

P [A] = P [{A-No,A-Yes}] (4.36)

= P [{A-No}] + P[{A-Yes}] (4.37)

= 0.25 + 0.25 = 0.5 (4.38)

Thus, we would expect half the amphibians sampled to be species A. Suppose
we also want to find the probability for Ac. By Property 5 above, we have

P [Ac] = 1− P [A] = 1− 0.5 = 0.5 (4.39)

Now let B be the event that species B is sampled, so that B = {B-No, B-
Yes} and P [B] = P [{B-No,B-Yes}] = P[{B-No}] + P[{B-Yes}] = 0.2 + 0.1 =
0.3. What is the probability for A ∩ B? We see that A and B share no
simple events, so P [A∩B] = P [{}] = P [φ] = 0. The two events are therefore
mutually exclusive, which is not surprising because the sampled amphibian
can only be species A or B, not both.

What happens for A ∪ B? We can directly calculate this probability by
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finding the simple events in A ∪B. We have

P [A ∪B] = P [{A-No,A-Yes} ∪ {B-No,B-Yes}] (4.40)

= P [{A-No,A-Yes,B-No,B-Yes}] (4.41)

= P [{A-No}] + P[{A-Yes}] + P[{B-No}] + P[{B-Yes}] (4.42)

= 0.25 + 0.25 + 0.20 + 0.10 = 0.80. (4.43)

An alternate way to calculate this probability uses Property 4 listed above.
In particular,

P [A ∪B] = P [A] + P [B]− P [A ∩B] (4.44)

= 0.5 + 0.3− 0 = 0.8, (4.45)

the same answer as before.

We now define an event I which stands for infected amphibians, meaning
I = {A-Yes, B-Yes, C-Yes}. We have

P [I] = P [{A-Yes,B-Yes,C-Yes}] (4.46)

= P [{A-Yes}] + P[{B-Yes}] + P[{C-Yes}] (4.47)

= 0.25 + 0.1 + 0.05 = 0.4 (4.48)

This means that the overall probability of sampling an infected animal is 0.4.
Suppose that we already know the sampled amphibian is species C. What is
the probability that it is infected given it is species C, or P [I|C]? We have

P [I|C] =
P [I ∩ C]

P [C]
=
P [{A-Yes,B-Yes,C-Yes} ∩ {C-No,C-Yes}]

P [{C-No,C-Yes}]
(4.49)

=
P [{C-Yes}]

P [{C-No,C-Yes}]
(4.50)

=
0.05

0.2
= 0.25. (4.51)

Thus, if an individual of species C has been sampled the probability of it being
infected is 0.25. We can also see this by examining the column for species C
in Table 4.1, where the proportion of infected animals is 0.05/(0.15+0.05) =
0.25.
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4.1.8 Bayes theorem

Another use of conditional probability involves Bayes Theorem, named for
the Reverend Thomas Bayes, an eighteenth century clergyman who first de-
rived the theorem. The theorem is often used in the interpretation of medical
tests as well as the field of Bayesian statistics (Ellison 1996).

Recall the example above involving amphibians and their infection by
chytrid fungus. Let D be the event an amphibian actually has the disease
while DC implies they are disease-free. Now suppose a particular test is used
to determine if a sampled amphibian has the disease. Let T be the event
the amphibian tests positive for the disease, while T c means the amphibian
tests negative. The test is less than perfect, however, and sometimes gives
a positive result when the amphibian is disease-free (a false positive) and a
negative one when it is diseased (a false negative). What we would like to
calculate is the probability that an amphibian actually has the disease given
that it tests positive, or P [D|T ]. This is called the positive predictive
value of the test.

What is known for the test is the probability of testing positive for am-
phibians with the disease, P [T |D], called the sensitivity of the test. This
would be determined by testing a large number of amphibians that are known
to have the disease by other means, and finding the proportion that test pos-
itive. Also known is the probability of testing negative for amphibians that
are disease-free, P [T c|Dc], called the specificity of the test. We will also
need an estimate of the probability that an amphibian has the disease in the
population as a whole, P [D], called the prevalence of the disease.

To find P [D|T ], we begin by using the definition of conditional probabil-
ity:

P [D|T ] =
P [D ∩ T ]

P [T ]
=
P [T ∩D]

P [T ]
(4.52)

We can also write

P [T |D] =
P [T ∩D]

P [D]
, (4.53)

which implies that P [T ∩ D] = P [T |D]P [D]. Inserting this result into Eq.
4.52, we obtain

P [D|T ] =
P [T |D]P [D]

P [T ]
. (4.54)

We are nearly there, except that we need to express P [T ] in terms of known
quantities. The event T is made up of two mutually exclusive groups, am-
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phibians that test positive and have the disease (T ∩D), and ones that test
positive that are disease-free (T ∩ Dc). From above, we have P [T ∩ D] =
P [T |D]P [D] and can similarly show that P [T ∩ Dc] = P [T |Dc]P [Dc]. Be-
cause the two groups are mutually exclusive, we can write P [T ] as the sum
of the probabilities for each group:

P [T ] = P [T ∩D] + P [T ∩Dc] = P [T |D]P [D] + P [T |Dc]P [Dc]. (4.55)

Substituting this quantity into Eq. 4.52, we obtain Bayes’ theorem:

P [D|T ] =
P [T |D]P [D]

P [T |D]P [D] + P [T |Dc]P [Dc]
. (4.56)

Because P [T |Dc] = 1 − P [T c|Dc] and P [Dc] = 1 − P [D], we can also write
Bayes’ theorem as

P [D|T ] =
P [T |D]P [D]

P [T |D]P [D] + (1− P [T c|Dc])(1− P [D])
. (4.57)

or

P [D|T ] =
sensitivity × prevalence

sensitivity × prevalence + (1− specificity)× (1− prevalence)
.

(4.58)
We can thus express the theorem in terms of the sensitivity and specificity of
the test, and the overall prevalence of the disease, which are known quantities.

Bayes theorem – sample calculation

Suppose that the test for amphibian disease has a high sensitivity (P [T |D] =
0.95) as well as a high specificity (P [T c|Dc] = 0.90). A particular amphibian
population has a fairly high prevalence of the disease (P [D] = 0.25, implying
25% are infected). What is the probability that an animal that tests positive
from this population has the disease, P [D|T ]? Inserting these quantities in
Bayes theorem (Eq. 4.57 or 4.58), we obtain

P [D|T ] =
P [T |D]P [D]

P [T |D]P [D] + (1− P [T c|Dc])(1− P [D])
(4.59)

=
0.95× 0.25

0.95× 0.25 + (1− 0.9)× (1− 0.25)
(4.60)

=
0.2375

0.2375 + 0.075
(4.61)

= 0.76 (4.62)
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So, the probability that an animal that tests positive actually has the disease
is 0.76. We now examine what happens if the prevalence of the disease is
lower, say P [D = 0.05], implying only 5% are infected. We have

P [D|T ] =
P [T |D]P [D]

P [T |D]P [D] + (1− P [T c|Dc])(1− P [D])
(4.63)

=
0.95× 0.05

0.95× 0.05 + (1− 0.9)× (1− 0.05)
(4.64)

=
0.0475

0.0475 + 0.095
(4.65)

= 0.3333 (4.66)

Now the probability that the animal has the disease is only 0.3333, despite
using exactly the same sensitivity and specificity values for the test. What
has happened here?

The explanation is that when prevalence is low, the majority of positive
test results are actually false positives, in which disease-free animals test
positive. This is reflected in the denominator of Eq. 4.63, where the term
0.095 (the probability of testing positive and being disease-free) is actually
larger than the term .0475 (the probability of testing positive and having the
disease). To fix this problem it would be helpful to have a test with higher
specificity to reduce the incidence of false positives.

Bayesian statistics

Another type of probability theory, called subjective or Bayesian probability
theory, equates probability with a degree of belief on the part of the analyst
(Weatherford 1982). This theory makes use of Bayes theorem but with a
different interpretation of the probabilities. Suppose that P [D] is the belief
by an investigator that a particular animal has the disease before the test,
rather than the prevalence (frequency of the disease) in the amphibian popu-
lation. The value of P [D|T ] calculated using Bayes’ theorem now represents
the investigator’s belief that the animal has the disease after observing a pos-
itive test result. These two probabilities are simple examples of the prior and
posterior distributions used in Bayesian statistics. See Ellison et al. (1996)
and Ellison (2004) for a summary of arguments for Bayesian statistics, which
is based on this interpretation of probability as belief. Dennis (1996) and
Lele and Dennis (2009) provide arguments against Bayesian statistics and
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in favor of ‘frequentist’ statistics, the kind of statistics based on the form
of probability developed in this chapter. While frequentist statistics has its
problems, it remains the most commonly used method in many fields and
has a long successful record in science.
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4.3 Problems

1. Suppose you have a loaded dice cube, such that P [{1}] = 0.1, P [{2}] =
0.1, P [{3}] = 0.1, P [{4}] = 0.2, P [{5}] = 0.2, and P [{6}] = 0.3. The
cube is tossed a single time and the number of spots observed. Answer
the following questions. Note that ‘and’ denotes an intersection of
events, ‘or’ the union of events, and ‘given’ a conditional probability.

(a) What is the probability that the number is even?

(b) What is the probability that the number is odd and ≥ 3?

(c) Are the events odd and ≥ 3 independent?

(d) What is the probability that the number is odd or ≥ 3?

(e) What is the probability that the number is odd, given that it is
≥ 3?

2. The PSA (prostate specific antigen) test is used to screen older men
for prostate cancer. This test has a sensitivity of 0.90 and specificity
of 0.719 (Mettlin et al. 1994). Assuming a prevalence of 0.1, find the
probability that an individual with a positive test has cancer. Show
your calculations.

3. Suppose you know that a particular animal population consists of 40%
juveniles and 60% adults, and have a sample of two animals selected
at random from the population.

(a) What is the sample space for this scenario?

(b) In a sample of two animals, what is the probability of obtaining
two juveniles in a row?

(c) What is the probability of obtaining one adult and one juvenile,
in that order?

(d) What is the probability of obtaining one juvenile and one adult,
in that order?

(e) What is the probability of obtaining two adults in a row?



Chapter 5

Discrete Random Variables

Random variables and their associated probability distributions are a basic
component of statistical analyses. A statistician will examine the experiment
or study and determine the type of observations or data it produces (con-
tinuous, discrete, or categorical) and then select a random variable and its
distribution to model these data. We examine here three discrete random
variables, the binomial, Poisson, and negative binomial, and their probabil-
ity distributions. There are other discrete random variables but these three
are the most commonly encountered in practice. These variables only take
integer values and are typically used to model discrete or count data. We will
also see how to calculate the mean and variance for a discrete random vari-
able, using its probability distribution and a quantity called the expected
value.

The basic concept of a random variable is to map the outcome of some
random event into a number. For example, consider the dice cube example
from Chapter 4. Define a number Y that is the number of spots showing
on the dice – Y is a random variable. The sample space for Y would be
S = {1, 2, 3, 4, 5, 6} and the events any combination of these values. One
requirement for Y to be a random variable is that events of the form Y ≤ y
for any real number y are events in the probability space (Mood et al. 1974).
For example, suppose that y = 3.5 for the dice cube example. The set defined
by Y ≤ 3.5 corresponds to the event A = {1, 2, 3} and so is a member of
the probability space for this example. This requirement is necessary in
order to calculate probabilities for the random variable, and there is always
a probability distribution associated with a particular random variable.

97
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5.1 Binomial distribution

Binomial random variables are commonly used to model categorical observa-
tions or data that have two outcomes or states. For example, suppose we are
sampling animals and classifying them into two age classes, say either adult
(an event A) or juvenile (J). If we sample a single individual and classify
it, the sample space would be S = {A, J}. We could then define a proba-
bility distribution such that P [{A}] = p and P [{J}] = 1− p, where p is the
probability of observing an adult. Then, a random variable Y equal to the
number of adults would be a binomial random variable. The random vari-
able Y would have a sample space S = {0, 1} corresponding to the number
of adults. We could write the probability distribution for these two events as

P [Y = y] = py(1− p)1−y, (5.1)

where y = 0 or 1. To see how this formula works, suppose we want the
probability for Y = 1, so that y = 1. Inserting y = 1 in the above formula,
we obtain

P [Y = 1] = p1(1− p)1−1 = p1(1− p)0 = p. (5.2)

To find the probability for Y = 0, we insert y = 0 in the formula to find

P [Y = 0] = p0(1− p)1−0 = p0(1− p)1 = 1− p. (5.3)

Suppose that we now sample two animals and let Y again be the number of
adults. The sample space for Y would now be S = {0, 1, 2}. What would
be the probability distribution for this random variable? Assuming the two
animals sampled are independent events, the probability of seeing two adults
(Y = 2) in a row would be p× p = p2, while two juveniles (Y = 0) would be
(1− p)× (1− p) = (1− p)2. There are two ways of having one adult and one
juvenile, a adult first and a juvenile second, or vice versa. The probability
for each is p× (1− p), so the probability of seeing one adult would be twice
that, or 2p(1− p). A general formula describing the probability distribution
for this variable would be

P [Y = y] =

(
2

y

)
py(1− p)2−y. (5.4)

where (
2

y

)
=

2!

y!(2− y)!
. (5.5)
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The quantity
(

2
y

)
, known as a binomial coefficient, provides a way of calcu-

lating the number of ways y adults can occur among 2 sampled animals. It
is often read as ‘2 choose y’. It makes use of factorials, which are defined
for an integer j as the product j × (j − 1) × (j − 2)... × 1. For example,
4! = 4× 3× 2× 1. By convention, 0! = 1.

To see how this distribution works, we will calculate the probability for
different values of y. We have

P [Y = 0] =

(
2

0

)
p0(1− p)2−0 =

2!

0!(2− 0)!
(1− p)2 (5.6)

=
2× 1

1(2× 1)
(1− p)2 (5.7)

=
2

2
(1− p)2 = (1− p)2 (5.8)

and

P [Y = 1] =

(
2

1

)
p1(1− p)2−1 =

2!

1!(2− 1)!
p(1− p) (5.9)

=
2× 1

1(1)
p(1− p) (5.10)

=
2

1
p(1− p) = 2p(1− p). (5.11)

Finally, we have

P [Y = 2] =

(
2

2

)
p2(1− p)2−2 =

2!

2!(2− 2)!
p2 (5.12)

=
2× 1

(2× 1)1
p2 (5.13)

=
2

2
p2 = p2. (5.14)

Do these probabilities sum to 1, satisfying this requirement for a probability
distribution? We have (1−p)2+2p(1−p)+p2 = (1−p)(1−p)+2p−2p2+p2 =
1− 2p+ p2 + 2p− 2p2 + p2 = 1.

Suppose that we continue to sample l different animals, and let Y be the
number of adults. The sample space for this binomial random variable would
be S = {0, 1, 2, ..., l}. The probability distribution for this random variable
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is called the binomial distribution, and can be written using the formula

P [Y = y] = f(y) =

(
l

y

)
py(1− p)l−y (5.15)

where y = 0, 1, 2, ..., l (Mood et al. 1974). The notation f(y) is often used to
denote a probability distribution, which is a function of y given the parameter
values.

5.1.1 Binomial distribution - SAS demo

The SAS program below calculates and plots the binomial probabilities for
different values of y using the SAS function pdf, given the values of the
binomial parameters l and p. The probabilities are plotted for three different
values of p, with l = 10. We see that for p = 0.5 the probability distribution
has a peak at y = 5 (Fig. 5.2), indicating that five adults is the most likely
outcome in 10 sampled animals. For p = 0.25 an adult occurs only 25% of the
time, and so the probability distribution shifts to the left, with y = 2 having
the highest probability (Fig. 5.3). For an adult almost certain, p = 0.9, then
the probability distribution is shifted to the right with the peak at y = 9
(Fig. 5.4).

SAS Program

* binom_plot.sas;

title "Plot probabilities for the binomial distribution";

title2 "l = 10, p = 0.5";

data binom_plot;

* Binomial parameters here;

l = 10;

p = 0.5;

do y=0 to l;

* Binomial distribution function;

proby = pdf(’binomial’,y,p,l);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=binom_plot;

run;

* Plot probabilities;



5.1. BINOMIAL DISTRIBUTION 101

proc gplot data=binom_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

Figure 5.1: binom plot.sas - proc print
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Figure 5.2: binom plot.sas - proc gplot

Figure 5.3: binom plot.sas - proc gplot
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Figure 5.4: binom plot.sas - proc gplot
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5.2 Poisson distribution

Poisson random variables are commonly used to model counts of organisms
or events in either space or time. For example, a Poisson random variable
could be used to model the number of organisms in a sampling quadrat,
or the number of flu infections per week in a city. The sample space for a
Poisson random variable Y is S = {0, 1, 2, ...,∞}, implying there is no upper
limit on the counts. The Poisson distribution is given by the formula

P [Y = y] = f(y) =
e−λλy

y!
(5.16)

where y = 0, 1, 2, ...,∞. The parameter λ controls the shape of the distribu-
tion and is equal to the mean value of Y . For example, suppose the λ = 2.
We have

P [Y = 0] = f(0) =
e−220

0!
=

0.13534(1)

1
= 0.13534, (5.17)

P [Y = 1] = f(1) =
e−221

1!
=

0.13534(2)

1
= 0.27068, (5.18)

P [Y = 2] = f(2) =
e−222

2!
=

0.13534(4)

2
= 0.27068, (5.19)

P [Y = 3] = f(3) =
e−223

3!
=

0.13534(8)

6
= 0.18045, (5.20)

P [Y = 4] = f(4) =
e−224

4!
=

0.13534(16)

24
= 0.09023 (5.21)

and so forth.
The Poisson distribution can arise in nature if certain assumptions hold

true about the underlying process generating the data or observations (Mood
et al. 1974, Snyder & Miller 1991). Suppose that we define an occurrence
as a plant being present in a quadrat, or a case of disease occurring in a
particular interval of time. For the distribution of occurrences to be
Poisson, we first need the probability of more than one occurrence
to be small relative to the probability of exactly one occurrence,
for a sufficiently small area of space (or short period of time). In
other words, two events are unlikely to occur in a small area or period of
time. Second, the number of occurrences in different areas of space
(or time intervals) should be independent. Another way of obtaining
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the Poisson distribution is as a limiting case of the binomial distribution. It
can be shown that if lp is held constant (by making p small) while l → ∞,
the binomial distribution approaches a Poisson with λ = lp.

5.2.1 Poisson distribution - SAS demo

The following SAS program illustrates how the Poisson distribution varies
for different values of λ. It is similar to the binomial distribution program,
using the SAS function pdf to again find the probabilities (see below). We
see that as λ increases, the Poisson distribution shifts to the right (Fig. 5.6,
5.7).

SAS Program

* Poisson_plot.sas;

title "Plot probabilities for the Poisson distribution";

title2 "lambda = 2";

data poisson_plot;

* Poisson parameter here;

lambda = 2;

* Maximum value of y for plot;

ymax = 20;

do y=0 to ymax;

* Poisson distribution function;

proby = pdf(’poisson’,y,lambda);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=poisson_plot;

run;

* Plot probabilities;

proc gplot data=poisson_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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etc.

Figure 5.5: Poisson plot.sas - proc print
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Figure 5.6: Poisson plot.sas - proc gplot

Figure 5.7: Poisson plot.sas - proc gplot
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5.3 Negative binomial distribution

Another useful tool for modeling count data is the negative binomial distri-
bution. It can be thought of as a mixture of Poisson distributions,
each with a different value of λ. For example, suppose that we are sam-
pling insects in a forest across a number of locations. At the ith location the
distribution of insects might be Poisson with parameter λi, but λi also differs
among locations. Then the distribution of insects, considered across all loca-
tions, may have a negative binomial distribution. Because the density of most
organisms typically varies in space, the negative binomial distribution often
provides a better description of count data than the Poisson. The sample
space for a negative binomial random variable Y is S = {0, 1, 2, ...,∞}, the
same as the Poisson. The probability distribution for the negative binomial
is given by the formula

P [Y = y] = f(y) =
Γ(k + y)

Γ(y + 1)Γ(k)

(m/(k +m))y

(1 +m/k)k
(5.22)

where y = 0, 1, 2, ...,∞. The Γ symbol stands for the gamma function,
which behaves like the factorial function but can be applied to non-integer
quantities. The negative binomial distribution has two parameters, m and
k, with m the mean of the distribution and k controlling its shape. For
large values of k the negative binomial distribution approaches the Poisson
distribution, while for small k the distribution becomes increasingly skewed
to the right. See Bliss and Fisher (1953) for further information on this
distribution.

5.3.1 Negative binomial distribution - SAS demo

The SAS program below shows how the shape of the negative binomial dis-
tribution varies with the parameter k. The program directly calculates the
probabilities using the formula above, rather than the SAS pdf function, be-
cause we are using a different parameterization of the distribution. We see
that distribution becomes more skewed to the right as k decreases (Fig. 5.9,
5.10).



5.3. NEGATIVE BINOMIAL DISTRIBUTION 109

SAS Program

* negbin_plot.sas;

title "Plot probabilities for the negative binomial distribution";

title2 "m = 5, k = 5";

data negbin_plot;

* negative binomial parameters here;

m = 5; k = 5;

* Maximum value of y for plot;

ymax = 20;

do y=0 to ymax;

* Negative binomial distribution function;

proby = (gamma(k+y)/(gamma(y+1)*gamma(k)))*((m/(k+m))**y/(1+m/k)**k);

* Output y and proby to SAS data file;

output;

end;

run;

* Print data;

proc print data=negbin_plot;

run;

* Plot probabilities;

proc gplot data=negbin_plot;

plot proby*y=1 / vref=0 wvref=3 vaxis=axis1 haxis=axis1;

symbol1 i=needle v=dot c=red width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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etc.

Figure 5.8: negbin plot.sas - proc print
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Figure 5.9: negbin plot.sas - proc gplot

Figure 5.10: negbin plot.sas - proc gplot
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5.4 Expected values for discrete distributions

We have already seen how to calculate the mean, variance, and standard
deviation for a set of observations (see Chapter 3). It is possible to calculate
analogous quantities for probability distributions, such as the binomial, using
the concept of an expected value.

Let Y be a random variable with some discrete probability distribution,
such as the binomial, Poisson, or other distribution. The expected value or
theoretical mean of Y , denoted by the expression E[Y ], is defined by the
equation

E[Y ] =
∑
y

yP [Y = y] =
∑
y

yf(y). (5.23)

Here the summation is taken over all possible values of y for the probability
distribution. The expected value is a weighted average of each pos-
sible value of y, with the weights being the probability associated
with each y. It is a measure of the central location of the distribution of
Y , in analogy to the sample mean Ȳ for a data set. The expected value of Y
can also be thought of as the sample mean Ȳ of an infinitely large number
of observations of Y .

For example, let Y have a binomial distribution with l = 5 and p = 0.2.
We will first calculate some probabilities for the binomial distribution, then
use them to calculate the expected value of Y , or E[Y ]. We have

P [Y = 0] = f(0) =

(
5

0

)
0.20(1− 0.2)5−0 (5.24)

=
5!

0!(5− 0)!
1(0.85) (5.25)

=
120

1(120)
0.32768 (5.26)

= 0.32768. (5.27)
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P [Y = 1] = f(1) =

(
5

1

)
0.21(1− 0.2)5−1 (5.28)

=
5!

1!(5− 1)!
0.2(0.84) (5.29)

=
120

1(24)
0.08192 (5.30)

= 0.40960. (5.31)

P [Y = 2] = f(2) =

(
5

2

)
0.22(1− 0.2)5−2 (5.32)

=
5!

2!(5− 2)!
0.04(0.83) (5.33)

=
120

2(6)
0.02048 (5.34)

= 0.20480. (5.35)

P [Y = 3] = f(3) =

(
5

3

)
0.23(1− 0.2)5−3 (5.36)

=
5!

2!(5− 2)!
0.008(0.82) (5.37)

=
120

2(6)
0.00512 (5.38)

= 0.05120. (5.39)

P [Y = 4] = f(4) =

(
5

4

)
0.24(1− 0.2)5−4 (5.40)

=
5!

4!(5− 4)!
0.0016(0.81) (5.41)

=
120

24(1)
0.00128 (5.42)

= 0.00640. (5.43)
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P [Y = 5] = f(5) =

(
5

5

)
0.25(1− 0.2)5−5 (5.44)

=
5!

5!(5− 5)!
0.00032(0.80) (5.45)

=
120

120(1)
0.00032 (5.46)

= 0.00032. (5.47)

These probabilities sum to 1, indicating our calculations are correct. Alter-
nately, we could use the SAS program binom_plot.sas to find these probabil-
ities.

We will now calculate E[Y ] using these probabilities and the formula for
E[Y ] given above. We have

E[Y ] =
∑
y

yf(y) = 0(0.32768) + 1(0.40960) + 2(0.20480) (5.48)

+ 3(0.05120) + 4(0.00640) + 5(0.00032) (5.49)

= 0 + 0.40960 + 0.40960 (5.50)

+ 0.15360 + 0.02560 + 0.00160 (5.51)

= 1.00000 (5.52)

So, E[Y ] = 1 for the binomial distribution with l = 5 and p = 0.2.
For the binomial distribution in general, it can be shown that

E[Y ] = lp (5.53)

for any value of l and p. Thus, the expected value or theoretical mean for
the binomial distribution can be easily calculated given the parameters of
this distribution. Plugging l = 5 and p = 0.2 into this equation, we obtain
E[Y ] = 5 × 0.2 = 1.0, the same value as obtained using the expected value
formula.

Other probability distributions would have a different formula for the
expected value or theoretical mean, but the formula always involves the pa-
rameters of the distribution. For the Poisson distribution it can be shown
that E[Y ] = λ, while for the negative binomial distribution E[Y ] = m.

5.4.1 Variance for discrete distributions

We can also define the theoretical variance for a random variable Y using
expected values. This variance measures the dispersion of Y , and can also be
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thought of as the sample variance s2 of an infinite number of observations.
The variance of a discrete random variable Y , denoted by V ar[Y ], is defined
as

V ar[Y ] = E[(Y − E[Y ])2] =
∑
y

(y − E[Y ])2P [Y = y] (5.54)

=
∑
y

(y − E[Y ])2f(y). (5.55)

Note that this formula makes use of E[Y ], so it must be calculated first. As
an example, let Y have the same binomial distribution as before, with l = 5
and p = 0.2, for which E[Y ] = 1. Using the probabilities calculated above,
we have

V ar[Y ] =
∑
y

(y − E[Y ])2f(y) (5.56)

= (0− 1)2(0.32768) + (1− 1)2(0.40960) + (2− 1)2(0.20480) (5.57)

+ (3− 1)2(0.05120) + (4− 1)2(0.00640) + (5− 1)2(0.00032) (5.58)

= 1(0.32768) + 0(0.40960) + (1)0.20480 (5.59)

+ 4(0.05120) + 9(0.00640) + (16)0.00032 (5.60)

= 0.32768 + 0 + 0.20480 + 0.20480 + 0.05760 + 0.00512 (5.61)

= 0.8. (5.62)

For the binomial distribution, it can be mathematically shown that for any
value of l and p, we have

V ar[Y ] = lp(1− p). (5.63)

Thus, the theoretical variance for the binomial distribution can also be cal-
culated using the parameters of this distribution. Plugging l = 5 and p = 0.2
into this equation, we obtain V ar[Y ] = 5(0.2)(1− 0.2) = 0.8, the same value
as obtained using the variance formula.

Other probability distributions would have a different formula for the
theoretical variance. For the Poisson distribution it can be shown that
V ar[Y ] = λ. Because E[Y ] = λ for the Poisson, this implies the mean
and variance of a Poisson random variable are equal. For the negative bi-
nomial distribution, V ar[Y ] = m + m2/k, while E[Y ] = m. This implies
the variance of the negative binomial is always greater than its mean. The
theoretical standard deviation is simply

√
V ar[Y ].
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5.5 Discrete random variables and samples

Discrete random variables like the binomial and Poisson are used to model
real observations that are counts. But how well do these mathematical quan-
tities match the behavior of the observations? We will now develop a graph-
ical method of comparing the observed data with the pattern expected for
discrete random variables, in particular the Poisson and negative binomial
distributions. There are also statistical procedures called goodness-of-fit tests
that are used for this purpose, but we defer this to Chapter 20.

5.5.1 Parasitic wasps - SAS demo

Small insects are often sampled using sticky-traps, which are small cards cov-
ered with a substance called Tanglefoot®(The Tanglefoot Company, Grand
Rapids, MI). For example, Reeve & Cronin (2010) used this method to sam-
ple populations of the parasitic wasp Anagrus columbi , which attacks eggs
of the planthopper Prokelisia crocea. Suppose n = 100 traps are deployed
for some period of time, then the traps collected and the wasps counted.
If individual wasps are randomly and independently distributed across the
field, we would expect the number of wasps per trap to have a Poisson dis-
tribution. We can then compare the observed distribution with the expected
one for the Poisson distribution, to see if they resemble one another. If so,
we can say the Poisson distribution provides an adequate description of these
observations.

The first step in this procedure is simply to tabulate the number of traps
with 0, 1, 2, 3, ... wasps, which is the observed frequency distribution. We can
use proc freq in SAS to accomplish this task as in the following program. The
numbers listed as data here are the number of wasps for each of the n = 100
sticky-traps. The statement tables y tells proc freq to count the number of
observations for each value of y in the data set. The output generated is a
table of these frequencies.
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SAS Program

* poisson_freq.sas;

title ’Tabulate Poisson data’;

data poisson;

input y @@;

datalines;

4 6 3 5 3 1 3 3 4 2

4 0 2 3 1 3 4 6 5 1

3 3 4 3 2 3 7 4 3 3

4 3 4 3 4 0 3 0 3 3

4 8 2 2 4 2 5 3 3 2

1 4 1 1 5 2 4 1 2 6

3 3 3 1 1 2 1 5 3 5

3 2 4 3 4 1 2 3 1 3

4 4 4 6 6 2 0 1 4 2

2 2 3 4 3 0 1 1 0 2

;

run;

* Print observations;

proc print data=poisson;

run;

* Tabulate data into frequencies;

proc freq data=poisson;

tables y;

run;

quit;
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etc.

Figure 5.11: Poisson freq.sas - proc print

Figure 5.12: Poisson freq.sas - proc freq
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We now want to compare these observed frequencies with those expected
for the Poisson distribution. We first need to estimate the Poisson parameter
λ from the observed data using Ȳ (see Chapter 8 for a justification). We
then calculate the Poisson probabilities for λ = Ȳ , obtaining P [Y = y] for
values of y that spans or better exceeds the range of y values in the data set.
Because P [Y = y] is the probability or proportion of observations that take
the value y, the expected frequency with n observations is therefore equal
to n × P [Y = y]. We can then compare the observed frequencies with the
expected ones generated using the Poisson distribution. These calculations
can be automated using the SAS program listed below. The program first
uses proc univariate to find n, Ȳ , and the sample variance s2 for the observed
frequencies. We let proc univariate know that the data are in the form of
frequencies (the variable obsfreq), rather than individual observations, by
adding the command freq obsfreq.

The program then passes these results to a data step where the Poisson
probabilities and expected frequencies are calculated, which are then plotted
across a range of y values using proc gplot. See SAS output and graph
below. We first see that sample mean and variance are similar in magnitude
(Ȳ = 2.910 vs. s2 = 2.628), suggesting these data are close to Poisson (recall
that E[Y ] = V ar[Y ] = λ for this distribution). In addition, the observed and
expected frequencies are quite similar, again implying an adequate fit by the
Poisson distribution. There are some small differences in the observed and
expected frequencies, which is to be expected because the observed ones are
random quantities.

SAS Program

* Poisson_fit.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 6

1 15

2 17

3 29

4 20

5 6

6 5
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7 1

8 1

9 0

10 0

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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etc.

Figure 5.13: Poisson fit.sas - proc print
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Figure 5.14: Poisson fit.sas - proc univariate
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Figure 5.15: Poisson fit.sas - proc print

Figure 5.16: Poissonfit.sas - proc gplot
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5.5.2 Corn borers - SAS demo

We now examine the spatial distribution of an insect pest, the European
corn borer Ostrinia nubilalis , as reported by Bliss and Fisher (1953). The
number of borers was recorded for 120 hills in which corn was planted. These
data are already tabulated and can be directly inserted in the SAS program
poisson_fit2.sas (see below). For this example, we see that the Poisson
distribution provides a relatively poor fit (see Fig. 5.20) - there are more
zeroes (y = 0) and large values (y ≥ 7) in the observed frequencies than
predicted by the Poisson. We also note that the sample variance s2 = 7.770
is considerably larger than the mean Ȳ = 3.167, while for the Poisson these
two quantities should be equal. This finding also suggests that these data
are not Poisson in distribution.

SAS Program

* Poisson_fit2.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;
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histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 5.17: Poisson fit2.sas - proc print
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Figure 5.18: Poisson fit2.sas - proc univariate
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Figure 5.19: Poisson fit2.sas - proc print

Figure 5.20: Poissonfit2.sas - proc gplot
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As an alternative to the Poisson, we can try fitting the negative bino-
mial distribution using a similar SAS program. This distribution has two
parameters, m and k, that must also be estimated before we can fit the dis-
tribution. The parameter m can be estimated using Ȳ as with the Poisson,
but k is best estimated using a technique called maximum likelihood (see
Chapter 8). We will use a SAS procedure that can model count data using
the negative binomial distribution, proc genmod, in order to estimate k (SAS
Institute Inc. 2018). The output of proc genmod is manipulated in several
data steps to combine these estimates with the observed frequency data, and
then the negative binomial probabilities and expected frequencies calculated
and plotted. See SAS program and output below.

We see that the expected frequencies for the negative binomial distri-
bution provide a better match to the observed ones for this data set (Fig.
5.22). We also note that the variance predicted for the negative binomial
distribution is close to the observed variance. From the negative binomial
fit, we have m = 3.167 and k = 1.760, and so the estimated variance is
m + m2/k = 3.167 + 3.1672/1.760 = 7.459, while the observed variance is
s2 = 7.770. This further implies the negative binomial provides a better fit
to these data than the Poisson distribution.
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SAS Program

* negbin_fit2.sas;

title ’Fitting the negative binomial to frequency data’;

data negbin;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=negbin;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=negbin;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;

* Estimate m and k for the negative binomial distribution;

proc genmod data=negbin;

model y = / dist=negbin;

freq obsfreq;

ods output ParameterEstimates=params;

run;

* Pick out value of m from genmod output;

data m;
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set params;

if _n_ = 1;

m = exp(Estimate);

keep m;

run;

* Pick out value of k from genmod output;

data k;

set params;

if _n_ = 2;

k = 1/Estimate;

keep k;

run;

* Put m and k in one data file;

data params;

merge m k;

run;

* Calculate expected frequencies using m and k;

data nbfit;

if _n_ = 1 then set stats;

if _n_ = 1 then set params;

set negbin;

nbprob = (gamma(k+y)/(gamma(y+1)*gamma(k)))*((m/(k+m))**y/(1+m/k)**k);

expfreq = n*nbprob;

run;

* Print observed and expected frequencies;

proc print data=nbfit;

run;

* Plot observed and expected frequencies;

proc gplot data=nbfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 5.21: negbin fit2.sas - proc print

Figure 5.22: negbin fit2.sas - proc gplot
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5.6 Classifying spatial or temporal patterns

The spatial distribution of organisms, or the temporal occurrence of events
like cases of disease, is often compared with the Poisson distribution. This
distribution essentially assumes a random, independent distribution of organ-
isms or events, and if the observed distribution differs from the Poisson then
this could indicate some interesting biology. For example, if the observed
frequencies have a distribution with more extreme values (low or high) than
the Poisson, with s2 > Ȳ , this implies organisms are unevenly distributed
in space, or events in time. A pattern like this is often called an overdis-
persed distribution, or alternatively a clumped, aggregated, or contagious
distribution (Pielou 1977, Begon et al. 2006). One method of quantifying
the level of overdispersion is to fit the negative binomial distribution to the
data and use the value of k as an index. Small values of k (say k < 5) imply
an overdispersed distribution, while larger ones indicate a distribution close
to Poisson. More rarely, an observed distribution may have fewer extreme
values than the Poisson, with s2 < Ȳ , implying the organisms are evenly
distributed in space (or events in time). This is called an underdispersed
distribution, also known as a regular, even, or repulsed distribution.

The figures below provide examples of spatial distributions that are overdis-
persed, Poisson, or underdispersed. Note the obvious clusters of organisms in
the overdispersed example (Fig. 5.23). This might occur because the clusters
are offspring from a single parent, the organisms are responding to resources
that are clumped in space, or because the organisms are attracted to one
another. The Poisson data also show a few clusters (Fig. 5.24), but these are
chance occurrences. If we were to divide this graph into quadrats and count
the number of organisms per quadrat, we would find the frequency distribu-
tion is close to Poisson. In contrast to the other examples, the organisms are
spaced apart to some extent in the underdispersed example (Fig. 5.25). This
could occur because they are territorial, compete for resources, or otherwise
regulate their numbers in some fashion (Ridout & Besbeas 2004).
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Figure 5.23: Overdispersed distribution of organisms in space

Figure 5.24: Poisson distribution of organisms in space
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Figure 5.25: Underdispersed distribution of organisms in space
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5.8 Problems

1. Consider the dice cube example from Chapter 4, and define a random
variable Y that is the number of spots showing on the dice cube. Find
E[Y ] and V ar[Y ] for this random variable. Show your work.

2. Suppose that a random variable Y has a discrete distribution with the
following probabilities:

y P [Y = y]
0 0.5000
1 0.2500
2 0.1250
3 0.0625
4 0.0625

(a) What is the expected value of Y , or E[Y ]?

(b) What is the variance of Y , or V ar[Y ]?

3. An entomologist studies the spatial distribution of aphids in a field.
They randomly select 100 locations within the field and count the num-
ber of aphids on the plants at each location. The following observed
frequency distribution was obtained:

Aphids (y) Frequency
0 19
1 22
2 16
3 10
4 11
5 11
6 6
7 2
8 1
9 1
10 1
11 0
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(a) Use the SAS program Poisson_fit.sas to calculate Ȳ and s2, and
generate a plot of the observed frequencies vs. those expected for
the Poisson distribution. Attach your SAS program and output.

(b) Based on the above results, do the data have a Poisson distri-
bution? Explain your answer using the pattern of observed and
expected frequencies, and the values of Ȳ and s2. Is the pattern
random (Poisson), overdispersed, or underdispersed?

(c) What are some possible biological explanations for this pattern?

4. A field is surveyed for golden mice (Ochrotomys nuttalli) using a grid
of baited traps. A total of 100 traps were deployed and the number of
mice counted in each trap. The following frequency distribution was
obtained:

Mice (y) Frequency
0 55
1 21
2 10
3 7
4 4
5 2
6 1
7 0
8 0

(a) Use the program Poisson_fit.sas to calculate to calculate Ȳ and
s2, and generate a plot of the observed frequencies vs. those ex-
pected for the Poisson distribution. Attach your program and
output.

(b) Based on the above results, do the data have a Poisson distri-
bution? Explain your answer using the pattern of observed and
expected frequencies, and the values of Ȳ and s2. Is the pattern
random (Poisson), overdispersed, or underdispersed?



Chapter 6

Continuous Random Variables

We previously examined several different probability distributions for dis-
crete random variables, in particular the binomial, Poisson, and negative
binomial distributions. These distributions are suitable for modeling obser-
vations that are counts of some type, such as the number of plants in a
quadrat or the number of females vs. males in a sample. Many variables
in biology are continuous, however, such as the length and weight of organ-
isms, quantities associated with populations such as birth, mortality, and
growth rates, and chemical concentrations. We will now examine continuous
random variables and their associated distributions that are used to model
these quantities, in particular the uniform and normal distributions.
The uniform distribution is often used to generate random sampling points
in one- and two-dimensional areas. For example, we could use the uniform
distribution to select a random point along a transect to sample, or a random
x, y coordinate within a field to place a sampling quadrat. It also a useful
starting point for understanding continuous distributions because of its sim-
plicity. We then turn to the normal distribution, which forms the basis of
many statistical procedures. Many biological variables have a distribution
close to normal, or if initially non-normal can often be transformed to more
closely resemble the normal distribution.

Discrete random variables have a function f(y) that directly provides the
probabilities for events that are integers, such as Y = 0, Y = 3, and so forth
(see Chapter 5). However, events for continuous random variables are in the
form of intervals. For example, we will be interested in finding the probabil-
ity for events like 1 < Y < 3 or Y > 5. Continuous random variables use a
different kind of function, called a probability density function, to find

139
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the probabilities for events. For an event like 1 < Y < 3, probabilities are
found by integrating the probability density function (finding the area under
the function) over this interval. This process will be explained in more detail
below. For many continuous random variables, such as the normal distribu-
tion, there exist tables of these integrals and probabilities for certain useful
intervals. Note that events like Y = 3 have zero probability for continuous
random variables, because this implies an interval of zero width and so the
integral is zero. This makes some intuitive sense, because it is unlikely that a
continuous quantity Y would take a value exactly equal to 3 to many decimal
places.

6.1 Uniform distribution

Suppose that we have two constants, a and b, with a < b. A random vari-
able Y has a uniform distribution if an observation is equally likely to occur
anywhere between a and b, but never occurs outside this interval. The prob-
ability density for the uniform distribution is defined by the equation

f(y) =
1

b− a
(6.1)

for a ≤ y ≤ b (Mood et al. 1974). Outside of this interval, we have f(y) = 0.
The quantities a and b are the parameters of the uniform distribution. The
uniform distribution for a = 0, b = 1 is shown below (Fig. 6.1). The uniform
distribution gets its name from the fact that its density is uniform over the
interval a to b.

Note that the density simply describes a square with a length and width
of one, implying an area equal to one. This is an important property of
probability density functions in general – the area under f(y) is always equal
to one. Also shown is the uniform density for a = 0 and b = 2 (Fig. 6.2). It
is lower but wider than the previous example, and also has an area of one.
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Figure 6.1: Uniform probability density for a = 0, b = 1

Figure 6.2: Uniform probability density for a = 0, b = 2
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Probabilities for the uniform distribution are calculated by finding the
area under the probability density function, using integration (see Chapter
2). This is relatively easy to do because of the simple form of the probability
density. Suppose Y is a uniform random variable, and a = 0 and b = 1.
What is the probability that an observed Y lies within the interval 0.5 to
0.75? We have

P [0.5 < Y < 0.75] =

∫ 0.75

0.5

1

b− a
dy (6.2)

=

∫ 0.75

0.5

1

1− 0
dy = y|0.75

0.5 (6.3)

= 0.75− 0.5 = 0.25. (6.4)

We could also have found this probability without any calculus. It is just
the area under f(y) between 0.5 and 0.75, calculated as length × height
= (0.75− 0.5)× 1 = 0.25.

Here are two more examples. Suppose that for a = 0 and b = 2, we
want to find the probability that 0.2 < Y < 0.4. The height of the density
function in this case is 1/(b − a) = 1/(2 − 0) = 0.5. We therefore have
P [0.2 < Y < 0.4] = (0.4 − 0.2) × 0.5 = 0.1. Now suppose we want the
probability that 0 < Y < 2. We have P [0 < Y < 2] = (2−0)×0.5 = 1. This
also follows from the fact that f(y) is a probability density function which
has an area of one, and the interval 0 < Y < 2 encompasses the entire range
of f(y).

The cumulative distribution function for a continuous random vari-
able is defined as the quantity

F (y) = P [Y < y] =

∫ y

−∞
f(z)dz. (6.5)

This function is just the probability to the left of y. The function F (y)
increases from 0 to 1 as y increases. If we carry out this integral for the
uniform distribution, we get the function

F (y) =
y − a
b− a

(6.6)

for a ≤ y ≤ b. In addition, F (y) = 0 for y < a, and F (y) = 1 for y >
b. Figure 6.3 shows the cumulative distribution function for the uniform
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distribution corresponding to Fig. 6.2. Note that it increases linearly between
a and b, as the probability to the left of y accumulates. The cumulative
distribution function has many uses in statistics, especially for continuous
random variables.

Figure 6.3: Cumulative distribution function for the uniform distribution,
with a = 0, b = 2

The uniform distribution has a number of common applications. It is
possible to generate a stream of random numbers that have a uniform distri-
bution using software, and from these values produce random observations
for other distributions, including discrete distributions as well as the normal
distribution. The uniform distribution can also be used to generate random
sampling points along a transect for ecological studies, or random x, y co-
ordinates for placing quadrats within an area (see below). It can also be
used to randomly sample from a population, or to randomize the order of
treatments in an experiment.

6.1.1 Random sampling coordinates - SAS demo

A common application of the uniform distribution is to generate random
sampling coordinates. SAS can produce random observations with a uniform
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distribution using the function ranuni. For this function, the parameter values
of the uniform distribution are set at a = 0 and b = 1.

However, we will often want observations for other parameter values, es-
pecially other values of b. It can be shown that if Y has a uniform distribution
with a = 0 and b = 1, then the variable Y ′ = cY has a uniform distribution
with a = 0 and b = c, where c is any positive number. This fact enables us
to generate uniform random variables with any value of b.

For example, suppose we want to produce random sampling coordinates
along a 100 m transect using the uniform distribution. If Y has a uniform
distribution with a = 0 and b = 1, then Y ′ = 100Y has a uniform distribution
with a = 0 and b = 100. Values of Y generated in this fashion will give us
sampling coordinates uniformly distributed between 0 and 100 m.

We will illustrate this process using a SAS program to generate random
sampling coordinates for a 100 m transect and also a 200 × 100 m rectangular
area. A call to gplot is used to plot the random coordinates. See SAS program
and output below.

SAS Program

* randcoords.sas;

title "Generate random sampling coordinates";

* Generate n random coordinates along a c m transect;

data transect;

* Sample size n;

n = 20;

* Multiplying by c gives a uniform random variable with a=0, b=c;

c = 100;

do i = 1 to n;

x = c*ranuni(0);

output;

end;

drop i;

run;

* Print coordinates;

proc print data=transect;

run;

* Generate n random coordinates within a 200 x 100 m area;

data coords;

* Sample size n;

n = 200;

* Multiplying by c_x gives a uniform random variable with a=0, b=c_x;

c_x = 200;

* Multiplying by c_y gives a uniform random variable with a=0, b=c_y;
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c_y = 100;

do i = 1 to n;

x = c_x*ranuni(0);

y = c_y*ranuni(0);

output;

end;

drop i;

run;

* Print first 25 coordinates;

proc print data=coords(obs=25);

run;

* Show coordinates as a scatterplot;

proc gplot data=coords;

plot y*x / vaxis=axis1 haxis=axis2;

symbol1 v=dot c=red;

axis1 order=(0 to 100 by 10) label=(height=2) value=(height=2)

width=3 major=(width=2) minor=none;

axis2 order=(0 to 200 by 20) label=(height=2) value=(height=2)

width=3 major=(width=2) minor=none;

run;

quit;
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Figure 6.4: randcoords.sas - proc print
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etc.

Figure 6.5: randcoords.sas - proc print
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Figure 6.6: randcoords.sas - proc gplot
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6.2 Normal distribution

The normal distribution plays an important role in statistics, with good rea-
son. Biological variables often have a distribution that can be approximated
by the normal or can be transformed to be normal. The normal distribution
is thus a valid choice for modeling many variables encountered in practice.
Many statistical quantities will also have a distribution approaching the nor-
mal for large sample sizes. For example, the distribution of the sample mean
Ȳ will approach the normal distribution as the sample size n increases, thanks
to the central limit theorem (see Chapter 7). So, even if the underlying data
are non-normal, statistics like Ȳ will be normally-distributed for sufficiently
large n.

The probability density for the normal distribution is defined by the func-
tion

f(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 (6.7)

for∞ < µ <∞ and σ2 > 0 (Mood et al. 1974). The normal distribution has
two parameters, µ and σ2. The parameter µ is the mean of the distribution
and basically controls its location, while σ2 is its variance and determines its
dispersion or spread. A random variable Y with a normal distribution is often
written as Y ∼ N(µ, σ2), where the symbol ‘∼’ stands for ‘is distributed as’
while ‘N ’ signifies the normal. A random variable with a standard normal
distribution assumes that µ = 0 and σ2 = 1, or Y ∼ N(0, 1). The symbol
Z is often used to denote a standard normal random variable.

Figure 6.7 shows the bell-shaped normal distribution for three different
sets of µ and σ2 values, and illustrates how these parameters affect its location
and shape. As µ is increased the distribution shifts to the right, while an
increase in σ2 causes the distribution to spread out.
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Figure 6.7: normal plot3.sas - proc gplot
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6.2.1 Normal distribution - SAS demo

The SAS program used to generate Fig. 6.7 is listed below. Three different
sets of µ and σ2 values are given in the data step of the program (feel free
to experiment with other values). The different curves are specified in the
plot statement for proc gplot. The overlay option is used to generate a single
graph with all three curves, each with different colors specified by the symbol

statements.

SAS Program

* normal_plot3.sas;

options pageno=1 linesize=80;

goptions reset=all;

title "Normal probability densities";

title2 "Three sets of parameters";

data normal_plot;

* Three sets of normal parameters here;

mu_1 = 0; sig2_1 = 1;

mu_2 = 2; sig2_2 = 2;

mu_3 = 2; sig2_3 = 0.5;

* Minimum and maximum values of y;

ymin = -4;

ymax = 6;

* Divisions between ymin and ymax (more = smoother graph);

ydiv = 100;

* Calculate step length;

ylength = (ymax-ymin)/ydiv;

* Find y and f(y) values for the plot;

do i=0 to ydiv;

y = ymin + i*ylength;

* normal probability density function;

fy_1 = (1/sqrt(2*3.14159*sig2_1))*exp(-((y-mu_1)**2)/(2*sig2_1));

fy_2 = (1/sqrt(2*3.14159*sig2_2))*exp(-((y-mu_2)**2)/(2*sig2_2));

fy_3 = (1/sqrt(2*3.14159*sig2_3))*exp(-((y-mu_3)**2)/(2*sig2_3));

* Output y and fy1, fy2, fy3 to SAS data file;

output;

end;

run;

* Print data;

proc print data=normal_plot;

run;

* Plot probability density function;

proc gplot data=normal_plot;

plot fy_1*y=1 fy_2*y=2 fy_3*y=3 / vref=0 wvref=3 vaxis=axis1 haxis=axis1 overlay;
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symbol1 i=join v=none c=black width=3;

symbol2 i=join v=none c=blue width=3;

symbol3 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

The cumulative distribution function for the normal distribution is de-
fined as the quantity

F (y) = P [Y < y] =

∫ y

−∞
f(z)dz =

∫ y

−∞

1√
2πσ2

e−
(z−µ)2

2σ2 dz. (6.8)

The values of this integral have to be numerically calculated. Fig. 6.8
shows the cumulative distribution functions for the three normal distribu-
tions shown in Fig. 6.7. Note that the mean and variance for the different
normal distributions affect the overall location and shape of F (y).

Figure 6.8: Cumulative distribution function for three normal distributions

Like other continuous random variables, events for the normal distribu-
tion are in the form of intervals. We can calculate the probabilities for events
by finding the area under the normal density function corresponding to the
interval. This process is more difficult than for the uniform distribution be-
cause f(y) has a more complex shape. However, there exist tables of the area
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under f(y) for certain intervals that can be used for this purpose, as well as
the SAS function probnorm. Table Z gives the probabilities for intervals of
the form Z < z, where Z has a standard normal distribution and z ≥ 0 (see
Chapter 23). The first two digits of z are specified in the left-most column
of Table Z, while the third digit is the top row. The values within the table
correspond to the probability that Z < z, or P [Z < z], i.e., the cumulative
distribution function for the standard normal.

6.2.2 Sample calculations - standard normal distribu-
tion

We illustrate how Table Z is used to calculate the probabilities for various
events listed below. The general strategy is to sketch the interval on the
standard normal bell curve, and deduce from this picture how to obtain the
probability using Table Z.

1. Find the probability that Z < 0.55, or P [Z < 0.55]. From Table Z, we
see that P [Z < 0.55] = 0.7088. See Fig. 6.9 for an illustration of this
probability.

2. Find the probability that 0.40 < Z < 1.96. In this case, the interval
is not the same as shown in Table Z, and additional calculations are
required. We first find the probabilities for the intervals Z < 1.96 and
Z < 0.4 using Table Z. The probability for 0.40 < Z < 1.96 should then
be the difference between these two probabilities (see Fig. 6.10). We
have P [Z < 1.96] = 0.9750 and P [Z < 0.40] = 0.6554 from Table Z, so
P [0.40 < Z < 1.96] = P [Z < 1.96]− P [Z < 0.40] = 0.9750− 0.6554 =
0.3196.

3. Find the probability that Z > 0.55. We will use the complement rule
to obtain this probability (see Chapter 4). For any event A, we have
P [Ac] = 1− P [A]. If A is the event Z < 0.55, then AC corresponds to
Z > 0.55. Therefore, P [Z > 0.55] = 1 − P [Z < 0.55] = 1 − 0.7088 =
0.2912. See also Fig. 6.11.

4. Find the probability that Z < −1.23. This problem makes use of
the symmetry of the standard normal distribution around zero, as well
as the complement rule. By symmetry, we have P [Z < −1.23] =
P [Z > 1.23]. The complement of Z < 1.23 is Z > 1.23, and so
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P [Z > 1.23] = 1 − P [Z < 1.23] = 1 − 0.8907 = 0.1093. See Fig.
6.12.

5. Find the probability that −0.44 < Z < 2.15. This problem can also
be handled using symmetry and the complement rule. We first have
P [Z < 2.15] = 0.9842 using Table Z (Fig. 6.13). We then have P [Z <
−0.44] = P [Z > 0.44] = 1 − P [Z < 0.44] = 1 − 0.6700 = 0.3300 by
symmetry (Fig. 6.14). Therefore, P [−0.44 < Z < 2.15] = P [Z <
2.15]− P [Z < −0.44] = 0.9842− 0.3300 = 0.6542.

6. Find a number z0 such that P [Z < z0] = 0.95. This problem is the
inverse of the previous ones. Here, we want to find a value z0 that
gives a certain probability, rather than z0 being a given quantity and
determining the probability. To find z0, we scan Table Z until we find
a value that gives a probability close 0.95. We see that z0 = 1.64 or
1.65 give approximately the right probability.
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Figure 6.9: Sample calculation 1

Figure 6.10: Sample calculation 2
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Figure 6.11: Sample calculation 3

Figure 6.12: Sample calculation 4
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Figure 6.13: Sample calculation 5 - part 1

Figure 6.14: Sample calculation 5 - part 2
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6.2.3 Sample calculations - other normal distributions

We now examine how probabilities can be calculated for normal distributions
that are not standard normal. If Y ∼ N(µ, σ2), it can be shown that the
quantity

Z =
Y − µ
σ
∼ N(0, 1) (6.9)

Thus, a random variable Y with a normal distribution having any µ or σ2

can be transformed to a standard normal Z. The transformation works by
first centering the random variable Y around zero by subtracting µ, and then
dividing by σ so that it has a standard deviation and variance of one. Once
Y is transformed to a standard normal Z, we can find probabilities for any
event involving Y using Table Z. This process is illustrated below in several
sample calculations.

1. Suppose that Y ∼ N(50, 16). Find the probability that Y < 55. First,
we find σ =

√
σ2 =

√
16 = 4. Using the above equation, we then have

P [Y < 55] = P [Y − µ < 55− µ] (6.10)

= P

[
Y − µ
σ

<
55− µ
σ

]
(6.11)

= P

[
Z <

55− 50

4

]
(6.12)

= P [Z < 1.25]. (6.13)

We then use Table Z to find that P [Z < 1.25] = 0.8944, and so P [Y <
55] = 0.8944.

2. Find the probability that 52 < Y < 56, assuming Y ∼ N(50, 16). To
find this probability, we first convert the problem to one involving Z.
We have

P [52 < Y < 56] = P [52− µ < Y − µ < 56− µ] (6.14)

= P

[
52− µ
σ

<
Y − µ
σ

<
56− µ
σ

]
(6.15)

= P

[
52− 50

4
< Z <

56− 50

4

]
(6.16)

= P [0.50 < Z < 1.50]. (6.17)
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We next find the probabilities for the intervals Z < 1.50 and Z < 0.50
using Table Z, and then substract them to obtain P [0.50 < Z < 1.50].
We have P [Z < 1.50] = 0.9332 and P [Z < 0.50] = 0.6915, so P [0.50 <
Z < 1.50] = 0.9332−0.6915 = 0.2417. Thus, P [52 < Y < 56] = 0.2417.

3. Find the probability that Y > 54. We have

P [Y > 54] = P [Y − µ > 54− µ] (6.18)

= P

[
Y − µ
σ

>
54− µ
σ

]
(6.19)

= P

[
Z >

54− 50

4

]
(6.20)

= P [Z > 1.00]. (6.21)

We next use the complement rule to obtain this probability. We have
P [Z > 1.00] = 1−P [Z < 1.00] = 1− 0.8413 = 0.1587, so P [Y > 54] =
0.1587.

4. Find the probability that Y < 46.5. We have

P [Y < 46.5] = P [Y − µ < 46.5− µ] (6.22)

= P

[
Y − µ
σ

<
46.5− µ

σ

]
(6.23)

= P

[
Z <

46.5− 50

4

]
(6.24)

= P [Z < −0.88]. (6.25)

By symmetry, we have P [Z < −0.88] = P [Z > 0.88]. The complement
of Z < 0.88 is Z > 0.88, and so P [Z > 0.88] = 1 − P [Z < 0.88] =
1− 0.8106 = 0.1093. So, P [Y < 46.5] = 0.1093.

5. Find the probability that 46 < Z < 52. We have

P [46 < Y < 52] = P [46− µ < Y − µ < 52− µ] (6.26)

= P

[
46− µ
σ

<
Y − µ
σ

<
52− µ
σ

]
(6.27)

= P

[
46− 50

4
< Z <

52− 50

4

]
(6.28)

= P [−1.00 < Z < 0.50]. (6.29)
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We then use symmetry and the complement rule to find this probability
involving Z. We first have P [Z < 0.50] = 0.6915 using Table Z. We
then have P [Z < −1.00] = P [Z > 1.00] = 1 − P [Z < 1.00] = 1 −
0.8413 = 0.1587 by symmetry. Therefore, P [−1.00 < Z < 0.50] =
P [Z < 0.50] − P [Z < −1.00] = 0.6915 − 0.1587 = 0.5328, and so
P [46 < Y < 52] = 0.5328.

6. Find a number y0 such that P [Y < y0] = 0.70. This problem can also
be handled by converting it to one involving Z. We have

P [Y < y0] = P [Y − µ < y0 − µ] (6.30)

= P

[
Y − µ
σ

<
y0 − µ
σ

]
(6.31)

= P

[
Z <

y0 − 50

4

]
(6.32)

= P [Z < z0] (6.33)

where z0 = y0−50
4

. We then search for a value of z0 such that P [Z <
z0] = 0.70, and obtain z0 = 0.52 from Table Z. We then solve for y0 as
follows:

z0 =
y0 − 50

4
(6.34)

0.52 =
y0 − 50

4
(6.35)

4(0.52) = y0 − 50 (6.36)

2.08 = y0 − 50 (6.37)

2.08 + 50 = y0 (6.38)

52.08 = y0. (6.39)

So, y0 = 52.08 is the answer. In general, one would have z0 = y0−µ
σ

, so
y0 = σz0 + µ for any σ and µ.
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6.3 Expected values and variance for contin-

uous distributions

We saw earlier how a theoretical mean, variance, and standard deviation
could be calculated for a discrete random variable, using the concept of expec-
tation and its probability distribution. The same concepts can be extended
to continuous random variables and probability densities.

Let Y be a continuous random variable with some probability density.
The expected value of Y , or its theoretical mean, is defined by the equation

E[Y ] =

∫ ∞
−∞

yf(y)dy (6.40)

where f(y) is the probability density of Y , and the integral is carried out
over the interval −∞ to ∞ (Mood et al. 1974). This equation is analogous
to the definition of expected value for a discrete random variable, except that
we use integration rather than summation to make the calculation.

Similar to discrete random variables, we can also define the theoretical
variance of a continuous random variable using expectation. The variance of
a continuous random variable Y is defined as

V ar[Y ] = E[(Y − E[Y ])2] =

∫ ∞
−∞

(y − E[Y ])2f(y)dy. (6.41)

We can directly calculate these quantities for the uniform distribution.
Recall from calculus that

∫
udu = u2/2. We therefore have

E[Y ] =

∫ ∞
−∞

yf(y)dy =

∫ b

a

y

b− a
dy (6.42)

=
1

b− a
y2

2
|ba =

1

b− a
b2 − a2

2
(6.43)

=
(b− a)(b+ a)

2(b− a)
=
b+ a

2
(6.44)

Thus, the expected value (or theoretical mean) of a uniform random variable
is located at the center of the interval, midway between a and b. It can also be
shown using the above formula that the variance of the uniform distribution
is

V ar[Y ] =
(b− a)2

12
(6.45)
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The theoretical standard deviation is just the square root of this quantity.
What are these quantities for the normal distribution? Recall that the

normal distribution is specified by the two parameters µ and σ2. If Y ∼
N(µ, σ2), it can be shown (by evaluating the above integrals using the normal
density) that

E[Y ] = µ (6.46)

and
V ar[Y ] = σ2. (6.47)

Thus, the parameters µ and σ2 for this distribution are the theoretical mean
and variance E[Y ] and V ar[Y ].

6.4 Continuous random variables and sam-

ples

Suppose we have a set of observations and want to determine if they can be
modeled using the normal distribution. We now develop a graphical method
of comparing these observed data with the pattern expected for the normal
distribution, called a normal quantile plot. These plots exist for other
continuous distributions as well, and are generally called quantile-quantile
plots. The idea is to plot the quantiles for the observed data vs. the quantiles
for the normal distribution, with the quantiles for the normal on the x-axis
and the data quantiles on the y-axis. If the data are normally distributed,
then this plot will resemble a straight diagonal line. This is because we are
essentially plotting the quantiles for one normal distribution (the data) vs.
the quantiles for the normal distribution itself (Wilk & Gnanadesikan 1968).
This is like plotting the function y = ax, which is the equation of a line with
slope a. See Chapter 3 for a review of quantiles such as the median, the 25%
and 75% quartiles, and so forth.

We will illustrate the calculations for a normal quantile plot using a small
data set. Suppose we have n = 9 data points that take the values 5.33, 4.98,
5.80, 4.37, 3.83, 2.76, 3.82, 4.02, and 3.09. We first order or rank the data
points from smallest to largest, similar to finding the median (Table 6.1). We
then find the proportion p of observations less than each data point, using
the formula p = (j − 3/8)/(n + 1/4), where j is the order of the data point
and n is the sample size. Note that the median of these data (the value
4.02) corresponds to p = 0.5. The values 3/8 and 1/4 in the formula are
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there to prevent p from taking the value 0 or 1 for the largest and smallest
observations.

Table 6.1: Calculations for a normal quantile plot

j (order) Y[j] p z
1 2.76 0.068 -1.49
2 3.09 0.176 -0.93
3 3.82 0.284 -0.57
4 3.83 0.392 -0.27
5 4.02 0.500 0.00
6 4.37 0.608 0.27
7 4.98 0.716 0.57
8 5.33 0.824 0.93
9 5.80 0.932 1.49

We then determine the quantiles of the standard normal distribution that
correspond to the values of p for these data. For example, suppose we want
to find a value z such that P [Z < z] = 0.5, the median of the standard normal
distribution. We see from Table Z that z = 0 give the correct probability.
For p = 0.932, we find that z = 1.49 gives close to the correct probability.
We can similarly find the values of z for the other values of p, giving the
last column in Table 6.1. The final step is then to plot the ordered data vs.
the normal quantiles (Fig. 6.15). If the data are normally distributed, there
should be a linear relationship between the observed data and the normal
quantiles, and the normal quantile plot will be a diagonal line. This appears
to be the case for these data. If the data are non-normal, however, all manner
of curved relationships are possible.
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Figure 6.15: Normal quantile plot using Table 6.1
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6.4.1 Elytra lengths - SAS demo

We previously examined a data set involving the elytra lengths of male and
female T. dubius beetles and calculated various descriptive statistics using
proc univariate (see Chapter 3). We now examine whether these data are
normally-distributed using normal quantile plots. A normal quantile plot is
requested by adding the command qqplot with the normal option to the pro-
gram (see below). A histogram and fitted normal curve can also be generated
using the histogram command with the normal option. Separate analyses are
requested for male and female beetles using a class statement, because the
two sexes differ in size and could also have potentially different distributions.
We observe that the normal quantile plots for female beetles is close to linear,
suggesting a normal distribution, while the males show some curvature.

SAS Program

* normal_quantile_plot.sas;

title ’Fitting the normal to elytra data’;

data elytra;

input sex $ length;

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

etc.

M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate plots data=elytra;

* Separate analyses for each sex;

class sex;

var length;

histogram length/ vscale=count normal;

qqplot length / normal;

run;
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quit;
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Figure 6.16: normal quantile plot.sas - proc univariate
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Figure 6.17: normal quantile plot.sas - proc univariate
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Figure 6.18: normal quantile plot.sas - proc univariate

Figure 6.19: normal quantile plot.sas - proc univariate



170 CHAPTER 6. CONTINUOUS RANDOM VARIABLES

6.4.2 Development time - SAS demo

We now examine a data set involving the development time of T. dubius
beetles in various stages, in particular the time from the larval to prepupal
stage, and then from the prepupal to adult stage (Reeve et al. 2003). See
program below for details of this analysis. We see that the normal quantile
plots for both stages are quite nonlinear, suggesting a distribution different
from normal. This is a reflection of the skewed distributions of development
time we saw earlier for these data (Chapter 3). Skewed and nonnormal
distributions are a common feature of insect development data (Wagner et
al. 1984).

SAS Program

* normal_quantile_plot_2.sas;

title ’Fitting the normal to development data’;

data devel_time;

input time_pp time_adult;

datalines;

34 65

31 48

29 .

30 55

32 62

etc.

29 .

29 108

31 103

33 .

29 92

;

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate plots data=devel_time;

var time_pp time_adult;

histogram time_pp time_adult / vscale=count normal;

qqplot time_pp time_adult / normal;

run;

quit;
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Figure 6.20: normal quantile plot 2.sas - proc univariate
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Figure 6.21: normal quantile plot 2.sas - proc univariate
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Figure 6.22: normal quantile plot 2.sas - proc univariate
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Figure 6.23: normal quantile plot 2.sas - proc univariate
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6.6 Problems

1. A random variable Y has a uniform probability density with a = 0 and
b = 2.

(a) What is the expected value of Y , or E[Y ]? What is the variance
of Y , or V ar[Y ]?

(b) What are the 25%, 50%, and 80% quantiles or percentiles of Y ?

(c) Find the probability that Y < 0.05.

(d) Find a symmetric interval centered around y = 1 that has a prob-
ability of 0.95.

2. Suppose that Y has a normal distribution with µ = 1 and σ2 = 3, or
Y ∼ N(1, 3). Find the following quantities using Table Z.

(a) The probability that Y > 2.

(b) The probability that 1 < Y < 3.

(c) The probability that Y < 0.5.

(d) The probability that Y is not inside the interval given in b.

(e) A value of y0 such that the probability that Y < y0 is 0.9.

3. Suppose that Y has a normal distribution with µ = 2 and σ2 = 4, or
Y ∼ N(2, 4). Find the following quantities using Table Z:

(a) The probability that Y < 2.5.

(b) The probability that 0.5 < Y < 2.5.

(c) The probability that Y < 1.

(d) The probability that Y is not inside the interval given in b.

(e) A value of y0 such that the probability that Y < y0 is 0.4.



Chapter 7

Expected Value, Variance, and
Samples

7.1 Expected value and variance

Previously, we determined the expected value and variance for a random
variable Y , which we can think of as a single observation from a distribution.
We will now extend these concepts to a linear function of Y and also the
sum of n random variables. We will use these results to derive the expected
value and variance of the sample mean Ȳ and variance s2, and so describe
their basic statistical properties. The idea of an unbiased estimator is also
expressed in terms of expected values, and we will show that Ȳ and s2 are
unbiased estimators of the theoretical mean and variance of Y , i.e., E[Y ] and
V ar[Y ]. This is true regardless of the distribution of Y .

We begin by reviewing the definition of expected value and variance.
Recall that if Y has a discrete distribution, the expected value (theoretical
mean) of Y , or E[Y ], is given by the equation

E[Y ] =
∑
y

yP [Y = y] =
∑
y

yf(y). (7.1)

Here f(y) is the probability distribution of Y , with the summation is taken
over all possible values of y. If Y has a continuous distribution, the expected
value is defined as the integral

E[Y ] =

∫ ∞
−∞

yf(y)dy, (7.2)

177
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where f(y) is the probability density of Y . For both discrete and continuous
random variables, the expected value is essentially a weighted average of all
possible values of Y , with the weights being probabilities or densities.

We also defined the theoretical variance of a random variable using expec-
tation. The variance of a random variable Y , denoted by V ar[Y ], is defined
as

V ar[Y ] = E[(Y − E[Y ])2] =
∑
y

(y − E[Y ])2P [Y = y] (7.3)

=
∑
y

(y − E[Y ])2f(y). (7.4)

The variance is a measure of the dispersion of the distribution of Y . The
variance of a continuous random variable Y is similarly defined as

V ar[Y ] = E[(Y − E[Y ])2] =

∫ ∞
−∞

(y − E[Y ])2f(y)dy. (7.5)

Table 7.1 summarizes the expected value and variance for the different
distributions we have examined so far. These quantities are a function of the
parameters in the distribution. Note that for the binomial, Poisson, negative
binomial and uniform distributions, there is some relationship between E[Y ]
and V ar[Y ], because the formulas share the same parameters. For example,
in the Poisson distribution the theoretical mean and variance are both equal
to λ. This is not the case for the normal distribution, where the mean and
variance are two separate parameters.

Table 7.1: Expected value and variance for five common probability distri-
butions

Distribution Parameters E[Y ] V ar[Y ]
Binomial l, p lp lp(1− p)
Poisson λ λ λ

Negative binomial m, k m m+m2/k

Uniform a, b a+b
2

(b−a)2

12

Normal µ, σ2 µ σ2

The significance of this result is that many statistical procedures assume
the mean and variance are unrelated, because they are based on the normal



7.2. LINEAR FUNCTIONS AND SUMS - EXPECTEDVALUE ANDVARIANCE179

distribution. If we wish to apply these procedures to other distributions, we
will need to transform the observations to reduce the relationship between
the mean and variance. This type of transformation is known as a variance-
stabilizing transformation (see Chapter 15).

7.2 Linear functions and sums - expected value

and variance

Before we turn to samples, we first need to determine the expected value of
a linear function of Y . Let Y be a random variable with any distribution,
and define a new variable Y ′ = aY + b, where a and b are constants. This
is called a linear function of Y because there is a straight-line relationship
between Y ′ and Y . What is the expected value of Y ′, or E[Y ′]? It can be
shown that

E[Y ′] = E[aY + b] = aE[Y ] + b. (7.6)

Thus, multiplying a random variable by a constant and then adding another
constant just shifts the theoretical mean in the same way (Mood et al. 1974).
This result holds for random variables with either a discrete or continuous
distribution.

Now suppose we have n random variables of any type, Y1, Y2, . . . , Yn,
which may or may not be independent. The random variables could also
have unequal means and variances, and even different distributions. What is
the expected value of the sum of these variables? One can show that

E[Y1 + Y2 + . . .+ Yn] = E[Y1] + E[Y2] + . . .+ E[Yn] =
∑

E[Yi]. (7.7)

So, the expected value of a sum is equal to the sum of the expected
values (Mood et al. 1974).

We will now examine how the theoretical variance is affected by a linear
function. Let Y be a variable with any distribution with an associated vari-
ance of V ar[Y ]. Define a new random variable Y ′ = aY + b, where a and b
are constants. What is the variance of Y ′, or V ar[Y ′]? It can be shown that

V ar[Y ′] = V ar[aY + b] = a2V ar[Y ]. (7.8)

This implies that a linear function of a random variable increases its variance
by a factor of a2, with b playing no role in the variance. This makes intuitive
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sense, because multiplying a random variable by a constant (a) should affect
its breadth or dispersion, while adding a constant (b) only shifts its location
and not its dispersion.

Now suppose we have n random variables of any type, Y1, Y2, . . . , Yn. The
random variables can have unequal means and variances, but we will assume
they are independent. What is the variance of the sum of these observations?
It can be shown that

V ar[Y1 + Y2 + . . .+ Yn] = V ar[Y1] + V ar[Y2] + . . .+ V ar[Yn] =
∑

V ar[Yi].

(7.9)
Thus, the variance of a sum is equal to the sum of the variances
(Mood et al. 1974). As you add more and more random variables together,
the variance of the sum also increases. This result only holds when the
random variables are independent of each other – if they were dependent a
much more complicated formula would be required. This is one advantage of
working with a random sample in which the observations are independent,
because it simplifies parameter estimation and other statistical procedures
(see Chapter 8).

7.3 Sample mean - expected value and vari-

ance

We will now use the preceding results to find the expected value and variance
of the sample mean. Suppose we have a set of observations Y1, Y2, . . . , Yn
drawn from some statistical population, say the body lengths of n randomly
selected individuals. The random variables Yi are independent, and because
they are drawn from the same population, they also have the same expected
value E[Yi] and variance V ar[Yi].

The sample mean is defined using the familiar formula:

Ȳ =

∑n
i=1 Yi
n

. (7.10)

What is the expected value of the sample mean or Ȳ ? Using our results for
sums of variables and linear transformations, we have

E[Ȳ ] = E

[∑
Yi
n

]
=
E[
∑
Yi]

n
=

∑
E[Yi]

n
=
nE[Yi]

n
= E[Yi]. (7.11)
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The expected value of the mean is thus equal to the expected value of the
individual variables (Mood et al. 1974).

The fact that E[Ȳ ] = E[Yi] means that Ȳ is an unbiased estimator
of the theoretical mean of the distribution of Yi. In less technical terms, it
implies that on average Ȳ will be equal to the underlying mean of the random
variable Yi. This is often a desirable property in an estimator, although there
are useful biased estimators as well.

We also need to calculate the theoretical variance of the sample mean,
written as V ar[Ȳ ]. Using the properties of the expected value and variance,
we have

V ar[Ȳ ] = V ar

[∑
Yi
n

]
=
V ar[

∑
Yi]

n2
=

∑
V ar[Yi]

n2
=
nV ar[Yi]

n2
=
V ar[Yi]

n
.

(7.12)
Thus, the variance of the sample mean is the variance of Yi divided by n
(Mood et al. 1974).

What does this result imply? As you collect larger and larger sam-
ples, the variance of the sample mean Ȳ becomes smaller. In other
words, Ȳ becomes less variable when it includes more data. This result
underlies many of the desirable effects of larger sample sizes in statistics,
including better estimates of parameters (Chapter 8), smaller confidence in-
tervals (Chapter 9), and statistical tests with more power (Chapter 10).

The standard deviation of the sample mean Ȳ is defined to be the square
root of the above quantity:√

V ar[Ȳ ] =

√
V ar[Yi]

n
=

√
V ar[Yi]√
n

. (7.13)

This formula makes it clear that the standard deviation of the mean is a
function of the standard deviation of the individual observations and the
sample size used in the mean. The common name for this quantity is the
standard error. In general, a standard error is the standard deviation of a
particular statistic, in this case the sample mean Ȳ .

7.4 Sample variance - expected value

Recall that the sample variance is defined using the formula

s2 =

∑n
i=1(Yi − Ȳ )2

n− 1
. (7.14)
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It can be shown that E[s2] = V ar[Yi], implying that the sample variance is
an unbiased estimator of the underlying variance of Yi.

It is important to note that all our results for the sample mean Ȳ and
variance s2 hold true for any distribution, not just the normal distribution.
The basic requirement is that the observations Y1, Y2, . . ., Yn are randomly
drawn from some statistical population, implying they are independent and
have the same expected value E[Yi] and variance V ar[Yi].

7.5 Sample calculations and simulation - SAS

demo

As an example of these rules of expectation and variance, suppose that Y
has a normal distribution with mean µ = 1 and variance σ2 = 1, namely
Y ∼ N(1, 1). Suppose we want to find the expected value and variance
of Y ′ = 2Y + 1. Note that Y ′ is a linear function of Y with a = 2 and
b = 1. Using the formulas for the expected value and variance of a linear
function, we have E[Y ′] = aE[Y ] + b = 2E[Y ] + 1 = 2(1) + 1 = 3, and also
V ar[Y ′] = a2V ar[Y ] = 22V ar[Y ] = 4(1) = 4.

Now suppose we have three variables Y1, Y2, and Y3 with the same dis-
tribution as above, and assumed to be independent. What is the expected
value and variance of the sum of these two variables, Y1 + Y2 + Y3? Us-
ing the formulas for sums of random variables, we have E[Y1 + Y2 + Y3] =
E[Y1] + E[Y2] + E[Y3] = 1 + 1 + 1 = 3, and V ar[Y1 + Y2 + Y3] = V ar[Y1] +
V ar[Y2] + V ar[Y3] = 1 + 1 + 1 = 3.

We can also calculate the expected value and variance of the sample mean
Ȳ for Y1, Y2, and Y3. Using the preceding results, we have E[Ȳ ] = E[Yi] = 1,
and V ar[Ȳ ] = V ar[Yi]/n = 1/3.

We can verify that these theoretical rules for the expected value and
variance have some basis in reality by conducting an experiment. Recall
that the expected value for a random variable can also be thought of as
the sample mean Ȳ for an infinite number of observations of that random
variable. Similarly, its theoretical variance is the sample variance s2 of an
infinite number of observations. It is easy to generate a very large number
of observations using SAS, and then compare the result predicted by these
theoretical rules with the sample mean and variance of the observations.
The SAS program listed below first generates 1,000 observations having the
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Table 7.2: Expected value and variance
Theory Simulation

Variable E[·] V ar[·] Ȳ s2

Y 1 1 1.032 0.980
Y ′ 3 4 3.063 3.919

Y1 + Y2 + Y3 3 3 3.052 3.069
Ȳ 1 1/3 1.017 0.341
s2 1 - 1.001 -

specified distribution [Y, Yi ∼ N(1, 1)] in a data step. Formulas are then used
to calculate Y ′, Y1 + Y2 + Y3, Ȳ , and s2. The SAS procedure proc univariate

is then used to calculate the sample mean and variance of these quantities.
See SAS output below.

If the theory involving expected values and variances is correct, it should
predict the behavior of the mean and variance in this large sample. A com-
parison between the results predicted using our expected value formulas and
the observed simulation results is given in Table 7.2. The theoretical predic-
tions and sample mean and variance are in close agreement.

Notice also from the SAS output that the distributions of Y ′, Y1 +Y2 +Y3,
and Ȳ appear to be normally distributed (see Fig. 7.8 - 7.10). In fact,
linear functions and sums of normal random variables are always normally
distributed, as is the sample mean. This may not be the case for variables
with other distributions. We also see that the variance of Ȳ is lower than Y
(1/3 vs. 1), an important property of this statistic (see Fig. 7.8 vs. 7.10).
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SAS Program

* Linear.sas;

title ’Demonstration of expected value and variance rules’;

data linear;

* Loop to generate 1000 random observations;

do i = 1 to 1000;

a = 2;

b = 1;

* Generate y, y1, y2, y3 with N(1,1) distribution;

mu = 1; sig2 = 1;

y = sqrt(sig2)*rannor(0) + mu;

y1 = sqrt(sig2)*rannor(0) + mu;

y2 = sqrt(sig2)*rannor(0) + mu;

y3 = sqrt(sig2)*rannor(0) + mu;

* Calculate a linear function of y, then sum, mean, and s2;

yprime = a*y + b;

ysum = y1 + y2 + y3;

ybar = ysum/3;

s2 = ((y1-ybar)**2+(y2-ybar)**2+(y3-ybar)**2)/(3-1);

output;

end;

run;

* Print simulated data, first 25 observations;

proc print data=linear(obs=25);

run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=linear;

var y yprime ysum ybar s2;

histogram y yprime ysum ybar s2 / vscale=count normal midpoints=-6 to 12 by 0.5;

qqplot y yprime ysum ybar s2 / normal;

run;

quit;
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etc.

Figure 7.1: linear.sas - proc print

Figure 7.2: linear.sas - proc univariate



186 CHAPTER 7. EXPECTED VALUE, VARIANCE, AND SAMPLES

Figure 7.3: linear.sas - proc univariate

Figure 7.4: linear.sas - proc univariate
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Figure 7.5: linear.sas - proc univariate

Figure 7.6: linear.sas - proc univariate
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Figure 7.7: linear.sas - proc univariate

Figure 7.8: linear.sas - proc univariate
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Figure 7.9: linear.sas - proc univariate

Figure 7.10: linear.sas - proc univariate
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7.6 Central limit theorem

Suppose we randomly draw a sample Y1, Y2, . . . , Yn of size n from some sta-
tistical population. In this situation, the observations are independent and
have a common expected value E[Yi] and variance V ar[Yi]. They may have
any probability distribution, known or unknown.

The central limit theorem states that the distribution of the sample
mean of these random variables, namely Ȳ , approaches a normal distribution
with mean E[Yi] and variance V ar[Yi]/n as the sample size n becomes large
(Mood et al. 1974). In particular, we have Ȳ ∼ N(E[Yi], V ar[Yi]/n) for large
n. The central limit theorem also holds for sums of random variables, and
in this case we have

∑
Yi ∼ N(nE[Yi], nV ar[Yi]) for large n. These results

are true for any probability distribution - Ȳ and
∑
Yi will have a

normal distribution for large sample sizes. Note also that the variance
of Ȳ decreases as the sample size n increases. We would also expect this
from our earlier results concerning the variance of Ȳ .

7.6.1 Central limit theorem - SAS demo

The operation of the central limit theorem can be demonstrated in a simple
experiment using a SAS program (see below). The program models Y as a
Poisson random variable with λ = 1, implying E[Yi] = 1 and V ar[Yi] = 1.
Sample means are then generated for different sample sizes, ranging from
n = 1 to n = 50, in a SAS data step. A total of 1,000 sample means are
generated for each value of n in the simulation. The program then used
proc univariate to calculate summary statistics for these data, as well as
histograms and normal quantile plots (not shown). See SAS output below.

Examining the histograms, we see that as n increases the distribution of
Ȳ approaches the normal distribution. A sample size of n = 50 appears suffi-
cient to produce a distribution almost indistinguishable from normal. What
is especially interesting here is that fact that the Poisson is a discrete ran-
dom variable, yet the distribution of Ȳ approaches the normal distribution,
a continuous random variable.

We also observe that the variance of Ȳ decreases as the sample size n
increases, as predicted by the central limit theorem and our earlier results
on the variance of Ȳ . See Table 7.3.
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Table 7.3: Mean and variance of Ȳ
Theory Simulation

n E[Yi] V ar[Yi]/n Mean of Ȳ Variance of Ȳ
1 1.000 1.000 0.993 1.036
5 1.000 0.200 0.994 0.213
10 1.000 0.100 1.001 0.111
50 1.000 0.020 0.995 0.019

SAS Program

* central_limit_theorem.sas;

title ’Demonstration of central limit theorem in action’;

data cntrlmt;

* Loop to generate 1000 random observations;

do i = 1 to 1000;

* A single Poisson observations with lambda = 1;

y1 = ranpoi(0,1);

* Mean of 5 Poisson observations;

y5 = 0;

do j = 1 to 5;

y5 = y5 + ranpoi(0,1);

end;

y5 = y5/5;

* Mean of 10 Poisson observations;

y10 = 0;

do j = 1 to 10;

y10 = y10 + ranpoi(0,1);

end;

y10 = y10/10;

* Mean of 50 Poisson observations;

y50 = 0;

do j = 1 to 50;

y50 = y50 + ranpoi(0,1);

end;

y50 = y50/50;

* Mean of 100 Poisson observations;

output;

end;

drop i j;

run;

* Print simulated data (first 25 observations);

proc print data=cntrlmt(obs=25);
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run;

* Descriptive statistics, histograms, and normal quantile plots;

proc univariate data=cntrlmt;

var y1 y5 y10 y50;

histogram y1 y5 y10 y50 / vscale=count normal

qqplot y1 y5 y10 y50 / normal;

symbol1 h=3;

run;

quit;

etc.

Figure 7.11: central limit theorem.sas - proc print
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Figure 7.12: central limit theorem.sas - proc univariate

Figure 7.13: central limit theorem.sas - proc univariate
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Figure 7.14: central limit theorem.sas - proc univariate

Figure 7.15: central limit theorem.sas - proc univariate
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Figure 7.16: central limit theorem.sas - proc univariate

Figure 7.17: central limit theorem.sas - proc univariate
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Figure 7.18: central limit theorem.sas - proc univariate

Figure 7.19: central limit theorem.sas - proc univariate
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7.7 Applications of the central limit theorem

The central limit theorem provides a potential explanation why so many bio-
logical variables like the length of an organism and other continuous variables
are apparently normal in distribution. These variables are often under the
control of multiple genes and environmental factors that can behave like sums
and means of random variables, and so their combined effect should gener-
ate a normal distribution of outcomes by the central limit theorem (Hartl &
Clark 1989).

The theorem also applies to measurements of ecological variables like
population density. To estimate population density, we often average the
results of several quadrats (or whatever sampling units) to yield a single
number for a given location. By the central limit theorem, these average
densities will have a normal distribution for sufficiently large n.

Most of the statistical methods we will study are based on the assumption
that the observations in a study or experiment have a normal distribution.
This would seem a risky assumption, since many natural processes yield ran-
dom variables that are not strictly normal, some examples being count data
that are better modeled using the binomial and Poisson distributions. How-
ever, the tests themselves are often based on means that are assumed to have
a normal distribution. The central limit theorem guarantees these means are
normal provided sample sizes are sufficiently large. Thus, statistical tests
based on normality should be valid for non-normal data given large enough
sample sizes (see Stewart-Oaten 1995 for further discussion).

The central limit may not be sufficient to guarantee normality for smaller
sample sizes, and so other approaches may be needed. One possibility would
be a transformation of the observations to make their distribution closer
to normal (Chapter 15). If that fails, there are nonparametric statistical
procedures (Chapter 16) that are valid for any distribution, as well as ones
that allow the use of other probability distributions.
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7.9 Problems

1. Let Y1, Y2, and Y3 be three independent random variables with E[Yi] =
2 and V ar[Yi] = 1. Using the rules for expected value and variance,
calculate the expected value and variance of the following quantities:

(a) 3Y1 + 1.

(b) Y1 + Y2 + Y3.

(c) (Y1 + Y2 + Y3)/3.

2. Suppose that Y1, Y2, and Y3 are three independent random variables,
with E[Yi] = 3 and V ar[Yi] = 2. Using the rules for expected value
and variance, calculate the expected value and variance of the following
quantities:

(a) 0.5Y2 + 2.

(b) (Y1 + Y2 + Y3)/3.

(c) 2(Y1 + Y2) + 3.

3. The exponential distribution is often used to model the time until an
event happens, such as the radioactive decay of an atom or mortal-
ity processes in population models. The probability density for the
exponential distribution is defined as

f(y) =
e−y/λ

λ
(7.15)

for y ≥ 0. The distribution has one parameter, λ, which is the mean
decay time (E[Y ] = λ). A single random observation with an ex-
ponential distribution can be generated in SAS using the expression
ranexp(0)*lambda. Modify the program central_limit.sas so that is gen-
erates exponential observations instead of Poisson ones, using λ = 2.
Discuss how the distribution of Ȳ changes as the sample size increases.
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Chapter 8

Sampling and Estimation

We discuss in this chapter two topics that are critical to most statistical
analyses. The first is random sampling, which is a method for obtaining
observations from a statistical population that has many advantages. After
obtaining a random sample, the next step of the analysis is the selection of
a probability distribution to model the observations, such as the Poisson or
normal distributions. One then seeks to estimate the parameters of these
distributions (λ, µ, σ2, etc.) using the information contained in the random
sample, the second topic of this chapter. We will examine one common
method of parameter estimation called maximum likelihood.

8.1 Random samples

A basic assumption of many statistical procedures is that the observations
are a random sample from a statistical population (see Chapter 3). A
sample from a statistical population is a random sample if (1) each element
of the population has an equal probability of being sampled, and (2) the
observations in the sample are independent (Thompson 2002). This definition
has a number of implications. It implies that a random sample will resemble
the statistical population from which it is drawn, especially as the sample
size n increases, because each element of the population has an equal chance
of being in the sample. Random sampling also implies there is no connection
or relationship between the observations in the sample, because they are
independent of one another.

What are some ways of obtaining a random sample? Suppose we are
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interested in the distribution of body length for insects of a given species,
say in a particular forest. This defines the statistical population of interest.
One way to obtain a random sample would be to number all the insects, and
then write the numbers on pieces of paper and place them in a hat. After
mixing the pieces, one would draw n numbers from the hat (without peeking)
and collect only those insects corresponding to these numbers. This method
of sampling would yield a random sample, because each individual would
have an equal probability of being selected, and the observations would also
be independent. For many insect species this method would be impractical,
however, because they can be difficult to find and number. It would be more
useful for statistical populations where the number of elements is known
and they can be uniquely identified, as in surveys of human populations
(Thompson 2002).

A more feasible way of sampling insects would be to place traps in the
forest and in this way sample the population. If we want to successfully
approximate a random sample with our trapping scheme, however, some
knowledge of the biology of the organism is essential. For example, suppose
that insect size varies in space because of differences in food plants or mi-
croclimate. A single trap deployed at only one location could therefore yield
insects different in length than those in the overall population. A better
sampling scheme would deploy multiple traps at several locations within the
forest. The location of the traps could be randomly chosen to avoid conscious
or unconscious biases by the trapper, such as deploying the traps close to a
road for convenience. There is also the problem that insects susceptible to
trapping could differ in length from the general population. This implies
that the population actually sampled could differ from the target statistical
population, and a careful analyst would consider this possibility. Thus, the
biology of the organism plays an integral role in designing an appropriate
sampling scheme.

8.2 Parameter estimation

Suppose we have obtained a random sample from some statistical population,
say the lengths of insects trapped in a forest, or the counts of the insects
in each trap. The first step faced by the analyst is to chose a probability
distribution to model the data in the sample. For insect lengths, a normal
distribution could be a plausible model, while counts of the insects per trap
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might have a Poisson distribution. Once a distribution has been selected, the
next task is to estimate the parameters of the distribution using the sample
data. The dominant method of parameter estimation in modern statistics is
maximum likelihood. This method has a number of desirable statistical
properties although it can also be computationally intensive.

Maximum likelihood obtains estimates of the parameters using a math-
ematical function (see Chapter 2) known as the likelihood function. The
likelihood function gives the probability or density of the observed data as a
function of the parameters in the probability distribution. For example, the
likelihood function for Poisson data would be a function of the Poisson pa-
rameter λ. We then seek the maximum value of the likelihood function (hence
the name maximum likelihood) across the potential range of parameter val-
ues. The parameter values that maximize the likelihood are the maximum
likelihood estimates. In other words, the maximum likelihood estimates
are the parameter values that give the largest probability (or prob-
ability density) for the observed data.

8.2.1 Maximum likelihood for Poisson data

We will first illustrate estimation using maximum likelihood with a random
sample drawn from a statistical population where the observations are Pois-
son. For simplicity, let n = 3 and suppose the observed values are Y1 = 8,
Y2 = 5, and Y3 = 6. We begin by calculating the probability of observing this
sample, which in fact is its likelihood function. Because we have a random
sample, the Yi values are independent of each other, and so this probability
is the product of the probability for each Yi. We have

L(λ) = P [Y1 = 8]× P [Y2 = 5]× P [Y3 = 6] (8.1)

=
e−λλ8

8!
× e−λλ5

5!
× e−λλ6

6!
(8.2)

The notation L(λ) is used for likelihood functions and indicates the likelihood
is a function of the parameter λ of the Poisson distribution. The method of
maximum likelihood estimates λ by finding the value of λ that maximizes
this function (Mood et al. 1974). Note that the location of the maximum
will vary with the data in the sample.

We can find the maximum likelihood estimate graphically by plotting
L(λ) as function of λ (Fig. 8.1). For these particular data values, the max-
imum occurs at λ = 6.3, and so the maximum likelihood estimate (often



204 CHAPTER 8. SAMPLING AND ESTIMATION

abbreviated MLE) of λ is this value. This is also the value of Ȳ for these
data, which suggests that Ȳ might be the maximum likelihood estimator of
λ in general.

Figure 8.1: Plot of L(λ) vs. λ

For readers interested in the mathematics, this also can be shown using
derivatives. Let y1, y2, and y3 be the observed values of Y1, Y2, and Y3. The
likelihood function can then be written as

L(λ) =
e−λλy1

y1!
× e−λλy2

y2!
× e−λλy3

y3!
=
e−3λλy1+y2+y3

y1!y2!y3!
(8.3)

We want to find the maximum of L(λ) (Eq. 8.3), which should occur when
the derivative of this function with respect to λ equals zero. This follows
because the derivative is the slope of a function, and at the maximum the
slope is equal to zero. Differentiating L(λ) with respect to λ and simplifying,
we obtain

dL(λ)

dλ
=

e−3λ

y1!y2!y3!

[
(y1 + y2 + y3)λy1+y2+y3−1 − 3λy1+y2+y3

]
. (8.4)



8.2. PARAMETER ESTIMATION 205

This derivative can only equal zero if the term in square brackets is zero:[
(y1 + y2 + y3)λy1+y2+y3−1 − 3λy1+y2+y3

]
= 0 (8.5)

or

(y1 + y2 + y3)λy1+y2+y3−1 = 3λy1+y2+y3 . (8.6)

Canceling the quantity λy1+y2+y3 from both sides of this equation, we find
that

(y1 + y2 + y3)λ−1 = 3, (8.7)

or

λ̂ =
y1 + y2 + y3

3
. (8.8)

Note that this is the sample mean Ȳ for n = 3, and it is can be shown that Ȳ
is the maximum likelihood estimator of λ for any n. Statisticians often write
the estimator of a parameter like λ using the notation λ̂, pronounced ‘λ-
hat.’ An estimator can be thought of as the formula or recipe for obtaining
an estimate of a parameter, with the estimate itself obtained by plugging
actual data values into the estimator.

8.2.2 Poisson likelihood function - SAS demo

We can use a SAS program to further illustrate the behavior of the likelihood
function for Poisson data (see program listing below). In particular, we will
show how L(λ) changes as the observed data and the sample size n changes.
The program first generates n random Poisson observations for a specified
Poisson parameter value of λ = 6 (mu_parameter = 6). It then plots L(λ)
across a range of λ values. In this scenario we actually know the underlying
value of λ and can see how well maximum likelihood estimates its value. See
SAS program below.

The program makes extensive use of loops in the data step, to generate
the Poisson data and also values of the likelihood function for different values
of λ. One new feature of this program is the use of a SAS macro variable(SAS
Institute Inc. 2016). In this case, a macro variable labeled n is defined and
assigned a value of 3 using the command

%let n = 3;
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We can then refer to this value throughout the program using the notation
&n. Otherwise, if we wanted to change the sample size n in the program we
would have to type in a new value everywhere sample size is used in the
calculations.

SAS program

* likepois_random.sas;

title "Plot L(lambda) for Poisson data vs. lambda";

data likepois;

* Generate n random Poisson observations with parameter lambda;

%let n = 3;

lambda_parameter = 6;

array ydata (&n) y1-y&n;

do i=1 to &n;

ydata(i) = ranpoi(0,lambda_parameter);

end;

* Find likelihood as function of lambda;

do lambda=0.1 to 15 by 0.1;

Llambda = 1;

do i=1 to &n;

Llambda = Llambda*pdf(’poisson’,ydata(i),lambda);

end;

output;

end;

run;

* Print data;

proc print data=likepois;

run;

* Plot likelihood as a function of lambda;

proc gplot data=likepois;

plot Llambda*lambda=1 / vaxis=axis1 haxis=axis1;

symbol1 i=join v=none c=red width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;

Examining the SAS output and graphs from the first two runs of the
program (Fig. 8.3, 8.4), we see that the likelihood function is different. This
is because the observed data are different for each run. The peak in the
likelihood function always occurs at the value of Ȳ for each data set, and
this is the maximum likelihood estimate of λ.
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The last run shows the effect of increasing the sample size in the program,
from n = 3 to n = 10. Note that the peak of the likelihood function lies quite
close to the specified value λ = 6 (Fig. 8.5). This illustrates an important
property of maximum likelihood estimators - they converge on the true value
as n→∞. This property is known as consistency in mathematical statistics.

etc.

Figure 8.2: likepois random.sas - proc print
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Figure 8.3: likepois random.sas - proc gplot (n = 3)

Figure 8.4: likepois random.sas - proc gplot (n = 3)
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Figure 8.5: likepois random.sas - proc gplot (n = 10)
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8.2.3 Maximum likelihood for normal data

Now suppose we draw a random sample from a population with a normal
distribution, such as body lengths, etc. For simplicity, let n = 3 again and
the observed values be Y1 = 4.5, Y2 = 5.4, and Y3 = 5.3. The likelihood
function in this case is the probability density values for the observed data:

L(µ, σ2) =
1√

2πσ2
e−

1
2

(4.5−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.4−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.3−µ)2

σ2 .

(8.9)

Note that the terms in the likelihood for normal data are probability densities,
instead of probabilities as with Poisson data.

We can find the maximum likelihood estimate graphically by plotting
L(µ, σ2) as function of µ and σ2. The likelihood function in this case describes
a dome-shaped surface (Fig. 8.6). With these particular data, the maximum
occurs at about µ = 5.07 and σ2 = 0.16, and so these are the maximum
likelihood estimates of µ and σ2.

Figure 8.6: Plot of L(µ, σ2) vs. µ and σ2
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Using a bit of calculus, it can be shown that the maximum likelihood
estimators of these parameters are, for any sample size n:

µ̂ = Ȳ (8.10)

and

σ̂2 =
Σn
i=1(Yi − Ȳ )2

n
. (8.11)

Note that does not quite equal the sample variance s2, which uses n − 1
(rather than n) in the denominator:

s2 =
Σn
i=1(Yi − Ȳ )2

n− 1
. (8.12)

Recall that s2 is an unbiased estimator of σ2, and so σ̂2 derived using max-
imum likelihood is actually a biased estimator of σ2. It would consistently
generate values that underestimate σ2 because n is greater than n − 1. For
cases like this one where bias is known, it is common to use a bias-corrected
version of the maximum likelihood estimator (i.e., n− 1 rather than n in the
denominator).

8.2.4 Normal likelihood function - SAS demo

We will use another SAS program to illustrate the behavior of the likelihood
function for normal data. The program first generates n random normal
observations for a specified, known value of µ = 5 and σ2 = 0.25. It then
plots the likelihood function across a range of possible µ and σ2 values. See
SAS program below.

Examining the SAS output and graphs from the first two runs of the
program (Fig. 8.8, 8.9), we see that the likelihood function changes with
the observed data. The peak always occurs at µ̂ and σ̂2 for each data set.
The last run shows the effect of increasing the sample size from n = 3 to
n = 10. Note that the peak of the likelihood function lies quite close to the
specified values of µ = 5 and σ2 = 0.25 (Fig. 8.10). This again illustrates
the consistency of maximum likelihood estimates.
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SAS program

* likenorm_random.sas;

title "Plot L(mu,sig2) for normal data vs. mu and sig2";

data likenorm;

* Generate n random normal observations with parameters mu and sig2;

%let n = 3;

mu_parameter = 5; sig2_parameter = 0.25; sig_parameter = sqrt(sig2_parameter);

array ydata (&n) y1-y&n;

do i=1 to &n;

ydata(i) = mu_parameter + sig_parameter*rannor(0);

end;

* Find likelihood as a function of mu and sig2;

do mu=4 to 6 by 0.01;

do sig2=0.05 to 0.5 by 0.01;

sig = sqrt(sig2);

Lmusig2 = 1;

do i=1 to &n;

Lmusig2 = Lmusig2*pdf(’normal’,ydata(i),mu,sig);

end;

output;

end;

end;

run;

* Print data, first 25 observations;

proc print data=likenorm(obs=25);

run;

* Plot likelihood as a function of mu and sig2;

* Contour plot version;

proc gcontour data=likenorm;

plot sig2*mu=Lmusig2 / autolabel nolegend vaxis=axis1 haxis=axis1;

symbol1 height=1.5 font=swissb width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

quit;
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etc.

Figure 8.7: likenorm random.sas - proc print
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Figure 8.8: likenorm random.sas - proc gcontour (n = 3)

Figure 8.9: likenorm random.sas - proc gcontour (n = 3)
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Figure 8.10: likenorm random.sas - proc gcontour (n = 10)
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8.3 Optimality of maximum likelihood esti-

mates

Why should we use maximum likelihood estimates? There are other methods
of parameter estimation, but maximum likelihood estimates are optimal in
a number of ways (Mood et al. 1974). We have already seen that they are
consistent, approaching the true parameter values as sample size increases.
Increasing the sample size also reduces the variance of these estimators. We
can observe this behavior for µ̂ = Ȳ , the estimator of µ for the normal
distribution. Recall that the variance of Ȳ is σ2/n, which decreases for
large n. Maximum likelihood estimates are also asymptotically unbiased,
meaning their expected value approaches the true value of the parameter as
the sample size n increases. We can see this in operation for σ̂2 (Eq. 8.11), the
maximum likelihood estimator of σ2, vs. s2 (Eq. 8.12), an unbiased estimator
of σ2. Note that the difference between n vs. n − 1 in the denominator
becomes very small as n increases. Finally, maximum likelihood estimates are
asymptotically normal, meaning their distribution approaches the normal
distribution for large n.

There are other uses for the likelihood function besides parameter esti-
mation. We will later see how the likelihood function can be used to develop
statistical tests called likelihood ratio tests. Many of the statistical tests we
will study are actually likelihood ratio tests. Likelihood methods provide an
essential tool for developing new statistical procedures, provided that we can
specify a probability distribution for the data.
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8.5 Problems

1. The exponential distribution is a continuous distribution that is used
to model the time until a particular event occurs. For example, the
time when a radioactive particle decays is often modeled using an ex-
ponential distribution. If a variable Y has a exponential distribution,
then its probability density is given by the formula

f(y) =
e−y/λ

λ
(8.13)

for y ≥ 0. The distribution has one parameter, λ, which is the mean
decay time (E[Y ] = λ).

(a) Use SAS and the program fplot.sas to plot the exponential prob-
ability density with λ = 2, for 0 ≤ y ≤ 5. Attach your SAS
program and output.

(b) Suppose you have a sample of four observations y1, y2, y3 and y4

from the exponential distribution. What would be the likelihood
function for these observations?

(c) Plot the likelihood function for y1 = 1, y2 = 2, y3 = 2 and y4 = 3
over a range of λ values. Show that the maximum occurs at λ̂ = Ȳ ,
the maximum likelihood estimator of λ. Attach your SAS program
and output.

2. The geometric distribution is a discrete distribution that is used to
model the time until a particular event occurs. Consider tossing a coin
– the number of tosses before a head appears would have a geometric
distribution. If a variable Y has a geometric distribution, then the
probability that Y takes a particular value y is given by the formula

P [Y = y] = f(y) = p(1− p)y (8.14)

where p is the probability of observing the event on a particular trial,
and y = 0, 1, 2, . . . ,∞. The distribution has only one parameter, p.

(a) Use SAS and the program fplot.sas to plot this probability dis-
tribution for p = 0.5, for y = 0, 1, . . . , 10. Attach your SAS pro-
gram and output.
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(b) Suppose you have a sample of three observations y1, y2, and y3

from the geometric distribution. What would be the likelihood
function for these observations?

(c) Plot the likelihood function for y1 = 1, y2 = 2, and y3 = 3 over a
range of p values. Show that the maximum occurs at p̂ = 1/(Ȳ +
1), the maximum likelihood estimator of p. Attach your SAS
program and output.



Chapter 9

Confidence Intervals

In the preceding chapter, we examined the maximum likelihood method for
estimating the parameters of a statistical population, using a random sample
from that population. For example, if we have a sample from a population
with a normal distribution, we can estimate the parameter µ of this popu-
lation using the sample mean Ȳ . We will now examine a common method
for characterizing the precision of these estimates, known as confidence in-
tervals. Given an estimate Ȳ of µ, say, we will learn how to calculate an
interval that will contain the true population µ with a certain probability.
A narrow interval indicates the parameter µ is reliably estimated, while a
broad one indicates substantial uncertainty as to its value.

9.1 Preliminaries to confidence intervals

We now discuss some material that is essential for the construction of confi-
dence intervals and later in hypothesis testing. We first review some results
from Chapter 8 on parameter estimation for the normal distribution, then de-
rive some new results. We then examine some distributions associated with
sampling from the normal distributions, not surprisingly called sampling
distributions.

9.1.1 Parameters and estimates

Confidence intervals are based on estimates of population parameters, such
as µ and σ2 for populations with a normal distribution. Our previous results

219
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on parameter estimation suggest that Ȳ and s2 are reasonable estimators
of µ and σ2. The sample standard deviation s =

√
s2 is typically used to

estimate the population standard deviation σ.
We also want to estimate the variance and standard deviation of the

sample mean Ȳ . Recall that for a random sample Y1, Y2, ... Yn with any
distribution,

V ar[Ȳ ] =
V ar[Yi]

n
(9.1)

where V ar[Yi] is the variance of Yi (Chapter 7). For a random sample where
the observations are normal, this translates to

V ar[Ȳ ] =
σ2

n
(9.2)

because V ar[Yi] = σ2 for the normal. If we use s2 to estimate σ2, we can
therefore estimate V ar[Ȳ ] using s2/n and σ/

√
n using s/

√
n.

The table below summarizes the different parameters, their estimators,
and common terminology for these quantities:

Table 9.1: Parameters and their estimators
Parameter Estimator Terminology

µ Ȳ Sample mean
σ2 s2 Sample variance
σ s Sample standard deviation
σ2

n
s2

n
Sample variance of the mean

σ√
n

s√
n

Standard error of the mean

Recall that the term standard error always refers to the standard deviation of
a statistic, such as Ȳ . The term standard deviation used without qualification
usually means the standard deviation s of items in a random sample from a
population.

9.1.2 Sampling distributions

In this section, we will first examine the probability distribution of the esti-
mator Ȳ . We then examine the distributions of some quantities involving Ȳ
and the sample variance s2, known as sampling distributions. These sampling
distributions will be used to construct confidence intervals and also play an
important role in hypothesis testing (Chapter 10).
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Distribution of Ȳ

Suppose we have a random sample Y1, Y2, ..., Yn from a statistical popula-
tion with a normal distribution, in particular that Yi ∼ N(µ, σ2) and are
independent of each other. It can be shown that

Ȳ ∼ N

(
µ,
σ2

n

)
. (9.3)

Thus, the sample mean of normal observations also has a normal distribution
with the same mean µ, but with variance equal to σ2/n, not σ2 (Mood et al.
1974).

Note that the distribution of Ȳ will be approximately normal for any
distribution provided n is large, thanks to the central limit theorem (see
Chapter 7). Thus, for large sample sizes we have Ȳ ∼ N(E[Y ], V ar[Y ]/n)
for any probability distribution. This result has important statistical im-
plications. Confidence intervals and hypothesis testing procedures
often assume that Ȳ is normally distributed, and this will be ap-
proximately true if n is sufficiently large. These statistical procedures
are therefore robust to departures from normality in the data for large n.

We also learned earlier that if Y ∼ N(µ, σ2), then the transformed vari-
able (Y − µ)/σ has a standard normal distribution, or (Y − µ)/σ = Z ∼
N(0, 1). Combining these two results, we find that

Ȳ − µ√
σ2/n

=
Ȳ − µ
σ/
√
n
∼ N(0, 1) (9.4)

Thus, the quantity Ȳ−µ
σ/
√
n

has a standard normal distribution. We will use

this sampling distribution to obtain a confidence interval for µ, for the case
where σ2 is known from other information.

We will also need to find certain intervals with a specified probability
using the standard normal distribution, in order to construct confidence in-
tervals. In general, we will need to find a positive value c such that

P [−cα < Z < cα] = 1− α (9.5)

for this purpose, where typically α = 0.05 or 0.01. The values of cα that
satisfy this probability are often called critical values, a term that also
applies to other probability distributions. We use the notation cα because
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this quantity depends on the value of α. To find cα, we first express this
probability in terms of Table Z. We have

P [−cα < Z < cα] = P [Z < cα]− P [Z < −cα] (9.6)

= P [Z < cα]− (1− P [Z < cα]) (9.7)

= 2P [Z < cα]− 1. (9.8)

If we set 2P [Z < cα]− 1 = 1− α and rearrange, we get

P [Z < cα] = (2− α)/2 = 1− α/2. (9.9)

Therefore, we examine Table Z for a value of cα such that P [Z < cα] =
1 − α/2. For α = 0.05, we would look for c0.05 such that P [Z < c0.05] =
1 − 0.05/2 = 0.975 and find that c0.05 = 1.96 is the answer. Similarly, for
α = 0.01 we seek c0.01 such that P [Z < c0.01] = 1 − 0.01/2 = 0.995. There
is no value in Table Z that gives quite this probability, although we can see
2.57 and 2.58 are close. The exact answer is c0.01 = 2.576.

t distribution

Another important sampling distribution is the t distribution. This distribu-
tion has a single parameter, called the degrees of freedom, that governs the
shape of the distribution. It can be shown that the quantity

Ȳ − µ
s/
√
n
∼ tn−1 (9.10)

(Mood et al. 1974). Here the symbol ‘tn−1’ stands for the t distribution with
n−1 degrees of freedom, where n is the sample size in Ȳ . Degrees of freedom
is often abbreviated as ‘df ’.

The t distribution resembles the standard normal distribution in being
bell-shaped, except that it has more probability in the tails and less in the
center of the distribution (Fig. 9.1). Roughly speaking, the t distribution has
heavier tails than the normal because Ȳ and s are both random quantities
in Eq. 9.10, making their ratio more variable than for Eq. 9.4 where only Ȳ
is random. However, as n → ∞ the t distribution does approach the stan-
dard normal distribution. We will use this sampling distribution to obtain a
confidence interval for µ, when σ2 is estimated using the sample variance s2.
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What is the origin of the term degrees of freedom? Recall that the sample
standard deviation s is obtained from the sample variance, calculated using
the formula

s2 =
Σn
i=1(Yi − Ȳ )2

n− 1
. (9.11)

Notice that the sample variance s2 is composed of terms of the form Yi − Ȳ .
Although there are n of these terms, they also sum to zero (Σn

i (Yi− Ȳ ) = 0).
This implies that if n − 1 terms are known, we can always determine the
remaining term because of this relationship, implying there are really only
n − 1 free, independent terms in s2 (Mood et al. 1974). Hence the name
degrees of freedom.

Figure 9.1: Plot of the t distribution for different degrees of freedom

Table T gives the quantiles of the t distribution for different values of the
degrees of freedom and the cumulative probability p. We will also need to
find intervals of the form

P [−cα,df < T < cα,df ] = 1− α, (9.12)

where cα,df is a positive number, T has a t distribution, for α = 0.05 or 0.01.
We use the notation cα,df because this quantity will depend on both α and
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the degrees of freedom. We proceed as before by expressing this probability
in terms of Table T. We have

P [−cα,df < T < cα,df ] = P [T < cα,df ]− P [T < −cα,df ] (9.13)

= P [T < cα,df ]− (1− P [T < cα,df ]) (9.14)

= 2P [T < cα,df ]− 1. (9.15)

If we set 2P [T < cα,df ]− 1 = 1− α and rearrange, we get

2(1− P [T < cα,df ]) = α. (9.16)

Because P [T < cα,df ] is essentially p for this table, we simply look across the
row corresponding to 2(1− p) at the top and find the column corresponding
to α. For α = 0.05, we see that for df = 10 the answer is c0.05,10 = 2.228.
For α = 0.01 and df = 10, the answer is c0.01,10 = 3.169.

χ2 distribution

One other common sampling distribution is the χ2 (chi-square) distribution,
which also has a parameter called the degrees of freedom. It can be shown
that the quantity

(n− 1)s2

σ2
∼ χ2

n−1 (9.17)

(Mood et al. 1974). Here the symbol ‘χ2
n−1’ stands for a χ2 distribution with

n − 1 degrees of freedom. The degrees of freedom parameter controls the
shape of the χ2 distribution (Fig. 9.2). The χ2 distribution is only defined
for positive values, because s2 is always positive, and its distribution shifts to
the right (large values become more likely) as n and the degrees of freedom
increases. We will use this sampling distribution to obtain a confidence
interval for σ2 and σ.

Table C gives the quantiles of the χ2 distribution for different values of the
degrees of freedom and the cumulative probability p. We will need to find the
probabilities for certain intervals, but this is more complicated with the χ2

distribution because it is asymmetrical, unlike the normal or t distributions.
In this case, we want to find two positive numbers cα/2,df and c1−α/2,df such
that

P [cα/2,df < X < c1−α/2,df ] = 1− α, (9.18)
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Figure 9.2: Plot of the χ2 distribution for different degrees of freedom

where X has a χ2 distribution and α = 0.05 or α = 0.01. The subscripts α/2
and 1−α/2 for c essentially correspond to values of p in Table C. This gives
the correct probability because

P [cα/2,df < X < c1−α/2,df ] = P [X < c1−α/2,df ]− P [X < cα/2,df ] (9.19)

= 1− α/2− α/2 = 1− α. (9.20)

To see how these values are obtained from Table C, suppose that α = 0.05
and df = 10. To find cα/2,df = c0.05/2,10 = c0.025,10, we look in the column
for p = 0.025 and row for df = 10, and obtain c0.025,10 = 3.247. To find
c1−α/2,df = c1−0.05/2,10 = c0.975,10, we look in the column for p = 0.975 and
row for df = 10, and obtain c0.975,10 = 20.483.

Now suppose that α = 0.01. Using the same technique, we find that
cα/2,df = c0.01/2,10 = c0.005,10 = 2.156, and c1−α/2,df = c1−0.01/2,10 = c0.995,10 =
25.188.

9.2 Confidence intervals

We now have the information needed to calculate confidence intervals. We
will begin with a simple but unrealistic case, finding a confidence interval for
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µ when σ2 is known through other means. This case is unrealistic because σ2

is almost always estimated from the data, but the calculations are simple and
illustrate a general method for finding confidence intervals. We then turn to
finding a confidence intervals for µ, and then σ2, where all parameters are
estimated from the data.

9.2.1 Confidence intervals for µ when σ2 is known

We will use the fact that the quantity Ȳ−µ
σ/
√
n

has a standard normal distribution

to find a confidence interval for µ. Suppose that α is given and we have found
cα such that

P [−cα < Z < cα] = 1− α. (9.21)

(see previous section). Substituting Ȳ−µ
σ/
√
n

for Z we obtain

P

[
−cα <

Ȳ − µ
σ/
√
n
< cα

]
= 1− α. (9.22)

Multiplying both sides by σ/
√
n gives you

P

[
−cα

σ√
n
< Ȳ − µ < cα

σ√
n

]
= 1− α. (9.23)

Multiplying all parts inside the brackets by −1 reverses the signs and in-
equalities to give

P

[
cα

σ√
n
> µ− Ȳ > −cα

σ√
n

]
= 1− α. (9.24)

We now add to Ȳ to all parts inside the brackets to give

P

[
Ȳ + cα

σ√
n
> µ > Ȳ − cα

σ√
n

]
= 1− α, (9.25)

or equivalently

P

[
Ȳ − cα

σ√
n
< µ < Ȳ + cα

σ√
n

]
= 1− α. (9.26)

We call the terms Ȳ − cα σ√
n

and Ȳ + cα
σ√
n

the lower and upper 100(1−α)%

confidence limits for µ (Mood et al. 1974). Confidence intervals are often
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reported in the form (Ȳ − cα
σ√
n
, Ȳ + cα

σ√
n
). Note that the center of the

confidence interval is at Ȳ , our estimate of µ. This interval would be expected
to include the true value of µ with a probability of 1 − α, because this was
the probability set in Eq. 9.21.

It is common practice to set α = 0.05, which corresponds to a 100(1 −
0.05)% = 95% confidence interval. For this case, we would have cα = c0.05 =
1.96 (see previous section). Therefore, the 95% confidence interval would be

(Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n

). (9.27)

We would expect this interval to include the true µ with a probability of 0.95,
or 95% of the time. However, it follows that the interval will miss µ with
a probability of 0.05, or 5% of the time. This is an important feature
of confidence intervals - they will often but not always enclose the
true parameter value for the population, with the probability set
by α.

If we wanted to be more certain of including µ, we could choose a smaller
α, say α = 0.01, which corresponds to a 100(1 − 0.01)% = 99% confidence
interval. Here we have cα = c0.01 = 2.576, and so the 99% confidence interval
would be

(Ȳ − 2.576
σ√
n
, Ȳ + 2.576

σ√
n

). (9.28)

A 99% confidence interval will necessarily be broader than a 95%
one, because it is constructed to have a higher probability of in-
cluding µ.

Confidence intervals - sample calculation

Suppose we have a sample of n = 10 elytra from female T. dubius beetles (see
Chapter 3 for a description of these data), yielding the values listed below:

5.0 5.1 5.2 5.9 4.8 5.5 4.8 5.1 5.0 5.1

For this sample, we calculate that Ȳ = 5.150. Suppose we have a priori
knowledge that σ = 0.3, although that would be rare in practice. We will
calculate a 95% and 99% confidence interval for µ.

The formula for a 95% confidence interval is

(Ȳ − 1.96
σ√
n
, Ȳ + 1.96

σ√
n

). (9.29)
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Substituting n = 10, Ȳ = 5.150, and σ = 0.3 in the above formula, we obtain

(5.150− 1.96
0.3√

10
, 5.150 + 1.96

0.3√
10

), (9.30)

or
(5.150− 0.186, 5.150 + 0.186), (9.31)

or
(4.964, 5.336). (9.32)

So, the 95% confidence interval for µ is (4.964, 5.336).
For a 99% confidence interval, we use the formula

(Ȳ − 2.576
σ√
n
, Ȳ + 2.576

σ√
n

). (9.33)

Substituting as before, we obtain

(5.150− 2.576
0.3√

10
, 5.150 + 2.576

0.3√
10

), (9.34)

or
(5.150− 0.244, 5.150 + 0.244), (9.35)

or
(4.906, 5.394). (9.36)

The 99% confidence interval is therefore (4.906, 5.394). Note that the 99%
confidence interval is broader than the 95% one, because its lower limit is
lower and upper limit higher.

9.2.2 Confidence intervals for µ when σ2 is estimated

Confidence intervals for µ can also be derived when σ2 is estimated using the
sample variance s2, as will usually be the case in practice. We will make use
of the fact that

Ȳ − µ
s/
√
n
∼ tn−1. (9.37)

Using Table T, we can find a value of cα,n−1 for n−1 degrees of freedom such
that the following equation is true:

P

[
−cα,n−1 <

Ȳ − µ
s/
√
n
< cα,n−1

]
= 1− α. (9.38)
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Rearranging this equation using the same procedures as before, we obtain

P

[
Ȳ − cα,n−1

s√
n
< µ < Ȳ + cα,n−1

s√
n

]
= 1− α. (9.39)

The terms Ȳ −cα,n−1
s√
n

and Ȳ +cα,n−1
s√
n

are the lower and upper 100(1−α)%

confidence limits for µ (Mood et al. 1974). The interval would be reported in
the form (Ȳ − cα,n−1

s√
n
, Ȳ + cα,n−1

s√
n
). The center of the confidence interval

is located at Ȳ , the estimate of µ.
For example, if we let α = 0.05 this corresponds to a 95% confidence

interval of the form

(Ȳ − c0.05,n−1
s√
n
, Ȳ + c0.05,n−1

s√
n

). (9.40)

The value of c0.05,n−1 would need to be determined from Table T, using the
column for 2(1− p) = α = 0.05 and the row for n− 1 degrees freedom.

For α = 0.01, we obtain a 99% confidence interval of the form

(Ȳ − c0.01,n−1
s√
n
, Ȳ + c0.01,n−1

s√
n

). (9.41)

In this case, we would use the column for 2(1 − p) = α = 0.01 to find the
value of c0.01,n−1, using n− 1 degrees freedom.

Confidence interval for µ - sample calculation

We return to the elytra data set, for which we previously calculated that
Ȳ = 5.150, s2 = 0.109, and s = 0.331 for n = 10. We will calculate 95% and
99% confidence intervals for µ.

The formula for a 95% confidence interval is

(Ȳ − c0.05,n−1
s√
n
, Ȳ + c0.05,n−1

s√
n

). (9.42)

For n = 10, we have df = n− 1 = 10− 1 = 9. For a 95% confidence interval,
we therefore look up c0.05,n−1 = c0.05,9 using the column for 2(1 − p) = 0.05
in Table T, choosing the value for 9 degrees of freedom. We obtain c0.05,9 =
2.262. Substituting n = 10, Ȳ = 5.150, s = 0.331, and c0.05,9 = 2.262 in the
above formula, we obtain

(5.150− 2.262
0.331√

10
, 5.150 + 2.262

0.331√
10

), (9.43)
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or

(5.150− 0.237, 5.150 + 0.237), (9.44)

or

(4.913, 5.387). (9.45)

So, the 95% confidence interval for µ is (4.913, 5.387). For a 99% confidence
interval, we find c0.01,n−1 = c0.01,9 for 2(1−p) = 0.01 and 9 degrees of freedom
in Table T, obtaining c0.01,9 = 3.250. Substituting this value in the above
formula, we obtain

(5.150− 3.250
0.331√

10
, 5.150 + 3.250

0.331√
10

), (9.46)

or

(5.150− 0.340, 5.150 + 0.340), (9.47)

or

(4.810, 5.490). (9.48)

The 99% confidence interval is therefore (4.810, 5.490), and as expected is
broader than the 95% one.

9.2.3 Confidence intervals for σ2 and σ

Confidence intervals for σ2 and σ can also be derived, using the fact that

(n− 1)s2

σ2
∼ χ2

n−1 (9.49)

Using Table C for the χ2 distribution, we can find values cα/2,n−1 and c1−α/2,n−1

for n− 1 degrees of freedom such that the following equation is true:

P

[
cα/2,n−1 <

(n− 1)s2

σ2
< c1−α/2,n−1

]
= 1− α. (9.50)

We now rearrange this equation to obtain a confidential interval for σ2. If
we take the inverse of all the inside terms, we obtain

P

[
1

cα/2,n−1

>
σ2

(n− 1)s2
>

1

c1−α/2,n−1

]
= 1− α. (9.51)
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Note that taking the inverse changes the direction of the inequality signs.
Multiplying each term by (n− 1)s2 we obtain

P

[
(n− 1)s2

cα/2,n−1

> σ2 >
(n− 1)s2

c1−α/2,n−1

]
= 1− α, (9.52)

or equivalently

P

[
(n− 1)s2

c1−α/2,n−1

< σ2 <
(n− 1)s2

cα/2,n−1

]
= 1− α. (9.53)

The terms (n−1)s2

c1−α/2,n−1
and (n−1)s2

cα/2,n−1
are the lower and upper 100(1 − α)% con-

fidence limits for σ2, and the interval ( (n−1)s2

c1−α/2,n−1
, (n−1)s2

cα/2,n−1
) is a 100(1 − α)%

confidence interval for σ2 (Mood et al. 1974). The confidence interval for σ2

is not symmetrical around the value s2, our estimate of σ2.
For a 95% confidence interval with α = 0.05, the confidence interval

formula is (
(n− 1)s2

c0.975,n−1

,
(n− 1)s2

c0.025,n−1

)
(9.54)

To find c0.025,n−1, we look across the top row of Table C and find the column
corresponding to p = 0.025, then look for the row corresponding to n − 1
degrees of fredom. To find c0.975,n−1, we use the column corresponding to
p = 0.975, again looking for the row with n− 1 degrees of freedom.

For a 99% confidence interval with α = 0.01, the confidence interval
formula is (

(n− 1)s2

c0.995,n−1

,
(n− 1)s2

c0.005,n−1

)
(9.55)

To find c0.005,n−1, we use the column corresponding to p = 0.005, while the
column for c0.995,n−1 corresponds to p = 0.995. We again use the entries
corresponding to n− 1 degrees of freedom.

We can also obtain a confidence interval for σ =
√
σ2 by tak-

ing the square root of the above confidence limits. In particular, a

confidence interval for σ would be (
√

(n−1)s2

c1−α/2,n−1
,
√

(n−1)s2

cα/2,n−1
).

Confidence interval for σ2 and σ - sample calculation

Recall the elytra data set, for which Ȳ = 5.150 and s2 = 0.109 for n = 10.
Calculate a 95% and 99% confidence interval for σ2 and then σ.
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The formula for a 95% confidence interval is(
(n− 1)s2

c0.975,n−1

,
(n− 1)s2

c0.025,n−1

)
(9.56)

For n = 10, we have df = n− 1 = 10− 1 = 9.
For a 95% confidence interval, with α = 0.05, we find from Table C that

c0.025,n−1 = c0.025,9 = 2.700, and c0.975,n−1 = c0.975,9 = 19.023. Substituting
n = 10, s2 = 0.110, c0.025,9 = 2.700 and c0.975,9 = 19.023 in the above formula,
we obtain (

(10− 1)0.109

19.023
,
(10− 1)0.109

2.700

)
(9.57)

or
(0.052, 0.363). (9.58)

So, the 95% confidence interval for σ2 is (0.052, 0.363). To obtain a 95%
confidence interval for σ we simply take the square root of these values, or
(
√

0.052,
√

0.363, to obtain (0.228, 0.603).
For a 99% confidence interval, the formula is(

(n− 1)s2

c0.995,n−1

,
(n− 1)s2

c0.005,n−1

)
(9.59)

We use Table C to find c0.005,n−1 = c0.005,9 = 1.735, and c0.995,n−1 = c0.995,9 =
23.589. Substituting these values in the above formula, we obtain(

(10− 1)0.109

23.589
,
(10− 1)0.109

1.735

)
(9.60)

or
(0.042, 0.565). (9.61)

The 99% confidence interval of σ2 is therefore (0.042, 0.565). To obtain a 99%
confidence interval for σ, we take the square root and obtain (0.205, 0.752).
Note that the 99% intervals are wider than the corresponding 95% ones.

9.2.4 Confidence intervals - SAS demo

These same calculations can be readily accomplished using proc univariate

in SAS (SAS Institute Inc. 2016). We obtain 95% confidence intervals
by including the option cibasic in the proc univariate line of the program.
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99% confidence intervals may be obtained by specifying alpha=0.01 in the
proc univariate line. See SAS program and Fig. 9.3 - 9.6 below. Similar to
our earlier calculations, the 95% confidence interval was (4.913, 5.387) for µ,
(0.052, 0.365) for σ2, and (0.228, 0.604) for σ. The 99% confidence intervals
can be found further in the output.

9.2.5 Confidence interval size

Confidence intervals are a method of characterizing the precision of parameter
estimates, with narrower intervals generally indicating a population param-
eter like µ is better estimated. How then can an investigator reduce the size
of these confidence intervals? The simplest way is to increase the sample
size n on which the estimate is based. This reduces the size of confidence
intervals for µ because it reduces the magnitude of the quantity cα,n−1s/

√
n,

which determines the width of the interval (see Eq. 9.26). Most of this effect
is through the

√
n term here, but cα,n−1 also becomes smaller for larger n.

Increasing the sample size n also reduces the size of the confidence intervals
for σ2 and σ, although the mechanism is more complex in this case.
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SAS Program

* Confidence_intervals.sas;

title ’Confidence intervals for elytra data’;

data elytra;

input length;

datalines;

5.0

5.1

5.2

5.9

4.8

5.5

4.8

5.1

5.0

5.1

;

run;

* Print data set;

proc print data=elytra;

run;

* Generate 95% confidence intervals and plots;

title2 "95% confidence intervals";

proc univariate cibasic data=elytra;

var length;

histogram length / vscale=count normal;

qqplot length / normal;

run;

* Generate 99% confidence intervals;

title2 "99% confidence intervals";

proc univariate cibasic alpha = 0.01 data=elytra;

var length;

run;

quit;
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Figure 9.3: confidence intervals.sas - proc print
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Figure 9.4: confidence intervals.sas - proc univariate
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Figure 9.5: confidence intervals.sas - proc univariate
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Figure 9.6: confidence intervals.sas - proc univariate
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9.4 Problems

1. Ten adult female Daphnia ambigua (Lei and Armitage 1980) were cul-
tured under laboratory conditions, and their longevity (days) deter-
mined. The following data were obtained.

28 4 22 21 17 21 22 26 15 19

(a) Find Ȳ , s2, and s for these data, then calculate a 95% confidence
interval for µ, σ2 and then σ. Show all your calculations.

(b) Find a 99% confidence interval for µ, σ2 and then σ. Show your
calculations.

(c) Use SAS to find the same confidence intervals as in parts a and b.
List the confidence intervals and test results below. Attach your
SAS program(s) and output.

2. A study was conducted to measure the population growth rate of a lab-
oratory culture of nematodes. A hundred nematodes were each added
to 8 petri dishes of a new growth media, and the number of offspring
counted one generation later. The number of offspring divided by the
initial number of organisms (100) provides an estimate of λ, the finite
growth rate of the population. It is customary to log-transform the
values of λ in such studies, yielding r = ln(λ). The following values of
r were obtained:

2.1 0.8 1.8 1.9 0.8 1.7 0.5 1.6

(a) Find Ȳ , s2, and s for these data, then calculate a 95% confidence
interval for µ, σ2 and then σ. Show all your calculations.

(b) Find a 99% confidence interval for µ, σ2 and then σ. Show your
calculations.

(c) Use SAS to find the same confidence intervals as in parts a and b.
List the confidence intervals and test results below. Attach your
SAS program(s) and output.



Chapter 10

Hypothesis Testing

We previously examined how the parameters for a probability distribution
can be estimated using a random sample and maximum likelihood (Chapter
8), as then showed how confidence intervals provide a measure of the relia-
bility of these estimates (Chapter 9). In hypothesis testing, the subject of
this chapter, we examine the consistency of observed data sets with a null
hypothesis, commonly a statement about the parameter values within a sta-
tistical model. We conduct a statistical test of this null hypothesis, with
the result being a decision to accept or reject the null hypothesis based on
the magnitude of a quantity called a P value. Small values of P indicate a
test result inconsistent with the null hypothesis, suggesting it might be false
and some alternative hypothesis more valid. In the following, we discuss the
different components and steps of hypothesis testing.

10.1 The null and alternative hypotheses

As an example of hypothesis testing, suppose that we rear n tilapia on a
commercial diet, and want to compare their body size with ones reared using
a natural diet. Fish reared on natural food are already known to have a
weight of 500 g at a certain age, and weight is normally distributed. We
could test whether the fish reared on the commercial diet have the same mean
weight as ones reared on natural food (500 g) using the null hypothesis that
µ = 500 g, where µ is the mean parameter for the normal distribution. This
can be written as H0 : µ = 500 g, where H0 stands for null hypothesis. Null
hypotheses of this type can be written more generally as H0 : µ = µ0, where

241
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µ0 is the hypothesized mean of the distribution. For the tilapia problem, we
would have µ0 = 500 g.

An alternative hypothesis for this example is that the mean weight of
tilapia on commercial diet is different from 500 g. This can be written as
H1 : µ 6= 500 g, where H1 stands for the alternative hypothesis. Alternative
hypotheses of this type are written generally as H1 : µ 6= µ0. We may also be
interested in particular values of the alternative mean, such as H1 : µ = 490
g or H1 : µ = 530 g, or more generally H1 : µ = µ1.

10.2 Test statistics

A test statistic is a quantity that measures the consistency of the
observed data with the null hypothesis. Test statistics are usually
chosen so that large values occur when the data are inconsistent with H0.
What would be a suitable test statistic for the tilapia problem, using H0 :
µ = µ0 as the null hypothesis? Suppose we rear n fish on the commercial
diet, and then calculate the sample mean Ȳ of their weights. The statistic
Ȳ is an estimator of the true mean µ for this statistical population, which
may or may not be equal to the µ0 under the null hypothesis. A value of
Ȳ substantially greater than µ0, or smaller than µ0, would be inconsistent
with H0. This suggests using the quantity Ȳ −µ0 as the test statistic for the
problem. What about the other parameter for the normal distribution, σ2 or
σ? For simplicity, we will assume that it is a known quantity, although this
is rare in practice. We could then use the test statistic

Zs =
Ȳ − µ0

σ/
√
n

(10.1)

to test H0 : µ = µ0 (Bickel & Doksum 1977). We use this statistic because
it has a standard normal distribution under H0 (Zs ∼ N(0, 1), see Chapter
9) which makes it straightforward to employ the test. Note that Zs becomes
large (positive or negative) if the sample mean Ȳ differs greatly from µ0. In
general, tests based on the standard normal distribution are called Z tests.
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10.3 Acceptance and rejection regions – Type

I error

Given a suitable test statistic, how large must it be before we decide the
data are inconsistent with H0? This is determined by finding an interval
that defines an acceptance region for the test, and its complement, called
the rejection or critical region (Bickel & Doksum 1977). We then accept
H0 if the test statistic falls within the acceptance region, and reject H0 if it
falls outside or lies on its boundary. The boundaries of the acceptance and
rejection regions are determined by setting the probability of a Type I error.
A Type I error is defined as the test rejecting H0 when H0 is true.
The probability of committing a Type I error is called the Type I
error rate, usually denoted with the symbol α. It is common practice
to set α = 0.05, meaning there is a 1 in 20 chance that the test will reject
H0 even when it is true. It follows that the probability of the test accepting
H0 if it is true is 1− α. For α = 0.05, we have 1− α = 1− 0.05 = 0.95.

The acceptance region is determined as follows. Suppose that H0 : µ = µ0

is true. Because the test statistic Zs ∼ N(0, 1) under H0, the following is a
true statement:

P [−cα < Zs < cα] = P [−cα <
Ȳ − µ0

σ/
√
n
< cα] = 1− α. (10.2)

The quantity cα would be chosen using Table Z to satisfy this equation (for
details see Chapter 9). The interval (−cα, cα) is the acceptance region of a
test with a Type I error rate of α. Under H0, the test statistic Zs would
lie within this interval with probability 1 − α and outside this region with
probability α, which is the required Type I error rate. The rejection region
would be the complement of the acceptance region, i.e., all values on the
boundary or outside of (−cα, cα).

For example, with α = 0.05 we find that c0.05 = 1.96, and so we would
accept H0 if Zs lies within (−1.96, 1.96) and reject H0 if it lies outside this
interval or exactly on the boundary (see Fig. 10.1). The acceptance region
for this test can also be expressed using absolute values - we would accept
H0 if |Zs| < 1.96 and reject it if |Zs| ≥ 1.96.

The acceptance region becomes larger (and the rejection region smaller)
for smaller α values. For α = 0.01, we find that c0.01 = 2.576 and so the
acceptance region is (−2.576, 2.576) (Fig. 10.2). Using absolute values, we
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would accept H0 if |Zs| < 2.576 and reject it otherwise. Using a smaller
value of α indicates we are more concerned about making a Type I error.
For α = 0.01 there is only a 1 in 100 chance we would reject H0 if H0 were
true, but this also reduces the power of the test (see below) to detect whether
H0 is false.

The acceptance and rejection regions we just developed are for a two-
tailed test, which tests the null hypothesis H0 : µ = µ0 with H1 : µ 6= µ0

the alternative hypothesis. This test statistic will reject H0 for either large
and small values of the test statistic Zs, which occurs when Ȳ is greater than
µ0 or less than µ0. We will later examine the behavior of one-tailed tests,
where the null is H0 : µ = µ0 while the alternative is of the form H1 : µ > µ0,
or H1 : µ < µ0. Note that the two alternative hypotheses here specify that
µ is either greater or less than µ0. One-tailed tests are designed to reject H0

in only one direction.
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Figure 10.1: Acceptance and rejection regions for a one-sample Z test, α =
0.05. Also shown is the distribution of Zs under H0.

Figure 10.2: Acceptance and rejection regions for a one-sample Z test, α =
0.01. Also shown is the distribution of Zs under H0.
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10.3.1 One-sample Z test - sample calculation

We will now do an example of this test, known as a one-sample Z test. Recall
the tilapia diet example, where it is known that fish reared on natural food
have a mean weight of 500 g. We rear n = 10 fish on a commercial diet, and
want to compare the weight of fish on the commercial diet with ones reared
on natural food. In particular, we want to test H0 : µ = 500 g. We find that
Ȳ = 495 g for the fish reared on the commercial diet, and already know that
σ2 = 49 g2, so σ = 7 g. Because Ȳ = 495 g is less than 500 g, it already
appears that the commercial diet produces smaller fish than natural food,
but a statistical test is still needed to provide convincing evidence against
H0. For the test statistic, we have

Zs =
Ȳ − µ0

σ/
√
n

=
495− 500

7/
√

10
=
−5

2.214
= −2.258 (10.3)

For a Type I error rate of α = 0.05, the acceptance region for Zs is (−1.96, 1.96).
Z = −2.258 lies outside this interval, so we would reject H0 at the α = 0.05
level. For α = 0.01 the acceptance region is (−2.576, 2.576). Because Zs lies
within this interval, we would accept H0 at this α level. Thus, the decision
to accept or reject H0 depends on both the test statistic value and the value
of α.

10.4 P values

As noted above, the value of α can affect whether we accept or reject H0.
Rather than force a particular α on the analyst, the test results can also be
presented in the form of a P value. A P value is defined as the smallest
value of α for which one can just reject H0 (Bickel & Doksum 1977).
It is calculated by finding an α such that the test statistic Zs is equal to cα.

Recall from Chapter 9 that cα is defined so that the following equation is
true:

P [Z < cα] = 1− α/2. (10.4)

To find the P value for the tilapia example, we substitute the test statistic
value Zs for cα in the above equation, ignoring the fact that Zs is negative.
We have

P [Z < Zs] = P [Z < 2.258] = 1− α/2. (10.5)
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From Table Z, we see that P [Z < 2.258] ≈ 0.9881. We then solve the
equation

0.9881 = 1− α/2 (10.6)

for α to obtain the P value. We have α = 2(1 − 0.9881) = 0.0238. This
is the P value for the test, reported as P = 0.0238. Given the P value,
the analyst or other interested parties can decide for themselves whether to
reject or accept H0.

A P value can also be thought of as the probability of obtaining
a test statistic equal to or more extreme than the observed one,
under the null hypothesis. We can see this from a graph of the accep-
tance and rejection regions for the tilapia example, where Zs = −2.258 and
P = 0.0238 (Fig. 10.3). The probabilities outside the acceptance region cor-
respond to P [Zs ≤ −2.258] and P [Zs ≥ 2.258], which are the probabilities
of observing values of Zs equal to or more extreme than the observed value
of Zs = −2.258. The two definitions of a P value are equivalent.

A P value is also a measure of the consistency of the observed
data with the null hypothesis. If the P value is large, say P > 0.05, then
the observed data generated a test statistic value that is fairly likely under
the null hypothesis. On the other hand, if P is small then the observed data
has generated a test statistic that is unlikely under the null hypothesis. This
suggests the observed data are inconsistent with the null hypothesis, and the
null may be false.

There are specific phrases generally used to describe the significance of
a statistical test result. If a test yields P ≤ 0.05, it is described as being
significant, while if P ≤ 0.01 it is highly significantly. If P > 0.05 the test
is described as nonsignificant. The tilapia example with P = 0.0238 would
be described as significant because 0.0238 < 0.05, but not highly significant.
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Figure 10.3: Acceptance-rejection region for a one-sample Z test, exact P =
0.0238
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10.5 Type II error and power

Suppose now that H0 is actually false and some alternative hypothesis H1 is
true. A Type II error is defined as failing to reject H0 when H0 is
false. The probability of committing a Type II error is called the Type II
error rate, usually denoted by the symbol β. It follows that the probability
of the test rejecting H0 if it is false is 1 − β, and this quantity is called the
power of the test (Bickel & Doksum 1977). High power values indicate the
test is capable of detecting departures from the null hypothesis.

The power and Type II error rate of a statistical test depends on the
sample size n of the test, the standard deviation of the observations σ, the
Type I error rate α, and the particular alternative hypothesis chosen. An
analyst interested in determining the power of a test will fix some of these
values, often α and σ, and then examine how changes in n and the alternative
hypothesis affect power. This procedure is called a power analysis. A power
value of 0.8 is believed to be adequate in most situations (Cohen 1988). This
implies that a statistical test will reject H0 when it is false 80% of the time.

It is relatively easy to calculate the power for a one-sample Z test, using
the distribution of Zs under H1. Suppose that we choose α = 0.05, so that
the acceptance region is the interval (−1.96, 1.96), and that the alternative
hypothesis is H1 : µ = µ1 for some µ1. Under H0 : µ = µ0 the test statistic
has a standard normal distribution, implying Zs ∼ N(0, 1), but what is
its distribution under H1? Using the expected value and variance rules in
Chapter 7, one can show that

E[Zs] =
µ1 − µ0

σ/
√
n

= φ (10.7)

and also that V ar[Zs] = 1. So, Zs has the same variance under both H1 and
H0, but the mean under H1 is equal to φ, not zero as under H0. It follows
that under H1 the test statistic Zs ∼ N(φ, 1). The probability of rejecting
H0 when H1 is true, the power of the test, is the probability that Zs lies
outside the interval (−1.96, 1.96), or

power = P [Zs ≤ −1.96] + P [Zs ≥ 1.96]. (10.8)

The Type II error rate β can be calculated as 1−power, or directly by finding

β = P [−1.96 < Zs < 1.96] (10.9)
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when H1 is true.
Fig. 10.4 shows the power and Type II error for the tilapia example with

H0 : µ = 500 vs. a particular alternative hypothesis, H1 : µ = 495. We
assume σ = 7 as before, with n = 10 and α = 0.05. For this alternative
hypothesis, we have

φ =
µ1 − µ0

σ/
√

10
=

(495− 500)

7/
√

10
= −2.26. (10.10)

Thus, under H1 we have Zs ∼ N(−2.26, 1), and this distribution is shown
as well as the distribution of Zs under H0 and the acceptance and rejection
regions for the test. The power is the area Zs under H1 outside the acceptance
region, while β is the area in the region.

What happens to the power as we vary µ1? Suppose now that H1 : µ1 =
490 is the alternative hypothesis. As we can see from Fig. 10.5, in this case
the power is substantially higher and β is lower. Fig. 10.6 shows how power
changes as we vary µ1 across a range of values. Power is quite high (nearly
1) for µ1 far from µ0, but approaches a minimum value of α for µ1 near µ0.
The minimum power is α, not zero, because the test will reject H0 even if it
is true (µ1 = µ0) at this rate.

Power is also affected by sample size. If we use H1 : µ = 495 and increase
the sample size from n = 10 to n = 20, this also increases the power (Fig.
10.7). However, an increase in the standard deviation from σ = 7 to σ = 10
lowers the power (Fig. 10.8).
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Figure 10.4: Distribution of Zs under H1 : µ = 495, with σ = 7, n = 10
(φ = −2.26). Almost all of the power occurs to the left of the acceptance
region, but there is also a small amount to the right. Also shown is the
distribution of Zs under H0.

Figure 10.5: Distribution of Zs under H1 : µ = 490, with σ = 7, n = 10
(φ = −4.52).
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Figure 10.6: Power across a range of µ1 values, for H0 : µ = 500, σ = 7, and
n = 10
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Figure 10.7: Distribution of Zs under H1 : µ = 495, with σ = 7, n = 20
(φ = −3.19).

Figure 10.8: Distribution of Zs under H1 : µ = 495, with σ = 10, n = 10
(φ = −1.58).
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Table 10.1: Effects on power and the Type II error rate β of changes in
various parameters. The arrows indicate if a particular quantity increases or
decreases.

Parameter Direction φ power β
|µ1 − µ0| ↑ ↑ ↑ ↓

n ↑ ↑ ↑ ↓
σ ↑ ↓ ↓ ↑
α ↑ no change ↑ ↓

All of these effects on power can be understood through their influence on
φ. Any change in a parameter value that makes φ larger increases power and
reduces β, because it shifts the distribution of Zs under H1 away from the
acceptance and into the rejection region. Thus, large differences between µ1

and µ0, large n, and small σ will all increase power because they increase φ.
Conversely, close values of µ1 and µ0, small n, and large σ would all reduce
power. Table 10.1 summarizes how the different parameter values influence
φ, power, and the Type II error rate β. Also shown is the effect of the Type
I error rate α on power. If an investigator can accept a larger value of α,
so that Type I errors are more common, this reduces the acceptance and
increases the rejection region size, and thus increases power.

Note that a sufficiently large value of n can generate a large value of φ,
even when µ1 and µ0 are close or σ is large. Thus, large sample sizes can
yield adequate power even when the data are noisy, or the two means are
close in value. This basically arises from the inverse relationship between the
variance of Ȳ and n, i.e., V ar[Ȳ ] = σ2/n, which is incorporated in the test
statistic Zs (see Eqn. 10.1).

10.6 Summary table

A common way of summarizing the different outcomes in hypothesis testing
is the table below. The null hypothesis H0 can be either true or false. If H0

is true, then the test may accept H0 and make a correct decision, or reject it
and make a Type I error, with a Type I error rate of α. If H0 is false, then
the test may accept H0 and make a Type II error with an error rate of β, or
reject it and make a correct decision.



10.7. ONE-SAMPLE T TEST 255

Table 10.2: Table summarizing the different outcomes in hypothesis testing,
with the corresponding Type I (α) and Type II (β) error rates.

Accept H0 Reject H0

H0 true
Correct Type I error

1-α α

H0 false
Type II error Correct

β 1-β = power

10.7 One-sample t test

In the preceding, we used the test statistic Zs to test H0 : µ = µ0 vs.
H1 : µ 6= µ0, for the case where σ2 or σ was known. Although this simplifies
the statistics, in most cases we will need to estimate σ2 and σ from the data
using the sample variance s2 and standard deviation s. We then use the test
statistic

Ts =
Ȳ − µ0

s/
√
n

(10.11)

to conduct the test (Bickel & Doksum 1977). Ts has a t distribution with
n−1 degrees of freedom under H0 (see Chapter 9). The following is therefore
a true statement:

P [−cα,n−1 < Ts < cα,n−1] = P [−cα,n−1 <
Ȳ − µ0

s/
√
n

< cα,n−1] = 1−α. (10.12)

The quantity cα,n−1 would be chosen using Table T, using the entry for 2(1−p)
corresponding to α and the appropriate degrees of freedom (see Chapter 9).
The interval (−cα,n−1, cα,n−1) is the acceptance region of a test with a Type
I error rate of α, while the rejection region is its complement.

For example, with α = 0.05 and n = 10, we have c0.05,9 = 2.262. We
would therefore accept H0 if Ts lies within (−2.262, 2.262), and reject it if
Ts lies outside this interval (see Fig. 10.9). Using absolute values, we would
accept H0 if |Ts| < 2.262 and reject it otherwise. For α = 0.01 and n = 10,
we have c0.01,9 = 3.250, and would accept H0 if Ts lies within (−3.250, 3.250)
and reject it otherwise.
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Figure 10.9: Acceptance and rejection regions for a one-sample t test, α =
0.05, n = 10. The distribution shown is for the t distribution with n− 1 = 9
degrees of freedom.

10.7.1 One-sample t test - sample calculation

Recall the tilapia example, and suppose that Ȳ = 493 g and s2 = 48.2 g2,
so that s = 6.94 g, with n = 10. We wish to test H0 : µ = 500 g vs.
H1 : µ 6= 500 g. For the test statistic, we have

Ts =
Ȳ − µ0

s/
√
n

=
493− 500

6.94/
√

10
=
−7

2.19
= −3.196 (10.13)

For α = 0.05, the acceptance region for Ts is (−2.262, 2.262) with n − 1 =
10 − 1 = 9 degrees of freedom (Fig. 10.9). Ts = −3.196 lies outside this
interval, so we would reject H0 at the α = 0.05 level. For α = 0.01 the
acceptance region is (−3.250, 3.250). Because Ts lies within this interval, we
would accept H0 at this α level. We can also determine a P value for this test
using Table T. The P value is found by scanning along the row in the table
corresponding to 9 degrees of freedom, looking for two values that bracket
Ts while ignoring its sign. We see that the values 2.821 and 3.250 bracket
Ts = −3.196. Looking at the values for 2(1 − p), which correspond to α,
this implies that 0.010 < P < 0.020. This is the best accuracy that can be
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accomplished using Table T, and to obtain an exact P value would require
the use of SAS.

10.7.2 Hypothesis testing - SAS demo

To illustrate hypothesis testing using SAS, we will use a subset (n = 8) of
the elytra data for the insect predator Thanasimus dubius (see Chapter 3).
These observations are from a study that used an artificial diet to rear the
insects, and we would like to compare their size to wild individuals. Suppose
that wild predators have an elytral length of 5.2 mm. This suggests testing
H0 : µ = 5.2 mm vs. H1 : µ 6= 5.2 mm. We can conduct a one-sample t test
for this null hypothesis using proc univariate, by adding the option mu0=5.2

as an option. See SAS program and Fig. 10.10 below. The test statistic
Ts and its P value are listed on one line at the bottom of the output. We
see that Ts ≈ −1.75 for this test. What is its P value? The notation Pr
> |t| in the output is shorthand for the P [Ts < −1.75] + P [Ts > 1.75], the
P value for this two-tailed test. We thus have P = 0.1244, a non-significant
test result because P > 0.05. The degrees of freedom for the test are not
reported by SAS, but are equal to n− 1 = 8− 1 = 7. A sentence reporting
this test result in a scientific journal would be something like ‘A one-sample
t test comparing the elytra length of individuals reared on artificial diet vs.
wild individuals was non-significant (t7 = −1.746, P = 0.1244).’ Note that
the degrees of freedom are reported as a subscript on the test statistic.
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SAS Program

* one-sample_t_test.sas;

title ’One-sample t-test for elytra data’;

data elytra;

input sex $ length;

datalines;

F 5.2

F 4.2

F 5.7

F 5.4

F 4.0

F 4.5

F 5.2

F 4.2

;

run;

* Generate t test and plots;

proc univariate mu0=5.2 data=elytra;

var length;

histogram length / vscale=count normal;

qqplot length / normal;

run;

quit;
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Figure 10.10: one-sample t test.sas - proc univariate
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10.7.3 Power analysis for one-sample t tests - SAS demo

A power analysis can be used to determine an adequate sample size n for
a one-sample t test, as well as many other statistical tests. To conduct a
power analysis, you need to specify a null and alternative hypothesis, a Type
I error rate α, and have some estimate of the standard deviation σ of the
population in question. The analysis then calculates the power for a range
of n values. The idea is to choose a value of n that gives power close
to 0.8, often regarded as an adequate level of power (Cohen 1988).
The power analysis for a one-sample t test involves the same quantity

φ =
µ1 − µ0

σ/
√
n

(10.14)

as for the one-sample Z test, and its power is influenced by the same factors
(see Table 10.1). The power calculation involves the non-central t distri-
bution with a non-centrality parameter of φ. One subtle difference is that
acceptance and rejection regions for the t test depends on n through the de-
grees of freedom, unlike the Z test. Larger values of n lead to smaller values
of cα,n−1, shrinking the acceptance region and affecting the power calculation
in this way.

Returning to the elytra example, suppose we want to test if the length
of predators reared on an artificial diet differs from wild individuals, which
have a length of 5.2 mm. This implies H0 : µ = 5.2 mm. For biological
reasons, we are interested in detecting an decrease or increase in length of
approximately 10% on the artificial diet, about 0.5 mm. This suggests an
alternative hypothesis of the form H1 : µ = 5.2− 0.5 = 4.7 mm (or H1 : µ =
5.2 + 0.5 = 5.7 mm). How many predators need to be reared on artificial
diet to give a power of at least 0.8? Assume we already have an estimate of
σ from another study, say s = 0.6 mm, and let α = 0.05.

We can use proc power to find the sample size n that gives this power
(SAS Institute Inc. 2018). See program plus Fig. 10.11 and 10.12 below.
We first specify a one-sample t test using the onesamplemeans option, followed
by values for µ under H0 (nullmean = 5.2), σ (stddev = 0.6), and µ under
H1 (mean = 4.7). The default value of α is 0.05. We then specify a range
of sample sizes (n) for which we want the power to be calculated, using the
option ntotal = 2 to 20 by 1. This finds the power for n = 2, 3, . . . , 20. The
power = . option tells SAS solve for power (there are other possibilities, like
finding n for a given power value). The option plot x=n generates a plot of
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power vs. n. We see that a sample size of n = 14 gives power > 0.8 for this
scenario.

While power increases rapidly for small sample sizes, there are diminishing
returns once the power exceeds about 0.8. In other words, obtaining higher
power values requires many more observations.

SAS Program

* One-sample_t_test_power2.sas;

title ’Power analysis for one-sample t test’;

proc power;

onesamplemeans

nullmean = 5.2

stddev = 0.6

mean = 4.7

ntotal = 2 to 20 by 1

power = . ;

plot x=n;

run;

quit;
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Figure 10.11: one-sample t test power2.sas - proc power



10.7. ONE-SAMPLE T TEST 263

Figure 10.12: one-sample t test power2.sas - proc power
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10.8 One-tailed t test

The tests we have examined so far are known as two-tailed tests. They
are called this because the test statistic Zs or Ts can detect departures from
H0 : µ = µ0 in both directions, for H1 : µ > µ0 and H1 : µ < µ0, although the
alternative for these tests is usually written more compactly as H1 : µ 6= µ0.
We will now examine one-tailed tests, which have the same null hypothesis
but the alternative is one direction or the other.

Suppose we are interested in testing H0 : µ = µ0 vs. H1 : µ > µ0. We
can use the same test statistic as before, namely

Ts =
Ȳ − µ0

s/
√
n
. (10.15)

If H1 is true, we would expect to see Ȳ values larger than µ0, and so Ts
would be positive. We would reject H0 if Ts was sufficiently positive, with
the acceptance and rejection regions determined as before by controlling the
Type I error rate. Therefore, if the Type I error rate is α we want to determine
a constant c′α,n−1 such that the following statement is true:

P [Ts < c′α,n−1] = 1− α (10.16)

The quantity c′α,n−1 would be chosen using Table T, using the entry for p
corresponding to 1 − α. We would accept H0 if Ts < c′α,n−1 and reject it if
Ts ≥ c′α,n−1.

For example, with α = 0.05 so that p = 0.95, and n = 10 (degrees of
freedom = n− 1 = 10− 1 = 9), we have c′0.05,9 = 1.833. We would therefore
accept H0 if Ts < 1.833 and reject it if Ts ≥ 1.833 (see Fig. 10.13). For
α = 0.01 and n = 10, we have c′0.01,9 = 2.822, and would accept H0 if
Ts < 2.822 and reject it otherwise.

If we now wish to test H0 : µ = µ0 vs. H1 : µ < µ0, we would use the
same test statistic as above. However, if H1 is true we would expect Ȳ to be
smaller than µ0, and so Ts would be negative. To determine the acceptance
and rejection regions we would find c′α,n−1 in the same way as above, except
we would use its negative. We would accept H0 if Ts > −c′α,n−1 and reject it
if Ts ≤ −c′α,n−1. For example, if α = 0.05 and n = 10, we would accept H0

if Ts > −1.833 and reject it if Ts ≤ −1.833 (Fig. 10.14). For α = 0.01, we
would accept H0 if Ts > −2.822 and reject it otherwise.
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Figure 10.13: Acceptance and rejection regions for one-tailed t test, H0 : µ =
µ0 vs. H1 : µ > µ0, for α = 0.05 and n = 10.

Figure 10.14: Acceptance and rejection regions for a one-tailed t test, H0 :
µ = µ0 vs. H1 : µ < µ0, for α = 0.05 and n = 10.
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10.8.1 One-tailed t test - sample calculation

Recall the tilapia example, with Ȳ = 493 g, s2 = 48.2 g2, s = 6.94 g, and
n = 10. Suppose we are only interested in detecting diets that produce fish
of lower weight than natural food, implying we wish to test H0 : µ = 500 g
vs. H1 : µ < 500 g. The test statistic value is again

Ts =
Ȳ − µ0

s/
√
n

=
493− 500

6.94/
√

10
=
−7

2.19
= −3.196 (10.17)

For α = 0.05 and n− 1 = 10− 1 = 9 degrees of freedom, we have −c′0.05,9 =
−1.833. Because Ts = −3.916 < −1.833, we would reject H0 at the α = 0.05
level. For α = 0.01, we have −c′0.01,9 = −2.821, and again Ts = −3.196 <
−2.821. Thus, we can also reject H0 at the α = 0.01 level. We could
continue this process with successively smaller values of α by scanning the
row corresponding to 9 degrees of freedom in Table T, but cannot reject H0

for smaller ones. Therefore, we have P < 0.01 for this test.
Suppose we had wanted to test H0 : µ = 500 g vs. H1 : µ > 500 g using

the same data and test statistic value, namely Ts = −3.196. The scenario
here could be that we want a commercial diet that actually increases the
weight of tilapia over natural food, and are not interested in ones that yield
lower weights. In this case, for α = 0.05 we would not reject H0, because
Ts = −3.196 < 1.833. The test was non-significant, with P > 0.05.

10.8.2 One-tailed t test - SAS demo

Recall the elytra length example, where we tested H0 : µ = 5.2 mm vs.
H1 : µ 6= 5.2 mm using SAS (Fig. 10.10). While there is no option for one-
tailed tests in proc univariate, we can reinterpret the output and so derive a
P value for a one-tailed test.

Suppose we want to test H0 : µ = 5.2 mm vs. H1 : µ < 5.2 mm.
This implies we want to test whether predators reared on artificial diet are
smaller than those reared on natural food, which have a length of 5.2 mm.
This would be reasonable if we want to detect diets that are deficient in
some manner. If H1 were true we would expect to see a negative value of
Ts, because Ȳ would likely be smaller than µ0. This is what occurred in the
SAS output, because Ȳ = 4.8 < 5.2 mm and Ts = −1.75. The one-tailed
P value in this case is simply half the two-tailed P value, or P (one-tailed)
= P (two-tailed)/2= 0.1244/2 = 0.0622. This is because the two-tailed test
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gives the P value for both tails (see Fig. 10.9), but for this one-tailed test we
only need the probability for the left tail of the t distribution (Fig. 10.14).

Now suppose we want to test H0 : µ = 5.2 mm vs. H1 : µ > 5.2 mm.
This implies we want to test whether predators reared on artificial diet are
larger than those reared on natural food. If H1 were true we would expect
to see a positive value of Ts, because Ȳ would likely be greater than µ0. This
is not what occurred in the SAS output, because Ȳ = 4.8 < 5.2 mm and
Ts = −1.75. The P value should therefore be large in this case, and in fact
the one-tailed P value is 1− P (two-tailed)/2 = 1− 0.1244/2 = 0.9378. This
is the probability for the right tail of the t distribution, which is large because
Ts is negative.

We can distill the above procedures to a simple rule that will convert
the SAS two-tailed P value to the appropriate one-tailed one. Assume
H0 : µ = µ0 is the null hypothesis. If the test statistic favors the alter-
native hypothesis, then the one-tailed P value is P (two-tailed)/2,
otherwise it is 1− P (two-tailed)/2. For example, if we have H1 : µ > µ0

and Ts > 0, the test statistic favors H1 and the P value is P (two-tailed)/2.
This procedure also works for tests calculated by hand. You first find the P
value for the two-tailed test, then convert it to a one-tailed P value using
the same rule.

10.8.3 One-tailed tests - a warning

As discussed above, the P value for a one-tailed test may sometimes be half
the two-tailed P value. This makes it tempting to employ a one-tailed test
after a two-tailed test yields a nonsignificant result. However, the proper
procedure is to determine whether a one-tailed alternative hypothesis and
test is appropriate for the situation before conducting the test. For example,
artificial diets for insects are unlikely to yield larger insects than natural
diets, and so it seems reasonable to use an alternative hypothesis of the form
H1 : µ < µ0, where µ0 is the size of insects reared on natural foods. This
choice of an alternative hypothesis can be justified based on prior knowledge
of the system.
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10.9 Confidence intervals and tests

Confidence intervals are typically used as measures of the accuracy or reli-
ability of parameter estimates, but can also be used for hypothesis testing.
Why might you do this? There are cases where the statistical software only
provides confidence intervals for a parameter, but a test can still be devel-
oped using these intervals. Also, a publication may only provide confidence
intervals for a parameter, but the reader can still conduct a test if required
using these intervals. Some statisticians argue that this makes confidence
intervals more useful than hypothesis testing, because they also provide in-
formation on the magnitude of a population parameter, and how reliably it
is estimated (see Yaccoz 1991).

We will now demonstrate how a confidence interval for µ is equivalent to
a one-sample t test. Recall that a 100(1− α)% confidence interval for µ has
the form (

Ȳ − cα,n−1
s√
n
, Ȳ + cα,n−1

s√
n

)
(10.18)

(see Chapter 9). Suppose that we want to test H0 : µ = µ0. If we accept H0

when this confidence interval includes µ0, and reject it if the interval does not
include µ0, this is an α level test of H0, equivalent to running a one-sample
t test.

To see this connection, note that we would accept H0 if µ0 was inside this
interval, or

Ȳ − cα,n−1
s√
n
< µ0 < Ȳ + cα,n−1

s√
n
. (10.19)

Rearranging these inequalities, we see it is equivalent to saying

−cα,n−1 <
Ȳ − µ0

s/
√
n

< cα,n−1, (10.20)

or
−cα,n−1 < Ts < cα,n−1, (10.21)

where Ts is the test statistic for a one-sample t test. We would reject H0

if Ts falls outside this interval. Note that this acceptance region is exactly
the same as for the t test with Type I error rate of α, which is of the form
(−cα,n−1, cα,n−1). Thus, the test based on a 100(1− α)% confidence interval
is equivalent to an α level test. In particular, a 95% confidence interval is
equivalent to an α = 0.05 test.
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Conversely, it is often possible to reverse this process and obtain a confi-
dence interval from a statistical test. The procedure is called ‘inverting the
test’ (Bickel & Doksum 1977).

10.10 Likelihood ratio tests

We saw earlier how statisticians use the concept of maximum likelihood to es-
timate population parameters (Chapter 8). The maximum likelihood method
begins by constructing a likelihood function based on the distribution of the
data (Poisson, normal, etc.) and the observed data. We then maximize the
likelihood as a function of the parameters of the distribution (µ, σ2, etc).
The values of the parameters that maximize the likelihood are the maximum
likelihood estimates of the parameters. The likelihood function is not a fixed
quantity but instead varies with the observed data, so that different data
sets yield different estimates of the population parameters. Maximum likeli-
hood estimators have desirable statistical properties and in many cases yield
estimators that seem reasonable (like using Ȳ to estimate µ).

Likelihood methods can also be used to develop statistical tests called
likelihood ratio tests. These tests also have desirable statistical proper-
ties and in many cases are identical to classical statistical tests. Likelihood
methods thus provide a theoretical framework for many statistical problems,
including parameter estimation, confidence intervals, and hypothesis testing.
The main drawback of these methods is that one must be willing to specify
the distribution of the data, be it Poisson, binomial, normal, or more exotic
distributions.

10.10.1 Example of a likelihood ratio test

We will now develop a likelihood ratio test that leads to the familiar one-
sample t test (Mood et al. 1974) . We suppose that the data are normally
distributed and we wish to test H0 : µ = µ0 vs. H1 : µ 6= µ0. A random
sample with n observations has been obtained.

We can think of H0 and H1 as two different statistical models for the data.
Under H0, the data are assumed to be normally distributed with µ = µ0, but
can have any value of σ2 because this parameter is left unspecified. Under
H1, the data are permitted to have any value of µ and σ2.
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The first step in constructing a likelihood ratio test is to find the maxi-
mum likelihood estimates of the parameters for each of these two statistical
models. We have already dealt with this problem for the model specified by
H1 – this is just maximum likelihood estimation of µ and σ2 for the normal
distribution. The same methods can be used to estimate σ2 under H0, but
we will not go into the details.

This process can be illustrated by plotting the likelihood function as a
function of µ and σ2. To make things more concrete, we show the likelihood
function for a data set with three data points (Y1 = 4.5, Y2 = 5.3, and
Y3 = 5.4). Also shown is a possible null hypothesis for these data, such as
H0 : µ = 4.7. See Fig. 10.15 below.

The maximum likelihood estimates of µ and σ2 under H1 are the values
of µ and σ2 found at the peak of the likelihood function. However, the
maximum likelihood estimate of σ2 under H0 occurs at a different location.
Because µ is fixed at 4.7 under H0, σ2 is only free to vary along the vertical
line shown in the figure. The maximum likelihood estimate of σ2 under H0

is the value of σ2 that maximizes the likelihood along this line.

Figure 10.15: Likelihood ratio test for H0 : µ = 4.7

We are now ready to construct the likelihood ratio test statistic. Let LH0

be the maximum height of the likelihood surface under H0, which occurs at
the maximum likelihood estimate of σ2 under H0. Similarly, let let LH1 be
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the maximum height under H1, which occurs at the estimates of µ and σ2

under H1. The test statistic λ is just the ratio of these two quantities:

λ =
LH0

LH1

. (10.22)

How does this statistic behave? If H0 is true, the peak of the likelihood
function will often be near the vertical line, and the height of the likelihood
function will be similar at the two locations. This implies a value of λ ≈ 1
because LH0 ≈ LH1 . If H0 is false and H1 true, however, we would expect to
see LH0 < LH1 and so λ < 1. We would therefore reject H0 for sufficiently
small values of λ.

More formally, we reject H0 if λ < c and accept H0 otherwise. The value
of c is determined using the Type I error rate α and the distribution of λ
under H0.

An alternate form of the test uses −2 ln(λ) rather than λ itself, and rejects
H0 for values of −2 ln(λ) > d, where d is a constant that controls the Type I
error rate. This form of the test rejects for large values of the test statistic,
similar to other tests we have developed. Note that

−2 ln(λ) = 2 ln(LH1)− 2 ln(LH0) (10.23)

by the properties of logarithms, and is a positive quantity. SAS provides
values of the likelihood function in this format for some statistical procedures,
and these can be used to construct likelihood ratio tests.

How is the likelihood ratio test related to a t test? It can be shown
mathematically that the value of the test statistic

Ts =
Ȳ − µ0

s/
√
n

(10.24)

is directly proportional to −2 ln(λ), the likelihood ratio test statistic (Mood
et al. 1974). Figure 10.16 plots the value of −2 ln(λ) vs. Ts for a scenario
matching our example data set. We observe there is a one-to-one correspon-
dence between the two test statistics. When such a correspondence occurs
between two test statistics, the tests are considered to be statistically equiv-
alent. We will later see that many statistical tests are in fact likelihood ratio
tests. These include tests in analysis of variance, regression, and methods
for categorical data such as χ2 tests.
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Figure 10.16: Likelihood ratio vs. t test statistics.
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10.12 Problems

1. A company that rears beneficial insects produces lacewings (Chrysop-
idae: Neuroptera) whose mean length is 10 mm. A new method of
rearing is being tested and the company wants to determine if the new
method changes lacewing length. A sample of 10 insects is collected
for the new method, yielding the following lengths:

10.3 14.1 11.5 9.9 12.6 9.7 11.0 9.5 12.4 13.5

(a) Test whether the lacewings produced using the new method have
the same length as before (H0 : µ = 10 vs. H1 : µ 6= 10), using
a two-tailed test and Table T. Provide a P value and discuss the
significance of the test. Show your calculations.

(b) Suppose the company is only interested in rearing methods that
yield larger lacewing lengths, because bigger is better with benefi-
cial insects. Test H0 : µ = 10 vs. H1 : µ > 10. Provide a P value
and discuss the significance of the test.

(c) Use SAS and proc univariate to carry out the same two tests.
What are the exact P values for these tests? Attach your SAS
program and printout.

2. A study is done to measure the concentration of a particular chemical
(ppm) in drinking water, with samples taken at eight locations. The
samples were analyzed and the following results obtained:

23 20 24 20 23 24 21 22

(a) Test whether the concentration of the chemical is significantly
different from 20 ppm, the level set by the EPA, using a two-tailed
test and Table T. Provide a P value and discuss the significance
of the test. Show your calculations.

(b) The EPA actually requires that the concentration of the chemical
be equal to or below 20 ppm. Test whether the chemical concen-
tration exceeds this level using a one-tailed test and Table T. In
particular, test H0 : µ = 20 vs. H1 : µ > 20. Provide a P value
and discuss the significance of the test.
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(c) Use SAS and proc univariate to carry out the same two tests.
What are the exact P values for these tests? Attach your SAS
program and printout.
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Chapter 11

Analysis of Variance
(One-Way)

We now develop a statistical procedure for comparing the means of two or
more groups, known as analysis of variance or ANOVA. These groups might
be the result of an experiment in which organisms are exposed to different
treatments. Alternately, the groups might be different species or different
age classes of the same species, populations in different locations, or different
genetic families. The test works by comparing the variance among the group
means to the variance of the observations within each group – if the variance
among group means is large (implying differences in their means) relative to
the variance within groups, the test is significant. This chapter will examine
tests for one-way ANOVA, in which a single factor like a treatment affects
the observations. More complex designs are possible in which several factors
may influence the observations and may also interact (see Chapter 14 and
19).

What do the data look like for a one-way ANOVA design? Suppose we
are interested in trapping bark beetles (Coleoptera: Curculionidae: Scolyti-
nae) using different chemical baits, which could involve the beetle’s sex
pheromones or odors of the trees they colonize. Suppose there are three
different baits (A, B, and C), with a = 3 denoting the number of treatments.
The baits are deployed on traps in the forest, with n = 5 replicate traps for
each bait type. A typical experimental design would establish 15 traps in the
forest, and then randomly assign a bait to each trap. After a period of time,
the traps would be checked and the number of insects caught in each trap
recorded (Table 11.1). Because the data are counts, it would not be normally
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distributed but more likely have a Poisson or negative binomial distribution
(see Chapter 5). However, it is often possible to transform count data to
have a distribution closer to the normal by taking the square root or log of
the counts (see Chapter 15). The third column in Table 11.1 shows the count
data after applying a log transformation. The notation Yij is often used to
refer to the observations in ANOVA designs. The i subscript refers to the
group or treatment, while j is the observation within the treatment. For
example, Y13 refers to the third observation in the first treatment, which is
2.41.

Another one-way ANOVA design for bark beetles might simply look at
variability in their density across sites. Suppose there is a large collection
of study sites, and we randomly select five sites for trapping. Five traps are
deployed at each of the five sites and the number of beetles caught per trap
is recorded. Data for a study of this type are listed below, also with a log
transformation (Table 11.2). There appears to be substantial variability in
beetle abundance across sites, with Site 4 having very high beetle catches,
while Site 5 has low ones.

The data sets presented in this section represent balanced designs, be-
cause there are the same number of replicates for each treatment or group.
An unbalanced design would have an unequal number of replicates, pos-
sibly very unequal. We will present tests and theory for balanced designs
in this chapter, because this greatly simplifies the formulas and equations.
However, these results can be readily extended to unbalanced designs, and
unbalanced designs require no changes in the SAS programs presented.
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Table 11.1: Example 1 - Bark beetles captured in a trapping experiment
comparing the attraction to different baits. There were three baits (A, B,
and C) and five replicate traps per bait treatment. Also shown are the log-
transformed counts (Yij) and subscript values (i, j), and some preliminary
one-way ANOVA calculations.

Treatment Count Yij = i j Ȳi· (Yij − Ȳi·)2
∑

(Yij − Ȳi·)2

log10(Count)
A 373 2.57 1 1 0.0441
A 126 2.10 1 2 0.0676
A 255 2.41 1 3 2.3600 0.0025 0.2110
A 138 2.14 1 4 0.0484
A 379 2.58 1 5 0.0484
B 25 1.40 2 1 0.0999
B 64 1.81 2 2 0.0088
B 62 1.79 2 3 1.7160 0.0055 0.1325
B 71 1.85 2 4 0.0180
B 54 1.73 2 5 0.0002
C 449 2.65 3 1 0.1832
C 249 2.40 3 2 0.0317
C 69 1.84 3 3 2.2220 0.1459 0.4581
C 199 2.30 3 4 0.0061
C 84 1.92 3 5 0.0912
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Table 11.2: Example 2 - Bark beetles captured in a trapping study comparing
their abundance at five randomly chosen study sites. There were five replicate
traps per site. Also shown are the log-transformed counts (Yij) and subscript
values (i, j), and some preliminary one-way ANOVA calculations.

Site Count Yij = i j Ȳi· (Yij − Ȳi·)2
∑

(Yij − Ȳi·)2

log10(Count)
1 137 2.14 1 1 0.0164
1 101 2.00 1 2 0.0001
1 113 2.05 1 3 2.0120 0.0014 0.1598
1 48 1.68 1 4 0.1102
1 155 2.19 1 5 0.0317
2 156 2.19 2 1 0.0784
2 165 2.22 2 2 0.0625
2 652 2.81 2 3 2.4700 0.1156 0.4730
2 179 2.25 2 4 0.0484
2 757 2.88 2 5 0.1681
3 278 2.44 3 1 0.0376
3 197 2.29 3 2 0.0019
3 95 1.98 3 3 2.2460 0.0708 0.3419
3 395 2.60 3 4 0.1253
3 83 1.92 3 5 0.1063
4 2540 3.40 4 1 0.4956
4 613 2.79 4 2 0.0088
4 200 2.30 4 3 2.6960 0.1568 0.7600
4 251 2.40 4 4 0.0876
4 390 2.59 4 5 0.0112
5 18 1.26 5 1 0.0044
5 16 1.20 5 2 0.0000
5 11 1.04 5 3 1.1940 0.0237 0.0459
5 21 1.32 5 4 0.0159
5 14 1.15 5 5 0.0019
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11.1 ANOVA models

We now examine the statistical models that are used in one-way ANOVA.
There are two models for one-way ANOVA, known as fixed or random effects
models, but sometimes called Model I and II. This classification is based on
how the groups in the design are defined or generated. We begin by defining
fixed and random effects, then present the statistical models and hypotheses
for each type.

11.1.1 Fixed and random effects

For groups generated by different treatments in an experiment, or purposely
chosen groups of organisms such as different species, sexes, or ages, the groups
are classified as fixed effects. They are called fixed effects because these
groups are the only ones of interest to the investigator, and the only ones
on which a statistical inference can be made (Littell et al. 1996, McCulloch
and Searle 2001). They are also incorporated in statistical models as fixed
parameters. Groups that are generated by a process of random sampling are
classified as a random effects (Littell et al. 1996, McCulloch and Searle
2001). For example, suppose we want to examine the fish populations in a
large number of lakes, and are interested in how body length varies across
lakes. If we randomly sample the lakes to be examined, from a large col-
lection of lakes, then lake would be classified as a random effect. In many
genetic experiments, families are chosen at random from a larger collection of
families, making family a random effect. Random effects are incorporated in
statistical models as random variables, typically with a normal distribution.

These definitions suggest a simple test for fixed vs. random
effects – if the groups are a random sample from a large collection
you have a random effect, otherwise a fixed effect. Although it is
usually possible to declare an effect as either fixed or random, in practice
it is sometimes difficult to decide. For example, suppose that a particular
organism occurs at only a small number of locations. If we randomly select
a subset of these locations to sample, seemingly implying a random effect,
the overall number of locations is still finite. In this scenario, location may
be better classified as a fixed effect.
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11.1.2 Fixed effects model

Suppose that we want to model the observations in the bark beetle trap-
ping experiment, Example 1, where different baits are used. Recall that the
symbol Yij stand for the jth observation in the ith treatment group, where
i = 1, 2, 3 and j = 1, 2, 3, 4, 5. For example, Y11 = 2.57 and Y12 = 2.10, while
Y32 = 2.40 (see Table 11.1). One commonly used model for such a design is

Yij = µ+ αi + εij (11.1)

where µ is a parameter setting the grand mean (the overall mean) of the
observations, αi is the deviation from the grand mean caused by the ith
treatment (McCulloch and Searle 2001), and εij ∼ N(0, σ2). It is usually
assumed that

∑
αi = 0, i.e., the treatment effect terms sum to zero. The εij

term represents random departures from the mean value for the ith treat-
ment, due to natural variability among the observations. The εij values are
also assumed to be independent (Chapter 4). In practice, these parameters
would be unknown but could be estimated from the data. The same model
can be used to describe the observations for experiments with any number
of treatments (any a value) as well as replicates per treatments (any n),
as well as experiments where the number of observations is unequal among
treatments.

It follows that for the ith treatment, E[Yij] = µ + αi and V ar[Yij] = σ2,
using the rules for expected values and variances. Thus, for the ith treatment
we have Yij ∼ N(µ+ αi, σ

2). We can illustrate how the different parameters
work in this model with a diagram that plots the distribution for each group.
Suppose that we want to model an experiment similar to the bark beetle
trapping one, with a = 3 treatments. Suppose that µ = 2.1, α1 = 0.25,
α2 = −0.40, and α3 = 0.15, with σ2 = 0.1. Fig. 11.1 shows the distribution of
the observations in each treatment group. Note that the means for treatment
1 and 3 are shifted upward from the grand mean by their positive values of
αi, while the mean for treatment 2 is shifted downward by its negative value.
The distribution for each treatment has the same variance, namely σ2 = 0.1.

The usual objective in ANOVA is to test whether the means of the dif-
ferent groups are significantly different, implying there is treatment or group
effect. In terms of the fixed effects model, this amounts to testing whether
the αi values are significantly different from zero, because it is these param-
eters that produce shifts in the group means from the grand mean. More
formally, we are interested in testing the null hypothesis H0 : all αi = 0.
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Under H0, all the groups have the same mean µ because the αi terms are
zero (Fig. 11.2). The alternative hypothesis would be H1 : some αi 6= 0, i.e.,
there is some treatment effect on some (perhaps all) groups (Fig. 11.1). We
will discuss how this null hypothesis is actually tested later in the chapter.
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Figure 11.1: Fixed effects model for one-way ANOVA, under H1 : some
αi 6= 0.

Figure 11.2: Fixed effects model for one-way ANOVA, under H0 : all αi = 0.
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11.1.3 Random effects model

Suppose that we now want to model the variability in bark beetle abundance
across different sites, such as in the Example 2 study. Let Yij stand for the jth
observation at the ith sampled site, with i = 1, 2, 3, 4, 5 and j = 1, 2, 3, 4, 5.
We have Y11 = 4.92, Y12 = 4.62, and so forth (see Table 11.2). A common
statistical model for this design is

Yij = µ+ Ai + εij (11.2)

where µ is again a parameter setting the grand mean of the observations, with
Ai a random deviation from the grand mean due to the ith site (McCulloch
and Searle 2001), and εij ∼ N(0, σ2). It is assumed that Ai is normally
distributed with mean zero and variance σ2

A, or Ai ∼ N(0, σ2
A). Note that

in the random effects model the group effect is indeed a random variable,
one whose variance is unknown but can be estimated from the data. The
variances σ2

A and σ2 are collectively called the variance components of the
model.

For the ith group sampled, it can be shown that E[Yij] = µ + Ai and
V ar[Yij] = σ2, using the rules for expected values and variances. Thus, for
the ith treatment we have Yij ∼ N(µ + Ai, σ

2). Because the Ai values are
themselves random quantities, however, the expected value is itself a random
quantity and would differ for each group sampled. We again illustrate how
the model works using a diagram showing the distribution for each group.
Suppose that we want to model a study similar to the second bark beetle one
(Table 11.2), with a = 5 sites randomly selected from a larger collection of
sites. Suppose that µ = 2.1 and σ2 = 0.1. The first time we did this study,
we might see a pattern like Fig. 11.3. If we redid the study and randomly
selected another five sites, we would get a different pattern (Fig. 11.4). This
illustrates that this model is not static like the fixed effects one, but instead
would vary with the sites actually sampled. In the random effects model,
we are usually interested in testing whether the variance of Ai is zero vs.
greater than zero, or H0 : σ2

A = 0 vs. H1 : σ2
A > 0. Under H0 : σ2

A = 0, all
the Ai values must be zero (to give σ2

A = 0), and so all the groups have the
same mean µ. A plot of the model under H0 would therefore be similar to
Fig. 11.2. This null hypothesis is tested in the same way as the one for the
fixed effects model (see below).
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Figure 11.3: Random effects model for one-way ANOVA, for the first time
sites are sampled.

Figure 11.4: Random effects model for one-way ANOVA, for the second time
sites are sampled.



11.2. HYPOTHESIS TESTING FOR ANOVA 287

11.2 Hypothesis testing for ANOVA

We now develop a statistical test for the null hypotheses in both fixed and
random effects models, either H0 : all αi = 0 or H0 : σ2

A = 0. We will first
present the test and explain how it works in terms of different estimates of
the variance, then later show it is another example of a likelihood ratio test.

11.2.1 Sums of squares and mean squares

Suppose the data are described by a fixed effects model, for which the hy-
potheses are H0 : all αi = 0 vs. H1 : some αi 6= 0. It is clear that if H1 is
true, then the observations for the different groups will be shifted from the
grand mean, as shown in Fig. 11.1, and in particular Yij ∼ N(µ + αi, σ

2)
for each group. For a random effects model, we have H0 : σ2

A = 0 vs.
H1 : σ2

A > 0. If H1 is true, we would also expected the observations for the
different groups to be shifted away from the grand mean (Fig. 11.3), and
in particular Yij ∼ N(µ + Ai, σ

2). How can we estimate this shift in actual
data? How large must this shift be to be judged statistically significant?

We begin by calculating the means for each group using the data. These
are labeled as Ȳi· and are called group means. The ‘·’ subscript implies the
mean was calculated using all the observations in that group (j = 1, 2, . . . , n).
We then calculate the mean of the group means, called the grand mean and
labeled as ¯̄Y . If the ith group is shifted from the grand mean, we can measure
this shift using the quantity Ȳi· − ¯̄Y . In fact, this quantity estimates αi for
the ith group, and so is a direct measure of any group effect (see Section 11.3
on maximum likelihood estimation). If these quantities are small then this
suggests H0 might be true, whereas if they are large this provides evidence for
H1. We can obtain a single measure of these shifts by squaring and summing
them across all groups, to obtain a quantity called the sum of squares among
groups or SSamong, because it measures variation in the observations among
groups:

SSamong = n

a∑
i=1

(Ȳi· − ¯̄Y )2. (11.3)

Note the sample size n in this expression, which we will justify below. To
make this quantity more concrete, we will calculate SSamong for Example 1,
the bark beetle trapping experiment. We first calculate the sample mean for
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each group for the log-transformed data, as shown in Table 11.1. Then, the
grand mean is estimated using the mean of these means, or

¯̄Y =

∑a
i=1 Ȳi·
a

=
2.3600 + 1.7160 + 2.2220

3
=

6.2980

3
= 2.0993. (11.4)

We then have

SSamong = n

a∑
j=1

(Ȳi· − ¯̄Y )2 (11.5)

= 5
[
(2.3600− 2.0993)2 + (1.7160− 2.0993)2 + (2.2220− 2.0993)2

]
(11.6)

= 5 [0.0680 + 0.1469 + 0.0151] (11.7)

= 1.1500 (11.8)

SSamong has a−1 degrees of freedom, where a is the number of groups. There

are a − 1 degrees of freedom because there are a terms of the form Ȳi· − ¯̄Y
in the sum of squares, but these sum to zero so there are really only a − 1
independent terms (similar to the n − 1 degrees of freedom for the sample
variance s2). The next step is to convert SSamong to a sample variance,
dividing it by a− 1. This quantity is called the mean square among groups:

MSamong =
SSamong
a− 1

=
n
∑a

j=1(Ȳi· − ¯̄Y )2

a− 1
. (11.9)

For the bark beetle experiment, we find that

MSamong =
SSamong
a− 1

=
1.1500

3− 1
= 0.5750. (11.10)

So, what variance does MSamong estimate? If H0 is true and there are no
group effects, we would expect Ȳi· to have a variance of σ2/n, because it is
a sample mean composed of n observations in the ith group (which have a
variance of σ2). MSamong estimates this variance multiplied by n, because
of the n term in numerator, and so actually estimates nσ2/n = σ2. On the
other hand, if H1 is true then there are group effects, and we would expect the
group means to be shifted away from the grand mean. This should increase
the size of MSamong. Thus, MSamong estimates σ2 if H0 is true but
becomes larger if H1 is true.
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We next develop an estimate of the variance σ2 that is free of any effects,
fixed or random. This variance estimate is based on a quantity called the
sum of squares within groups or SSwithin, because it measures variation of
the observations within each group. It is defined by the formula

SSwithin =
a∑
i=1

n∑
j=1

(Yij − Ȳi·)2 (11.11)

=
n∑
j=1

(Y1j − Ȳ1·)
2 + . . .+

n∑
j=1

(Yaj − Ȳa·)2. (11.12)

It has a(n− 1) degrees of freedom, because there are a sum of squares terms
each with n − 1 degrees of freedom. We can obtain an estimate of σ2 by
dividing this sum of squares by its degrees of freedom, to obtain the mean
square within groups:

MSwithin =
SSwithin
a(n− 1)

=

∑a
i=1

∑n
j=1(Yij − Ȳi·)2

a(n− 1)
. (11.13)

This quantity estimates σ2 because it simply averages estimates of σ2 for
each group. With some rearrangement, we can write MSwithin as

MSwithin =

∑a
i=1

∑n
j=1(Yij − Ȳi·)2

a(n− 1)
(11.14)

=

∑
(Y1j − Ȳ1·)

2 + . . .+
∑

(Yaj − Ȳa·)2

a(n− 1)
(11.15)

=

∑
(Y1j−Ȳ1·)2
n−1

+ . . .+
∑

(Yaj−Ȳa·)2
n−1

a
(11.16)

=
s2

1 + . . .+ s2
a

a
. (11.17)

Each term in the numerator of this expression is the sample variance s2

for each group, which is then averaged across all groups to yield an overall
or pooled estimate of σ2. The word ‘pooled’ in statistics often indicates a
combined estimate of a variance. It can also be shown that E[MSwithin] = σ2,
regardless of any group effects.

We now calculate MSwithin for the bark beetle experiment. We first need
to calculate the quantity (Yij − Ȳi·)2 for the observations in each group and
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then sum these for each group (see Table 11.1). Summing these quantities
in turn across all groups, we obtain

SSwithin = 0.2110 + 0.1325 + 0.4581 = 0.8016. (11.18)

(11.19)

We then have

MSwithin =
SSwithin
a(n− 1)

=
0.8016

3(5− 1)
= 0.0668. (11.20)

(11.21)

There is one more sum of squares that can be calculated in one-way
ANOVA, the total sum of squares. It is defined as

SStotal =
a∑
i=1

n∑
j=1

(Yij − ¯̄Y )2. (11.22)

It measures the variability of the observations around the grand mean of the
data ( ¯̄Y ) and has an − 1 degrees of freedom. Applying this formula to the
Example 1 data set, we obtain SStotal = 1.9516 after much calculation.

An interesting feature of the sum of squares is that they add to the total
sum of squares, as do the degrees of freedom. In particular, we have

SSamong + SSwithin = SStotal (11.23)

and
(a− 1) + a(n− 1) = an− 1. (11.24)

Thus, the sum of squares and degrees of freedom can be neatly partitioned
into components corresponding to among group and within group variation.
We will illustrate this relationship further in the section below on ANOVA
tables.

11.2.2 F statistic and distribution

We next describe the statistic used to test H0 : all αi = 0 for the fixed effect
model, and H0 : σ2

A = 0 for the random effects one. It is simply the ratio of
MSamong and MSwithin, or

Fs =
MSamong
MSwithin

. (11.25)
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If H0 is true for either model, both MSamong and MSwithin estimate σ2 and
we would expect their ratio, Fs, to be small and on the order of one. However,
if H0 is false and H1 is true, we would expect MSamong to become larger and
Fs to increase. We would therefore reject H0 for large values of Fs.

To complete our testing procedure and find P values, we need to know the
distribution of Fs under H0. It turns out this statistic has an F distribution
under H0, whose shape and location is governed by two parameters, the de-
grees of freedom for MSamong and MSwithin. These are called the numerator
and denominator degrees of freedom, which we abbreviate as df1 and df2. In
particular, for one-way ANOVA we have df1 = a − 1 and df2 = a(n − 1).
Figure 11.5 shows the F distribution for three different sets of parameter
values. Note that distribution can have a maximum at y = 0 for small values
of df1, while larger values of df2 decrease the probability in the right tail of
the distribution.

Figure 11.5: The F distribution for three different sets of parameter values

Table F gives the quantiles of the F distribution for different values of the
degrees of freedom and the cumulative probability p. Statistical tests that
make use of the F distribution are typically called F tests.

Calculating the test statistic Fs for the bark beetle experiment, we have

Fs =
MSamong
MSwithin

=
0.5750

0.0668
= 8.6078, (11.26)
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with df1 = a− 1 = 3− 1 = 2 and df2 = a(n− 1) = 3(5− 1) = 12.
As with previous tests, we seek acceptance and rejection regions for a

particular value of α, the Type I error rate. In particular, we seek a quantity
cα,df1,df2 such that

P [0 < Fs < cα,df1,df2 ] = 1− α. (11.27)

The region is of this form because the test is designed to reject H0 for large
values of Fs, and accept it for small ones. To find cα,df1,df2 , we look in Table
F for the column corresponding to 1 − p = α, for the appropriate degrees
of freedom. The acceptance region would therefore be (0, cα,df1,df2), and we
would reject H0 if Fs lies outside this region.

For α = 0.05, df1 = 2, and df2 = 12, we see from Table F that c0.05,2,12 =
3.885. Our acceptance region is therefore (0, 3.885), and we reject H0 at the
α = 0.05 level if Fs ≥ 3.885 (Fig. 11.6). We see this is the case because
Fs = 8.6078 > 3.885. We can continue this process for increasingly smaller
α and eventually find that for α = 0.005 we can still reject H0, but not for
α = 0.001. We therefore have P < 0.005 for this test, because α = 0.005
is the smallest value of α for which we can reject H0 (see Chapter 10). An
F test in ANOVA would often be reported as follows: ‘There was a highly
significant difference among the different baits in the number of bark beetles
trapped (F2,12 = 8.6078, P < 0.005).’ Note that the degrees of freedom are
given as subscripts.

11.2.3 ANOVA tables

We can organize the different sum of squares and mean squares into an
ANOVA table. It lists the different sources of variation in the data (among,
within, and total), their degrees of freedom, sums of squares and mean
squares, and then the F statistic and its P value. Table 11.3 shows the
general layout of such a table for one-way ANOVA designs, while Table 11.4
gives the results for the Example 1 analysis. Note the additive relationship
for the degrees of freedom and sum of squares.
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Figure 11.6: Acceptance and rejection regions for α = 0.05
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Table 11.3: General ANOVA table for one-way designs with a groups and n observations per group, showing
formulas for different mean squares and the F test.

Source df Sum of squares Mean square Fs
Among a− 1 SSamong = n

∑a
i=1(Ȳi· − ¯̄Y )2 MSamong = SSamong/(a− 1) MSamong/MSwithin

Within a(n− 1) SSwithin =
∑a

i=1

∑n
j=1(Yij − Ȳi·)2 MSwithin = SSwithin/a(n− 1)

Total an− 1 SStotal =
∑a

i=1

∑n
j=1(Yij − ¯̄Y )2

Table 11.4: ANOVA table for the Example 1 data set, including a P value for the test.

Source df Sum of squares Mean square Fs P
Among 2 1.1500 0.5750 8.6078 < 0.005
Within 12 0.8016 0.0668
Total 14 1.9516
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11.2.4 One-way ANOVA for Example 1 - SAS demo

The same calculations for the bark beetle experiment can be carried out in
SAS using proc glm (SAS Institute Inc. 2018). This procedure is primarily
intended for fixed effects ANOVA models, with proc mixed the best choice
for random effects models. However, the F test would be the same in either
procedure.

We will also use SAS and proc gplot (SAS Institute Inc. 2016) to visualize
the data. The basic idea is to plot, for each treatment group, the individual
data points along with their mean (Ȳ ) ± one standard error (s/

√
n). These

plots are useful for comparing the relative effects of the treatments, a con-
cept called effect size, as well as the variability of the observations. Effect
size is used to judge the biological significance of the treatments – are the
differences among the treatments biologically meaningful? This is distinct
from the statistical significance of the ANOVA. For example, you could ob-
serve large differences among the treatment means that could be biological
significant, but the F test could be non-significant because the data were
highly variable. Conversely, the differences among the means could be small
and not biologically meaningful, but the F test could be significant because
n is large, and so the test can detect even small differences.

The SAS program for one-way ANOVA is a bit more complicated than
previous programs, so we will examine it a section at a time. The first step
is to read in the observations using a data step, with one variable denoting
the treatment (treat) and a second the number of beetles captured (count).
As discussed earlier, it is common to log-transform count data, and so we
generate a variable y that is the log10 (log base 10) of count. The data step
is followed by a print statement to print the data set. See section below.

* bark_beetle_experiment.sas;

title "One-way ANOVA for bark beetle trapping experiment";

data bark_beetle;

input treat $ count;

* Apply transformations here;

y = log10(count);

datalines;

A 373

A 126

A 255

etc.
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C 199

C 84

;

run;

* Print data set;

proc print data=bark_beetle;

run;

We next plot the data using proc gplot (SAS Institute Inc. 2016). The
plot statement tells gplot to plot the variable y on the y-axis and treat on
the x-axis of the plot. The appearance of the points is controlled by the
symbol1 statement, which among other things specifies that the points be
plotted along with their means ± one standard error, with the means joined
by a line, using the option i=std1mjt. Other options in the symbol statement
control the type and size of the points, and line width. The vaxis=axis1 and
haxis=axis1 options control the visual appearance of the x- and y-axes. See
below.

* Plot means, standard errors, and observations;

proc gplot data=bark_beetle;

plot y*treat=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

The next section of the program conducts the one-way ANOVA and F test
using proc glm. The plots=diagnostics option generates graphs that are used
to examine some of the assumptions of ANOVA – we will defer their discus-
sion to Chapter 15. The class statement tells SAS that the variable treat is
the one that defines different groups in the ANOVA (see listing below). The
model statement basically tells SAS the form of the ANOVA model. Recall
that the model for fixed effects one-way ANOVA is given by the equation

Yij = µ+ αi + εij. (11.28)

If we equate Yij with y, and αi with treat, we see there are similarities between
the fixed effects model and the SAS model statement. In fact, SAS assumes
you want a grand mean µ unless otherwise specified, as well as the error term
εij. As we examine more complex ANOVA models in later chapters, we will
see there is nearly a one-to-one correspondence between these models and
the corresponding SAS model statement.
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* One-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=bark_beetle;

class treat;

model y = treat;

* Calculate means for each group;

means treat;

run;

The means statement causes glm to calculate means for each treat group.
The complete SAS program and output are listed below. The output

shows the same F test in three different locations within the proc glm output
(Fig. 11.9). The first is in a format resembling an ANOVA table, and then
two other times corresponding to Type I and III sums of squares. These
are different ways of calculating the sums of squares and tests, with Type
III sums of squares more generally useful for ANOVA designs. For one-
way ANOVA the results are the same, and we see that there was a highly
significant difference among groups (F2,12 = 8.60, P = 0.0048). Inspection of
the graph (Fig. 11.8) and means suggests that treatment A caught the most
beetles, followed by C and then B.

SAS Program

* bark_beetle_experiment.sas;

title "One-way ANOVA for bark beetle trapping experiment";

data bark_beetle;

input treat $ count;

* Apply transformations here;

y = log10(count);

datalines;

A 373

A 126

A 255

A 138

A 379

B 25

B 64

B 62

B 71

B 54

C 449

C 249

C 69

C 199

C 84
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;

run;

* Print data set;

proc print data=bark_beetle;

run;

* Plot means, standard errors, and observations;

proc gplot data=bark_beetle;

plot y*treat=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=bark_beetle;

class treat;

model y = treat;

* Calculate means for each group;

means treat;

run;

quit;
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Figure 11.7: bark beetle experiment.sas - proc print
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Figure 11.8: bark beetle experiment.sas - proc gplot
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Figure 11.9: bark beetle experiment.sas - proc glm
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11.2.5 One-way ANOVA for Example 2 - sample cal-
culation

We will conduct an F test for our second data set, involving a study of bark
beetles trapped at five different sites (a = 5) selected at random from a
collection of sites, with five traps per site (n = 5). This implies a random
effects model, and we are therefore interested in testing H0 : σ2

A = 0 vs.
H1 : σ2

A > 0. Some preliminary calculations for the F test are shown in
Table 11.2. We first find the mean Ȳi· for each site, then calculate the grand
mean as the average of the site means:

¯̄Y =

∑a
i=1 Ȳi·
a

(11.29)

=
2.0120 + 2.4700 + 2.2460 + 2.6960 + 1.1940

5
(11.30)

=
10.6180

5
= 2.1236. (11.31)

We then have

SSamong = n
a∑
j=1

(Ȳi· − ¯̄Y )2 (11.32)

= 5
[
(2.0120− 2.1236)2 + . . .+ (1.1940− 2.1236)2

]
(11.33)

= 5 [0.0125 + 0.1200 + 0.0150 + 0.3276 + 0.8642] (11.34)

= 6.6965 (11.35)

We next calculate MSamong:

MSamong =
SSamong
a− 1

=
6.6965

5− 1
= 1.6741. (11.36)

(11.37)

Now we find SSwithin, first calculating (Yij− Ȳi·)2 for the observations in each
group and then summing these for each group (see Table 11.2). Summing
these quantities in turn across all groups, we obtain

SSwithin = 0.1598 + 0.4730 + 0.3419 + 0.7600 + 0.0459 = 1.7806. (11.38)

(11.39)
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We then have

MSwithin =
SSwithin
a(n− 1)

=
1.7806

5(5− 1)
= 0.0890. (11.40)

(11.41)

Calculating the test statistic Fs, we obtain

Fs =
MSamong
MSwithin

=
1.6741

0.0890
= 18.8101, (11.42)

(11.43)

with df1 = a − 1 = 4 − 1 = 4 and df2 = a(n − 1) = 5(5 − 1) = 20. From
Table F, we find P < 0.001. The variance among sites was highly significant
(F4,12 = 18.8101, P < 0.001.
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11.2.6 One-way ANOVA for Example 2 - SAS demo

We can carry out the F test as well as estimate the variance components
(σ2

A and σ2) for the random effects model using SAS. The first section of the
program involving the data step and gplot graph is similar to the fixed effects
program. The next section of the program fits the random effects model to
the data and conducts the F test, using proc mixed (see listing below). As
before, the class statement tells SAS that the variable site is the one that
defines different groups in the ANOVA. Now recall that the model for random
effects one-way ANOVA is given by the equation

Yij = µ+ Ai + εij. (11.44)

Note that Ai corresponds to site in the bark beetle study. In proc mixed,
fixed effects in the model are placed in a model statement, while any random
effects are listed in a random statement (SAS Institute Inc. 2018). Because
our random effects model only has one random effect, site, this is listed in
the random statement. There are no fixed effects in this model, so the model

statement lists nothing after the equals sign. The option ddfm=kr specifies a
general method of calculating the degrees of freedom that works well under
many circumstances, including more complicated models.

* One-way ANOVA with random effects - F test;

proc mixed method=type3 data=bark_beetle;

class site;

model y = / ddfm=kr;

random site;

run;

* One-way ANOVA with random effects - variance components;

proc mixed cl plots=residualpanel data=bark_beetle;

class site;

model y = / ddfm=kr;

random site;

run;

Why is proc mixed invoked twice in this program? The first one generates
the F statistic for testing H0 : σ2

A = 0 vs. H1 : σ2
A > 0, using the option

method=type3. This is not the default in proc mixed, which appears more
designed to estimate the variance components in random effects (Littell et
al. 1996). If we drop this option, as in the second proc mixed statement, we
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get only these estimates and no F test. Confidence intervals for the variance
components are requested using the cl option. The variance components
estimated in the second proc mixed using a version of maximum likelihood,
the preferred method of estimating these quantities.

The complete SAS program and output are listed below. The F test
found in the first proc mixed output (Fig. 11.12) was highly significant
(F4,12 = 18.77, P < 0.0001), suggesting σ2

A > 0. The second proc mixed

output provides estimates and confidence intervals for the two variance com-
ponents (Fig. 11.13). We have σ̂2

A = 0.3174 for which the 95% confi-
dence interval is (0.1093, 3.1458), and σ̂2 = 0.0893 with confidence interval
(0.0523, 0.1863). From these results, we see that the variance among sites
was greater than the variance within sites (0.3174 > 0.0893). This can also
be seen in Fig. 11.11 – beetle numbers vary considerably among sites relative
to within them.

SAS Program

* bark_beetle_random.sas;

title "One-way ANOVA for bark beetle sampling study";

data bark_beetle;

input site $ count;

* Apply transformations here;

y = log10(count);

datalines;

1 137

1 101

1 113

1 48

1 155

2 156

2 165

2 652

2 179

2 757

3 278

3 197

3 95

3 395

3 83

4 2540

4 613

4 200

4 251
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4 390

5 18

5 16

5 11

5 21

5 14

;

run;

* Print data set;

proc print data=bark_beetle;

run;

* Plot means, standard errors, and observations;

proc gplot data=bark_beetle;

plot y*site=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way ANOVA with random effects - F test;

proc mixed method=type3 data=bark_beetle;

class site;

model y = / ddfm=kr;

random site;

run;

* One-way ANOVA with random effects - variance components;

proc mixed cl plots=residualpanel data=bark_beetle;

class site;

model y = / ddfm=kr;

random site;

run;

quit;
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etc.

Figure 11.10: bark beetle random.sas - proc print
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Figure 11.11: bark beetle random.sas - proc gplot
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Figure 11.12: bark beetle random.sas - proc mixed (1)
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Figure 11.13: bark beetle random.sas - proc mixed (2)
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11.3 Maximum likelihood estimates

This section sketches how the parameters in one-way ANOVA can be esti-
mated using maximum likelihood. Recall that the likelihood for a random
sample of three observations (Y1 = 4.5, Y2 = 5.4, Y2 = 5.3) from a normal
distribution (see Chapter 8) was of the form

L(µ, σ2) =
1√

2πσ2
e−

1
2

(4.5−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.4−µ)2

σ2 × 1√
2πσ2

e−
1
2

(5.3−µ)2

σ2 .

(11.45)

We found maximum likelihood estimates of the normal distribution param-
eters by maximizing this quantity with respect to µ and σ2.

Suppose now we have a data set that can be modeled using the fixed
effects one-way ANOVA model, in particular

Yij = µ+ αi + εij. (11.46)

This model has a number of parameters to estimate, such as µ, αi for i =
1, 2, . . . , a, and σ2. What would the likelihood function look like for these
data? Consider the first group for the bark beetle experiment (Example 1),
for which we have Y11 = 2.576, Y12 = 2.10, Y13 = 2.41, Y14 = 2.14, and
Y15 = 2.58. For the first group the model assumes that Y1j ∼ N(µ+ α1, σ

2),
and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(2.57−(µ+α1))
2

σ2 × 1√
2πσ2

e−
1
2

(2.10−(µ+α1))
2

σ2 × 1√
2πσ2

e−
1
2

(2.41−(µ+α1))
2

σ2

(11.47)

× 1√
2πσ2

e−
1
2

(2.14−(µ+α1))
2

σ2 × 1√
2πσ2

e−
1
2

(2.58−(µ+α1))
2

σ2 .

(11.48)

The likelihood L2 for the second group would be similar, except that Y2j ∼
N(µ + α2, σ

2), and L3 similarly defined. The overall likelihood would then
be defined as

L(µ, α1, α2, α3, σ
2) = L1 × L2 × L3. (11.49)

Finding the maximum likelihood estimates involves maximizing this quan-
tity with respect to the parameters µ, α1, α2, α3, and σ2. The likelihood for
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designs with any number of treatment groups and replicates would be simi-
lar. Using a bit of calculus to find the maximum, it can be shown that the
maximum likelihood estimates of these parameters, in general, are

µ̂ = ¯̄Y, (11.50)

α̂i = Ȳi· − ¯̄Y, (11.51)

and

σ̂2 =

∑n
i=1

∑n
j=1(Yij − Ȳi·)2

a(n− 1)
= MSwithin. (11.52)

(McCulloch & Searle 2001). These estimators seem quite reasonable. They
use the grand mean of the data, ¯̄Y , to estimate the grand mean µ of the
model, and the difference between the ith group mean and the grand mean,
Ȳi· − ¯̄Y , to estimate the deviation from the group mean αi. Note that σ̂2

is equal to MSwithin, which we have already encountered in our ANOVA
calculations.

Suppose now we have a data set suited to the random effects model, in
particular

Yij = µ+ Ai + εij. (11.53)

This model has three parameters to be estimated: µ, σ2
A, and σ2. The

likelihood for this model is more complex because of the random effect Ai, but
one can show that the maximum likelihood estimators of these parameters
are

µ̂ = ¯̄Y, (11.54)

σ̂2
A =

MSamong −MSwithin
n

, (11.55)

and
σ̂2 = MSwithin. (11.56)

An intuitive explanation of the formula for σ̂2
A is that MSamong incorporates

variance from both Ai and εij, while MSwithin only has εij. Subtracting
MSwithin from MSamong leaves only the variance due to Ai, so that the nu-
merator of this expression estimates nσ2

A. We then divide by n to obtain an
estimate of σ2

A.
Suppose that for an unusual data set we obtain MSamong < MSwithin,

implying a negative estimate of σ̂2
A = 0 according to the above equation. An

inherent feature of maximum likelihood is that is restricts variance compo-
nents to plausible values (McCulloch & Searle 2001), so in this case it would
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simply say that σ̂2
A = 0, the smallest possible nonnegative value. This would

be reflected in the SAS output for proc mixed, which would report that the
variance component in question was zero. The estimates presented here are
actually obtained using a variant of maximum likelihood called restricted
maximum likelihood or REML. This method is the default in SAS, and has
some theoretical advantages over straight maximum likelihood (McCulloch
and Searle 2001).

11.4 F test as a likelihood ratio test

The F test in one-way ANOVA can be derived as a likelihood ratio test, simi-
lar to the development of the t test in Chapter 10. We first find the maximum
likelihood estimates of various parameters under H1 vs. H0, where the pa-
rameters under consideration are the ANOVA model parameters. Recall that
the observations in the fixed effects model are described as

Yij = µ+ αi + εij (11.57)

where µ is the grand mean, αi is the effect of the ith treatment, and εij ∼
N(0, σ2). This is the statistical model under the alternative hypothesis,
where αi 6= 0 for some i. Under H0 : all αi = 0, the model reduces to
just

Yij = µ+ εij. (11.58)

We would need to find the maximum likelihood estimates under both H1 (see
previous section) and H0, as well as LH0 and LH1 , the maximum height of
the likelihood function under H0 and H1. We would then use the likelihood
ratio test statistic

λ =
LH0

LH1

. (11.59)

It can be shown that there is a one-to-one correspondence between −2 ln(λ)
and Fs in one-way ANOVA, and so the F test is actually a likelihood ratio test
(McCulloch & Searle 2001). A similar argument can be made to justify the F
test for the random effects model. Like all likelihood ratio tests, large values
of the test statistic −2 ln(λ) or Fs indicate a lower value of the likelihood
under H0 relative to H1, and thus a poorer fit of the H0 model.
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11.5 One-way ANOVA and two-sample t tests

There is an alternative to one-way ANOVA when there are only two groups
to be compared, the two-sample t test. Let µ1 be the mean of the first group
and µ2 the second one, and suppose that the two groups have the same
variance σ2 and sample size n. We are interested in testing H0 : µ1 = µ2 vs.
H1 : µ1 6= µ2, to determine if there are differences in the means of the two
groups. Under H0, the test statistic

Ts =
(Ȳ1· − Ȳ2·)√

s21+s22
2

∼ t2(n−1). (11.60)

Here Ȳ1· and Ȳ2· are the sample means for each group, and s2
1 and s2

2 the
sample variances. For a Type I error rate of α, the acceptance region of the
test would be the interval (−cα,2(n−1), cα,2(n−1)), where cα,2(n−1) is determined
using Table T (see Chapter 10). We would reject H0 if it falls on the edge or
outside this interval. There are also versions of this test statistic for unequal
sample sizes.

Although a two-sample t test is often used for comparing two groups, in
the form above it is equivalent to the F test in one-way ANOVA. To see
this, note that T 2

s = Fs for one-way ANOVA with two groups. It can also
be shown that the acceptance and rejection regions are the same for the
two tests. Unlike ANOVA, though, a two-sample t test can also be used for
one-tailed alternative hypotheses, such as H1 : µ1 > µ2 or H1 : µ1 < µ2.
The procedure is similar to one-sample t tests for one-tailed alternatives (see
Chapter 10).

11.5.1 Two-sample t test for Example 1 - SAS demo

We can illustrate this test by comparing treatment A and B in the Example 1
study, deleting the data for the third treatment. See SAS program and output
below. The data and proc gplot portions of the program are similar to our
previous one-way ANOVA code. The two-sample t test is carried out using
proc ttest (SAS Institute Inc. 2018), with the class statement indicating
the variable that codes for different groups (treat), while the var statement
designates the dependent variable (y). From Fig. 11.16, we see there was
a highly significant difference between treatment A and B (t8 = 4.90, P =
0.0012), with treatment A catching more beetles than B (Fig. 11.15).
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SAS Program

* bark_beetle_experiment_ttest.sas;

title "Two-sample t test for bark beetle trapping experiment";

data bark_beetle;

input treat $ count;

* Apply transformations here;

y = log10(count);

datalines;

A 373

A 126

A 255

A 138

A 379

B 25

B 64

B 62

B 71

B 54

;

run;

* Print data set;

proc print data=bark_beetle;

run;

* Plot means, standard errors, and observations;

proc gplot data=bark_beetle;

plot y*treat=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Two-sample t test;

proc ttest data=bark_beetle;

class treat;

var y;

run;

quit;
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Figure 11.14: bark beetle experiment ttest.sas - proc print



11.5. ONE-WAY ANOVA AND TWO-SAMPLE T TESTS 317

Figure 11.15: bark beetle experiment ttest.sas - proc gplot
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Figure 11.16: bark beetle experiment ttest.sas - proc ttest
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11.7 Problems

1. A doctor conducts an experiment in which men are placed on four
different diets, consisting of a standard weight loss regimen (a control
treatment) and three new diets (Diets 1, 2, 3). The weight losses (lbs)
after six months are given in the following table.

Control Diet 1 Diet 2 Diet 3
19.5 20.0 20.8 25.9
20.5 16.4 17.4 25.9
16.6 11.9 16.7 25.8
19.3 22.1 16.8 22.5

(a) Test whether there is a significant difference among the four treat-
ments using one-way ANOVA, using manual calculations. Report
the P value and discuss the significance of the test, and then in-
terpret the results of the experiment. Show all your calculations.

(b) Repeat the analysis using SAS and proc glm. Attach your program
and output.

2. An experiment was conducted on the fecundity of a predatory insect
reared on an artificial diet using four different concentrations of the
preservative sorbic acid: (1) no sorbic acid, (2) 0.1% sorbic acid, (3)
0.2% sorbic acid, and (4) 0.5% sorbic acid. Twenty insects were reared
at each concentration and the fecundity of the resulting adults mea-
sured. See table below.

Treatment Observations
No sorbic acid 87, 124, 105, 87, 100, 89, 95, 79, 102, 112

92, 87, 115, 96, 111, 90, 86, 92, 109, 76
0.1% sorbic acid 105, 94, 97, 94, 83, 97, 107, 99, 104, 83

101, 71, 100, 75, 87, 106, 88, 99, 90, 74
0.2% sorbic acid 73, 94, 81, 83, 100, 98, 76, 91, 68, 82

92, 105, 76, 82, 95, 96, 101, 89, 92, 67
0.5% sorbic acide 83, 54, 86, 76, 74, 81, 79, 72, 80, 78

70, 83, 83, 85, 90, 70, 85, 94, 82, 75

Test whether there is a difference among the four treatments using one-
way ANOVA and SAS. Interpret the results of this analysis, providing
a P value and discussing the significance of the test. Using a graph,
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explain what happens to fecundity as the concentration of sorbic acid
changes.
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Chapter 12

Power Analysis for One-Way
ANOVA

Recall that the power of a statistical test is the probability of rejecting H0

when H0 is false, and some alternative hypothesis H1 is true. We saw earlier
(Chapter 10) that power for one-sample Z and t tests is a function of the
quantity

φ =
(µ1 − µ0)

σ/
√
n

, (12.1)

where µ1 and µ0 are the means under H1 and H0, σ is the standard deviation
of the observations, and n is the sample size. Anything that increases φ
increases the power of the test, including greater differences between µ1 and
µ0, decreasing σ, or increasing the sample size n. Larger values of the Type
I error rate α also increase the power of the test, because they make it more
likely the test will reject H0 under any circumstances. Although one-way
ANOVA is a more complicated design, we will see that exactly the same
factors influence the power of its associated F test.

A power analysis for a one-way ANOVA design is usually conducted be-
fore running the experiment or study. This is known as a prospective
power analysis. We then use the information from this analysis to refine
our experimental design, most often the sample sizes needed for each treat-
ment group to yield adequate power. Conversely, a retrospective power
analysis is one conducted after an experiment or study, using the results
from the study in the power calculation. This is a controversial procedure
that some statisticians find questionable (Steidl et al. 1997).
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Cohen (1988) recommends using a default power value of 0.8 when de-
signing an experiment, if there is no other basis for setting the power. One
reason is that achieving higher power values usually requires disproportion-
ately larger sample sizes. He also recommends a power value of 0.8 on the
basis of the ratio of Type II (β) to Type I error (α). He suggests that an
optimal ratio of β/α is about four, implying that Type I errors are four times
more serious than Type II errors. If you use α = 0.05 as the Type I error
rate, and choose power = 0.8, then β = 1− power = 0.2, and so β/α = 4.

12.1 Power analysis for one-way ANOVA

Suppose we want to design an experiment involving several treatments that
has adequate power. Assuming we know the treatments we will apply, the
first step in a power analysis is to specify the actual values of the treat-
ment means under H1, the alternative hypothesis. If the experiment has five
treatments, we might speculate that the treatment means take the following
values under H1:

H1 : µ1 = 20, µ2 = 22, µ3 = 22, µ4 = 25, µ5 = 18. (12.2)

For example, these values could be the final weights of fish reared on five
different diets. This is the form of H1 needed by proc power (SAS Institute
Inc. 2018). We can also express H1 in terms of the usual model for this
design, the fixed effects model of the form

Yij = µ+ αi + εij. (12.3)

In terms of the parameters of this model, H1 is equivalent to saying

H1 : α1 = −1.4, α2 = 0.6, α3 = 0.6, α4 = 3.6, α5 = −3.4, (12.4)

where αi = µi − µ, and µ is the grand mean (µ =
∑
µi/5 = 107/5 = 21.4)

(Winer et al. 1991; Montgomery 1997).
The null hypothesis in terms of group means would have the form

H0 : µ1 = µ2 = µ3 = µ4 = µ5 = µ, (12.5)

where µ is the grand mean. This is equivalent to the usual null hypothesis
for one-way ANOVA, which is H0 : αi = 0 for all i.
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We also need to specify a standard deviation σ for the power analysis. We
could potentially estimate σ from similar studies in the literature or through
a pilot study. If the paper provides an ANOVA table, we can estimate σ using√
MSwithin =

√
MSerror. SAS actually calculates this quantity and labels it

Root MSE – see previous printouts for proc glm. In other situations, you may
not know σ precisely but can specify a plausible range of values. Continuing
our example, we suppose that previous experiments suggest σ = 3.

To calculate the power for this example, we also need to specify a sample
size n for the treatments. Usually we are interested in determining the power
for a range of n values, so we can determine the minimal sample size to
needed to reject H0 with adequate power. Most power analyses assume an
equal sample size for each treatment, because this usually yields a higher
power than unbalanced designs. We also need to specify the Type I error
rate for the overall ANOVA, and α = 0.05 is customary.

The power is then calculated using the distribution of the statistic Fs
under H1, called the non-central F distribution (the distribution under H0

is the F distribution). The non-central F distribution has three parameters,
the usual two degrees of freedom plus an additional parameter λ, defined by
the formula

λ =
n
∑a

i=1 α
2
i

σ2
, (12.6)

where αi = µi − µ, and µ =
∑
µi/a (Winer et al. 1991, Montgomery 1997).

Note that λ is a function of the αi values, σ, and the sample size n. The
non-central F distribution is equal to the F distribution when λ = 0, which
can only happen if there are no treatment effects and αi = 0 for all i. As the
value of λ increases, however, the noncentral F distribution will shift to the
right, away from the position held by the F distribution. Note the similarity
of this quantity with φ, which determines the power for one-sample Z and t
tests.

Figure 12.1 shows the F and noncentral F distributions for the power
analysis example described above, with a = 5, the αi values as specified, and
σ = 3. We also assume for the moment that n = 5, and set α = 0.05. For
this design, we have df1 = a− 1 = 5− 1 = 4, df2 = a(n− 1) = 5(5− 1) = 20.
For α = 0.05, we would reject H0 if Fs, the test statistic for one-way ANOVA
(Chapter 11), exceeded 2.866 (see Table F). We also need to calculate a value
of λ for the noncentral F distribution. We have

λ =
5 [(−1.4)2 + 0.62 + 0.62 + 3.62 + (−3.4)2]

32
= 15.111. (12.7)
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We see that the noncentral F lies to the right of the F distribution, because
λ is fairly large in this example. What is the power of the test? It is the
area of the noncentral F distribution lying to the right of 2.866, because this
is the probability that Fs will exceed 2.866 under H1, i.e., the probability of
rejecting H0 if it is false and H1 is true.

What would happen to the power for other values of n or σ, or for that
matter smaller or larger differences among groups under H1 (implying smaller
or larger αi values)? Any change that increases the value of λ will increase
the power of the test, because it reduces the amount of overlap between
the two distributions. Examining λ, we see that larger n, larger differences
among groups, and smaller σ values would all increase λ and so increase
the power of the test. Larger α (Type I error rate) values also increase
the power of the test, because they reduce the acceptance and increase the
rejection region size. Sample size n also has an effect on power through the
acceptance region – larger n reduces its upper boundary through its effect
on df2 = a(n− 1). Fig. 12.2 shows the F and noncentral F distributions for
the power example, now using n = 8. Note how the overlap between the two
distributions is reduced for larger n, increasing the power of the test. See
Table 12.1 for a summary of how these factors affect power and β.

Table 12.1: Effects on power and the Type II error rate β of changes in
various parameters. The arrows indicate if a particular quantity increases or
decreases.

Parameter Direction λ power β
αi values ↑ ↑ ↑ ↓

n ↑ ↑ ↑ ↓
σ ↑ ↓ ↓ ↑
α ↑ no change ↑ ↓

The effect of n on λ implies that a sufficient large sample size can generate
adequate power, even when the αi values are small or σ is large. Thus, large
sample sizes should make it possible to detect small treatment effects, and
can also compensate for noisy data.
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Figure 12.1: The F and noncentral F distributions for the power example,
using n = 5.

Figure 12.2: The F and noncentral F distributions for the power example,
for n = 8.
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12.2 Power analysis - SAS Demo

SAS makes power analysis relatively easy and provides specific methods for
one-way ANOVA and many other designs. Consider our previous example
involving five different treatments. We are interested in determining the
power of a one-way ANOVA, when the following alternative hypothesis is
true:

H1 : µ1 = 20, µ2 = 22, µ3 = 22, µ4 = 25, µ5 = 18. (12.8)

We need another piece of information for the power analysis, the value of σ.
From preliminary studies or a previously published paper, we estimate that
σ = 3. We also specify the Type I error rate, setting α = 0.05.

This is everything required to carry out a power analysis using proc power

(SAS Institute Inc. 2018). We first specify that we want a power analysis for
one-way ANOVA using the option onewayanova. The means for each treatment
group are specified using the groupmeans option, with the means listed in
parentheses. See program listing below.

The values of σ and α are similarly specified using the stddev and alpha

options. We are interested in determining the power for a range of n values,
the sample size per group. This is specified using the npergroup option. You
can either give a list of n values or use the syntax x to y by z to specify
a sequence of values. The power option is specified as a missing value (a
period), because we want SAS to solve for power as a function of sample size
per group. The plot command generates a plot of power vs. sample size.

We see that power increases rapidly with sample size per group (n), from
both the SAS output and graph (Fig. 12.3, 12.4). A power value of 0.8 is
achieved for n = 5 in this example.
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SAS Program

* oneway_power.sas;

title ’Power Analysis for One-Way Anova’;

proc power;

onewayanova

groupmeans = (20 22 22 25 18)

stddev = 3

alpha = 0.05

npergroup = 2 to 20 by 1

power = . ;

plot x=n;

run;

quit;
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Figure 12.3: one-way power.sas - proc power
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Figure 12.4: one-way power.sas - proc power
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12.3 Power analysis continued - SAS demo

It is often worthwhile to compare power curves for different values of σ and
α, to see how these influence power. We can obtain this from proc power by
specifying several different values of these parameters. We will examine the
results for α = 0.05 vs. 0.01 and σ = 3 vs. 6. These are requested by listing
both values under the alpha and stddev statements. See program and output
below.

The effects of α and σ on power can be readily seen in Fig. 12.6. Lower
α reduces the power of the test across all sample sizes, because it makes it
harder to reject H0 under any circumstances. Larger values of σ also decrease
the power at all sample sizes. The larger the value of σ, the more variable
the data, and the harder it is for the statistical test to distinguish between
the null and alternative hypotheses. Adequate power is only obtained for a
larger sample size.

SAS Program

* oneway_power2.sas;

title ’Power Analysis for One-Way Anova’;

proc power;

onewayanova

groupmeans = (20 22 22 25 18)

stddev = 3 6

alpha = 0.05 0.01

npergroup = 2 to 20 by 1

power = . ;

plot x=n;

run;

quit;
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etc.

Figure 12.5: one-way power2.sas - proc power
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Figure 12.6: one-way power2.sas - proc power
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12.4 Power analysis continued - SAS demo

The SAS procedure power can be used to directly find the sample size n for
a power of 0.8. One way is to simply read the value of n from a power vs.
sample size graph, choosing the smallest n that gives power greater than or
equal to 0.8. Returning to the first output we generated using power with
α = 0.05 and σ = 3, we see that for n = 5 the power exactly equals 0.8, so
this is our sample size.

Alternately, you can set a power value of 0.8 and have proc power find the
sample size. We first set the power option equal to 0.8 in the program, then
change the npergroup option to a missing value, which tells power to solve
for it. See program below and attached SAS output. SAS indicates that a
sample size of n = 5 would give power = 0.8. This is the same result as
obtained earlier by inspecting the power curve. For this particular example,
there was a value of n that gave exactly the required power. More often,
power will provide an n that guarantees power ≥ 0.8, not exactly 0.8.

SAS Program

* oneway_power3.sas;

title ’Power Analysis for One-Way ANOVA’;

proc power;

onewayanova

groupmeans = (20 22 22 25 18)

stddev = 3

alpha = 0.05

npergroup = .

power = 0.8;

run;

quit;
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Figure 12.7: one-way power3.sas - proc power



12.5. REFERENCES 337

12.5 References

Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences, Sec-
ond Edition. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.

Montgomery, D. C. (1997) Design and Analysis of Experiments. John Wiley
& Sons, New York, NY.

SAS Institute Inc. (2018) SAS/STAT 15.1 Users Guide SAS Institute Inc.,
Cary, NC

Steidl, R. J., Hayes, J. P. & Schauber, E. (1997) Statistical power analysis
in wildlife research. Journal of Wildlife Management 61: 270-279.

Winer, B. J., Brown, D. R. & Michels, K. M. (1991) Statistical Principles in
Experimental Design. McGraw-Hill, Inc., Boston, MA.



338 CHAPTER 12. POWER ANALYSIS FOR ONE-WAY ANOVA

12.6 Problems

1. Suppose you want to compare the effect of four different diets on the
weight of prawns reared in aquaculture ponds. There is a standard diet
(S) and three other diets (A, B and C) that will be fed to prawns in
replicate ponds. Relative to diet S, you would like to see a 20% increase
in weight on diet A, a 20% increase on diet B, and a 30% increase on
diet C. If the mean weight on diet S is 100 g, this translates into the
following alternative hypothesis:

H1 : µS = 100, µA = 120, µB = 120, µC = 130. (12.9)

From previous studies the researchers estimate that σ = 22. Assume a
Type I error rate of α = 0.05.

(a) Use SAS and proc power to determine the sample size per treat-
ment (number of ponds) necessary to give power ≥ 0.8. Attach
your SAS program and output.

(b) Repeat the same analysis for α = 0.01. How does this change in
the Type I error rate affect the sample size? Why?

2. Suppose you want to compare the effect of five different diets on the
weight of fish reared in aquaculture. There is a control diet (C) and
four other diets (D1, D2, D3, and D4). Relative to diet S, you would
like to see a 10% increase in weight on diet D1, a 15% increase on diet
D2, and 20% increases on diets D3 and D4. If the weight on the control
diet C is 100 g, this translates into the following alternative hypothesis:

H1 : µC = 100, µD1 = 110, µD2 = 115, µD3 = 120, µD4 = 120. (12.10)

Previous studies suggest that σ = 10. Assume a Type I error rate of
α = 0.05.

(a) Use SAS to determine the sample size per treatment necessary to
give power ≥ 0.8. Attach your program and output.

(b) Repeat the same analysis for the following alternative hypothesis:

H1 : µC = 100, µD1 = 105, µD2 = 108, µD3 = 110, µD4 = 110.
(12.11)

How does this change affect the sample size? Why?



Chapter 13

Multiple Comparisons

One-way ANOVA, as well as more complex variants, provides a test of an
overall null hypothesis of the form H0 : αi = 0 for all i vs. H1 : some αi 6= 0.
If we obtain a small P value for this test, it provides evidence against H0

and in favor of H1. However, this overall test provides little information on
whether particular groups are different. We now turn to statistical methods
designed to compare pairs of groups for one-way ANOVA designs. These
procedures allow comparisons to be made among all possible pairs of groups,
or sometimes one group vs. all others, and are collectively called multiple
comparisons. Although multiple comparisons are often conducted in asso-
ciation with ANOVA, they are in fact stand-alone procedures (Hsu 1996).
There is no need to conduct an ANOVA before using these procedures, al-
though SAS will generate an overall F test regardless. Moreover, significant
differences between groups in multiple comparisons may not coincide with a
significant overall F test, or vice versa.

13.1 Models for multiple comparisons

The statistical model for multiple comparisons is basically the one-way ANOVA
model expressed in a different form. The one-way ANOVA model is

Yij = µ+ αi + εij, (13.1)

where µ is the grand mean, αi is the deviation from the grand mean caused
by the ith group, and εij ∼ N(0, σ2). For multiple comparison procedures it
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is common to define µi = µ+ αi, and so the one-way model becomes

Yij = µi + εij. (13.2)

We can think of µi as the mean of the ith group, where there are a total
groups.

Now consider two groups i and j in a study which have means µi and µj,
where i 6= j. We will be interested in estimating the difference in the means
of these two groups, µi− µj, and finding a confidence interval to accompany
this estimate for all possible pairs of groups. We will also be interested in
testing whether the means of the two groups are equal, namely H0 : µi = µj
or equivalently H0 : µi − µj = 0, again for all possible pairs of groups. For a
study with a groups, this amounts to a(a−1)/2 pairs of groups. For example,
if there are a = 3 groups there are 3(3 − 1)/2 = 3 possible pairwise com-
parisons (groups 1-2, 2-3, and 1-3). There are multiple comparison methods
that provide estimates, confidence intervals, and tests, while others provide
only tests but have more statistical power. The basic purpose of these pro-
cedures is to statistically test which pairs of treatments are different, and
provide some idea of the magnitude of the difference. We will examine three
procedures in this category, known as all possible pairwise comparisons.
The procedures are called Fisher’s least significant difference, the Tukey pro-
cedure, and the Ryan-Einot-Gabriel-Welsch (REGW) procedure (Hsu 1996).

For experiments that have a clearly identifiable control group, it may be
appropriate to compare each group with only the control. For example, sup-
pose the control is a standard drug treatment for a disease. We may only
be interested in treatments that give a significantly better (or maybe worse)
result compared to the control, and are not interested in other comparisons
among the treatments. For a study with a groups including the control, this
amounts to a− 1 pairs of groups with the control. For example, if there are
a = 3 groups with the first group (i = 1) the control, there are 3 − 1 = 2
possible comparisons (groups 1-2 and 1-3). We will examine Dunnett’s pro-
cedure in this category, known as multiple comparisons with a control
(Hsu 1996).

13.2 Error rates in multiple comparisons

There are two error rates commonly used to describe multiple comparison
procedures. One is the per comparison error rate, which is the Type I
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error rate for a single test comparing a single pair of groups. This rate is like
that used in other statistical tests we have encountered, where only a single
test is considered. The second is the experimentwise error rate, or EER.
The EER is defined as the probability of one or more Type I errors
(rejecting H0 when it is true) in a set of comparisons.

Why do we need two error rates? Multiple comparison procedures such
as the ones mentioned above can involve a substantial number of statistical
tests, one test for each pair of groups. For example, with a = 5 groups
there would be 5(5 − 1)/2 = 10 possible pairwise comparisons, while for
a = 10 groups we would have 10(10 − 1)/2 = 45 comparisons! Given this
many comparisons and tests, it is quite possible that some pairs would yield
a significant test result even if the null hypothesis were true, i.e., we would
reject H0 : µi = µj for one or more pairs of groups, even though there is no
difference between the groups. For example, suppose that the per comparison
error rate is set at the typical α = 0.05 value, which amounts to a 1 in 20
chance of rejecting H0 when it is true. Given a = 10 and 45 total tests,
we would expect to see a few significant test results just by chance. This
difficulty has been called the multiplicity problem (Westfall et al. 1999).

To see the magnitude of the multiplicity problem, we can plot the EER for
the least significant difference procedure, which controls the per comparison
error rate but not the EER. Fig. 13.1 shows a plot of the EER vs. the number
of groups or treatments (a). The least significant difference procedure is
a t test that compares the means for each pair of groups, with each test
conducted at the same α level, in this case α = 0.05. We see that the EER,
and the number of pairwise comparisons, increases rapidly with the number of
groups. Thus, it becomes more likely that any significant differences reported
among groups are in fact Type I errors. In contrast, methods designed to
control the EER, such as the Tukey procedure, would maintain an EER of
0.05 regardless of the number of groups. These tests manage the EER by
essentially reducing the per comparison error rate for each test. The penalty
of controlling the EER is a loss of power to detect differences among
groups where they do exist.

Multiple comparison procedures have been the subject of considerable
controversy in the ecological and statistical literature. A number of methods
were popular because they gave significant results more often than compet-
ing ones. These include the least significant difference procedure, Fisher’s
protected least significant difference, Duncan’s multiple range test, and the
Student-Newman-Keuls test. Unfortunately, these particular tests do not
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control the experimentwise error rate (Day & Quinn 1989, Hsu 1996).
Another error rate in common use is the false discovery rate or FDR

(Benjamini & Hochberg 1995). This rate is defined as the expected
proportion of significant tests that are Type I errors. Procedures
that use the FDR have more power than those controlling the EER, but
with more Type I errors. We will examine the rationale for FDR procedures
later in the chapter.

Figure 13.1: Plot of the experimentwise error rate vs. a, the number of
treatments or groups, using α = 0.05 for each comparison. Also shown is the
number of pairwise comparisons (k = a(a− 1)/2) vs. a.

13.3 All pairwise comparisons

This section examines three different methods for all pairwise comparisons
among groups, the least significant difference, Tukey, and REGW methods.
The least significant difference method does not control the EER, but is sim-
ple in form and a useful starting point. It provides estimates and confidence
intervals for µi − µj, the difference between the group means for any pair of
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groups, as well as a statistical test for H0 : µi − µj. The Tukey procedure is
similar to the least significant difference except that it controls the EER. We
also examine the REGW method, an example of a multiple range test.
Multiple range procedures only provide tests, not confidence intervals, but
are more powerful procedures.

13.3.1 Least significant difference

We first develop confidence intervals and construct statistical tests for the
least significant difference procedure, using methods similar to those in Chap-
ter 9 and 10. For multiple comparisons, we are interested in estimating µi−µj
and finding a confidence interval for this quantity. It seems reasonable to use
Ȳi− Ȳj to estimate µi− µj, but what is the variance of this estimate? Using
the rules for calculating the variance of a sum of random variables (Chapter
7), we have

V ar[Ȳi − Ȳj] = V ar[Ȳi] + (−1)2V ar[Ȳj] = σ2/n+ σ2/n = 2σ2/n. (13.3)

ANOVA provides an estimate of σ2, namely MSwithin, and so we can estimate
the variance of Ȳi − Ȳj using the quantity 2MSwithin/n, which has a(n − 1)
degrees of freedom. Using these results, it can be shown that the quantity

(Ȳi − Ȳj)− (µi − µj)√
2MSwithin

n

∼ ta(n−1). (13.4)

We use this quantity to first derive a confidence interval for µi − µj. Using
Table T, we can find a value of cα,a(n−1) for a(n− 1) degrees of freedom such
that the following equation is true:

P

−cα,a(n−1) <
(Ȳi − Ȳj)− (µi − µj)√

2MSwithin
n

< cα,a(n−1)

 = 1− α. (13.5)

Rearranging this equation, we obtain

P

[
Ȳi − Ȳj − cα,a(n−1)

√
2MSwithin

n
< µi − µj < Ȳi − Ȳj + cα,a(n−1)

√
2MSwithin

n

]
= 1− α. (13.6)
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The confidence interval would therefore be the interval(
Ȳi − Ȳj − cα,a(n−1)

√
2MSwithin

n
, Ȳi − Ȳj + cα,a(n−1)

√
2MSwithin

n

)
. (13.7)

The center of the confidence interval is located at Ȳi − Ȳj, the estimate of
µi−µj. We will later illustrate how this interval is calculated in a SAS demo
of the least significant difference procedure.

Now suppose we want to test H0 : µi = µj or equivalently H0 : µi−µj = 0.
Under H0, the test statistic

Ts =
(Ȳi − Ȳj)− 0√

2MSwithin
n

=
(Ȳi − Ȳj)√

2MSwithin
n

∼ ta(n−1). (13.8)

Using a Type I error rate of α, the acceptance region of the test would be
the interval (−cα,a(n−1), cα,a(n−1)), where cα,a(n−1) is determined using Table
T (see Chapter 10). We would reject H0 if it falls on the edge or outside this
interval.

We can rearrange the test given above into a different form, one that is
commonly used for multiple comparisons. Recall that one would accept H0

if Ts falls inside the acceptance region (−cα,a(n−1), cα,a(n−1)), which implies

−cα,a(n−1) <
(Ȳi − Ȳj)√

2MSwithin
n

< cα,a(n−1). (13.9)

We can rearrange this into the form

−cα,a(n−1)

√
2MSwithin

n
< Ȳi − Ȳj < cα,a(n−1)

√
2MSwithin

n
, (13.10)

or
−LSD < Ȳi − Ȳj < LSD, (13.11)

where

LSD = cα,a(n−1)

√
2MSwithin

n
. (13.12)

The quantity LSD is called the least significant difference. We would accept
H0 if Ȳi − Ȳj falls inside the interval (−LSD,LSD), or equivalently if |Ȳi −
Ȳj| < LSD. Conversely, we would reject H0 if |Ȳi − Ȳj| ≥ LSD. This
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same rule applies to any pair of groups, because LSD would take the same
value. Any pair of means that equals or exceeds this value is declared to be
significantly different.

The confidence intervals we derived for µi − µj can also be expressed in
this format. In particular, the confidence interval would have the form(

Ȳi − Ȳj − LSD, Ȳi − Ȳj + LSD
)
. (13.13)

13.3.2 Least significant difference - SAS demo

Kneitel & Lessin (2010) studied the effect of eutrophication on vernal pools
in California. They were interested in the effect of eutrophication (nutrient
addition) on algae cover during the period the pools were filled with water,
as well as vascular plant cover later in the season. Experimental pools were
subjected to five different treatments: low, medium, high, and very high
nutrient addition levels, and a control to which no nutrients were added. We
will use a simplified data set from this study to illustrate the least significant
difference procedure in SAS. We first examine the data involving algae cover.
Algae cover was expressed as a percentage of the pool covered, and for data of
this type it is common to transform the data. The data were first converted
to a proportion by dividing the percentage by 100, then the arcsine-square
root transformation applied (see Chapter 15). See the data step in the SAS
program below.

The program is similar to our previous one-way ANOVA programs, with
the addition of a means statement within proc glm:

means treat / t cldiff lines;

This statement requests a mean for each level of treat, the treatment variable
(SAS Institute Inc. 2018). The t option requests the least significant differ-
ence procedure, because it is essentially a t test. The option cldiff requests
95% confidence intervals for µi−µj for all pairs of groups, while lines gener-
ates a diagram that indicates which pairs of groups are significantly different
at the α = 0.05 level. See the full program listing and SAS output below.

According to the one-way ANOVA output (Fig. 13.4), there was a highly
significant difference among the nutrient treatments (F4,20 = 4.76, P < 0.0073).
Confidence intervals for µi−µj and µj−µi are given for every pair of groups
(Fig. 13.5). For example, SAS gives a confidence interval for µmedium−µcontrol

as well as µcontrol − µmedium. Also shown in the output is the diagram (Fig.
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13.6) generated by the lines command, interpreted as follows. Treatments
covered by the same line are not significantly different, while if they
share no lines they are significantly different. There were six signif-
icant differences among pairs of treatments (VeryHigh-Low, VeryHigh-Control,
Medium-Low, Medium-Control, High-Low, and High-Control). Note that the per
comparison error rate used in the tests and confidence intervals is labeled
Alpha in the SAS output.

The results from Fig. 13.6 can also be used to indicate significant dif-
ferences on a graph, using letters instead of lines (Fig. 13.3). Treatments
with the same letter are not significantly different. Note that SAS does not
provide these letters – they were added to the graph using photo-editing
software.

SAS Program

* Kneitel_2010_algae_lsd2.sas;

title ’Multiple comparisons for algae cover’;

title2 ’Data from Kneitel and Lessin (2010)’;

data kneitel;

input treat $ richness total algae;

* Apply transformations here;

y = arsin(sqrt(algae/100));

datalines;

Control 8 78 1

Control 5 84 7

Control 10 115 45

Control 7 200 100

Control 6 72 20

Low 8 73 15

Low 7 124 70

Low 8 116 50

Low 8 92 5

Low 7 138 60

Medium 7 124 85

Medium 8 116 80

Medium 8 145 60

Medium 6 154 100

Medium 7 129 90

High 6 134 95

High 7 138 95

High 8 103 70

High 8 119 75

High 6 132 80

VeryHigh 6 148 95
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VeryHigh 5 134 95

VeryHigh 5 119 100

VeryHigh 5 117 90

VeryHigh 5 129 80

;

run;

* Print data set;

proc print data=kneitel;

run;

* Plot means, standard errors, and observations;

proc gplot data=kneitel;

plot y*treat=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with comparisons;

proc glm plots=diagnostics data=kneitel;

class treat;

model y = treat;

* LSD or Students t - only controls the per comparison error rate;

means treat / t cldiff lines;

run;

quit;
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Figure 13.2: Kneitel 2010 algae lsd2.sas - proc print
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Figure 13.3: Kneitel 2010 algae lsd2.sas - proc gplot
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Figure 13.4: Kneitel 2010 algae lsd2.sas - proc glm
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Figure 13.5: Kneitel 2010 algae lsd2.sas - proc glm
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Figure 13.6: Kneitel 2010 algae lsd2.sas - proc glm
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We will now calculate the value of LSD for this example to show how it
is used to construct confidence intervals and tests. From the ANOVA output
for proc glm, we see that MSwithin = 0.1122 with 20 degrees of freedom. From
Table T (Chapter 23), using α = 0.05 we see that c0.05,20 = 2.086. There are
also n = 5 replicates per treatment. We then have

LSD = cα,a(n−1)

√
2MSwithin

n
= 2.086

√
2(0.1122)

5
= 0.4419. (13.14)

Note that SAS also displays the value of LSD in the output (Fig. 13.5, 13.6).
We next calculate a 95% confidence interval for µmedium−µcontrol. Recall that
the formula for the interval is(

Ȳi − Ȳj − LSD, Ȳi − Ȳj + LSD
)
. (13.15)

Inserting the estimated means for these two treatments (see SAS output) in
this formula, and the LSD value, we obtain

(1.1972− 0.6275− 0.4419, 1.1972− 0.6275 + 0.4419) (13.16)

or (0.1278, 1.0116). This confidence interval and the LSD value are quite
close to the values obtained by SAS.

We next show how the LSD value is used to test H0 : µmedium−µcontrol = 0
or equivalently H0 : µmedium = µcontrol. We would reject H0 if |Ȳi − Ȳj| ≥
LSD. Inserting the estimated means for these two treatments, we see that
|1.1972 − 0.6275| = 0.5687 ≥ 0.4419, and so this pair of means was signifi-
cantly different.

13.3.3 The Tukey procedure

The Tukey method for multiple comparisons is similar to the least signifi-
cant difference procedure, except that it uses the studentized range dis-
tribution in place of the t distribution. The studentized range distribution
is designed to control the EER for all pairwise comparisons among group
means (Hsu 1996). Another advantage is that the confidence intervals con-
structed using this distribution are simultaneous confidence intervals.
This means that the overall probability the confidence intervals include the
true value of µi−µj, for all pairs of groups, is equal to 1−α for some specified
α. The overall probability α is also the EER for the family of all pairwise
tests.
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The Tukey procedure makes use of a quantity called the honestly signifi-
cant difference (HSD), defined as

HSD = qα,a,a(n−1)

√
MSwithin

n
. (13.17)

The quantity qα,a,a(n−1) is obtained from the studentized range distribution,
and depends on α (the desired EER), the number of groups a, as well as the
degrees of freedom for MSwithin.

To test H0 : µi = µj or H0 : µi−µj = 0, we accept H0 if |Ȳi− Ȳj| < HSD,
and reject it |Ȳi− Ȳj| ≥ HSD. This same rule applies to any pair of groups,
because HSD would take the same value. Any pair of means that equals
or exceeds this value is declared to be significantly different. The Tukey
confidence intervals are of the form(

Ȳi − Ȳj −HSD, Ȳi − Ȳj +HSD
)
. (13.18)

13.3.4 Tukey procedure - SAS demo

Implementing the Tukey procedure requires only a small change in our pre-
vious SAS program. The means statement within proc glm becomes

means treat / tukey cldiff lines;

Confidence intervals for µi−µj and µj−µi are given for every pair of groups,
as well as a diagram indicating which treatments are significantly different
(Fig. 13.7, 13.8). The value of Alpha listed in the output is the EER. Note
that the Tukey method finds fewer significant comparisons than the least
significant difference procedure. We see there are only two significant ones,
VeryHigh-Low and VeryHigh-Control. This is a common pattern observed with
multiple comparison tests, a few significant differences but also substantial
overlap among treatments or groups.
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Figure 13.7: Kneitel 2010 algae tukey2.sas - proc glm



356 CHAPTER 13. MULTIPLE COMPARISONS

Figure 13.8: Kneitel 2010 algae tukey2.sas - proc glm
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We will now calculate the value of HSD for this example, to show how
it is used to construct confidence intervals and tests. As before, we have
MSwithin = 0.1122 with 20 degrees of freedom. The SAS output gives the
value of q0.05,5,20 = 4.2319, and there are n = 5 replicates per treatment. We
then have

HSD = qα,a,a(n−1)

√
MSwithin

n
= 4.2319

√
(0.1122)

5
= 0.6339. (13.19)

This value agrees with the SAS output labeled Minimum Significant Difference.
We now calculate a 95% confidence interval for µmedium−µcontrol. The formula
for the confidence interval is(

Ȳi − Ȳj −HSD, Ȳi − Ȳj +HSD
)
. (13.20)

Inserting the estimated means for these two treatments (see SAS output) in
this formula, and the HSD value, we obtain

(1.1972− 0.6275− 0.6339, 1.1972− 0.6275 + 0.6339) . (13.21)

or (−0.0642, 1.2036). This confidence interval is close to the value provided
by SAS. Now suppose we want to test H0 : µmedium − µcontrol = 0 using our
HSD value. We would reject H0 if |Ȳi − Ȳj| ≥ HSD. Inserting the means
for these treatments, we find that |1.1972 − 0.6275| = 0.5687 < 0.6339, and
so this pair of means was not significantly different.

How does this procedure control the EER as well as provide simultane-
ous confidence intervals? The Tukey procedure basically controls the
EER by making each pairwise test more conservative, through the
use of the studentized range distribution. Notice that HSD > LSD
for the same data set (0.6339 vs. 0.4419). This means that the Tukey pro-
cedure requires a larger difference between groups before declaring they are
significantly different, and the confidence intervals are also broader. As a
consequence, there is lower power to detect differences among groups when
they do exist. This is the price paid for controlling the EER.

13.3.5 Multiple range tests - REGW

The multiple comparison procedures we have examined so far yield both
tests and confidence intervals. Another type of multiple comparison pro-
cedure are multiple range tests. These procedures provide only tests, but
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are also more powerful procedures because they essentially conduct fewer
overall tests than the methods we studied earlier. There are a number of
different multiple range tests, but we will only examine the REGW (Ryan-
Einot-Gabriel-Welsch) procedure because it controls the EER (Hsu 1996).

The test works as follows (Hsu 1996). Suppose we order the sample means
of the a different groups from smallest to largest:

Ȳ[1] ≤ Ȳ[2] ≤ . . . Ȳ[a−1],≤ Ȳ[a] (13.22)

where Ȳ[1] is the smallest and Ȳ[a] the largest sample mean.
We then examine the range (difference) between the largest and smallest

sample mean, namely Ȳ[a] − Ȳ[1]. If

Ȳ[a] − Ȳ[1] < qa

√
MSwithin

n
(13.23)

then we stop and declare there are no significant differences among groups.
Otherwise, we assert that these two groups are significantly different and
continue the process. We next examine the next innermost ranges Ȳ[a−1]−Ȳ[1]

and Ȳ[a] − Ȳ[2]. If

Ȳ[a−1] − Ȳ[1]] < qa−1

√
MSwithin

n
(13.24)

and

Ȳ[a1] − Ȳ[2]] < qa−1

√
MSwithin

n
(13.25)

then we stop the testing process. Otherwise, we assert that one or both
groups are significantly different. This process is continued until no more
significant differences are found.

Note that the values of q are not the same for every step of the test.
They are constructed so that qa > qa−1 > . . . > q2, meaning that the largest
range is tested using qa, the next two ranges with qa−1 (a smaller value),
and so forth. This implies that the largest range must have the largest
difference in means to be judged significant, while later tests allow for smaller
differences. The values of q are chosen so that the experimentwise error rate
has a specified value, usually α = 0.05 (Hsu 1996). The studentized range
distribution is involved in this process. The value of qa used in the first step
of the procedure is the same as that used by the Tukey procedure, as well
as the difference in the means judged to be significant. The two procedures
diverge after this point.
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13.3.6 REGW procedure - SAS demo

We can use the REGW procedure by adding the regwq option to the means

statement, as follows

means treat / regwq;

SAS then generates a diagram indicating which groups are significantly dif-
ferent (Fig. 13.9). For this example, the REGW procedure gives the same
pattern of significant differences among groups as the Tukey method. The
REGW procedure may become liberal (not fully control the EER) when the
data are unbalanced, and SAS prints a warning note in this situation.
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Figure 13.9: Kneitel 2010 algae regw2.sas - proc glm
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13.4 Comparisons with a control - Dunnett

procedure

Many studies include some sort of control group or treatment, and the exper-
imenter may only be interested in comparing the control group with each of
the other a− 1 groups. For example, the control could represent a standard
medical treatment for a disease while the other treatments represent alter-
native forms of therapy. The physician only wants to know if the alternative
forms are better or worse than the standard method.

In this situation, there are only a−1 comparisons to be made rather than
the full a(a−1)/2 comparisons of all pairs of means. The Dunnett procedure
is designed to control the EER for just these a − 1 comparisons, and hence
has more power than other pairwise methods (Hsu 1996). The calculations
are similar to the Tukey method, but use the quantity

DSD = dα,a,a(n−1)

√
2MSwithin

n
, (13.26)

whereDSD stands for Dunnett’s significant difference. The values of dα,a,a(n−1)

are obtained from a distribution analogous to the studentized range distri-
bution, except that it controls the EER for a− 1 comparisons. The value of
d depends on α (the desired EER), the number of groups a, and the degrees
of freedom for MSwithin.

Let µc be the mean of the control group, while µi is any other group.
Dunnett’s procedure can be used to test for H0 : µi = µc or equivalently
H0 : µi − µc = 0. We would accept H0 if |Ȳi − Ȳc| < DSD. Conversely, we
would reject H0 if |Ȳi−Ȳc| ≥ DSD. This same rule applies to all comparisons
with the control group.

Confidence intervals for µi − µc have the form(
Ȳi − Ȳc −DSD, Ȳi − Ȳc +DSD

)
. (13.27)

13.4.1 Dunnett’s procedure - SAS demo

Dunnett’s procedure is invoked using the dunnett option in the means state-
ment, with the control group specified in parentheses. For this data set, the
control group is coded as Control, and so we have

means treat / dunnett(’Control’);
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Confidence intervals for µi−µc are given in the SAS output, with the symbol
*** indicating which comparisons of the control are significantly different
(Fig. 13.10). We see that the VeryHigh and Medium treatments are significantly
different from Control.

Figure 13.10: Kneitel 2010 algae dunnett2.sas - proc glm
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13.5 Bonferroni and Sidak corrections

One way of controlling the EER in a set of comparisons is to use a distribution
designed to control it, such as the studentized range distribution. These
procedures control the EER by essentially making the per comparison rate
for each test more conservative. This adjustment of the per comparison error
rate is built into the studentized range distribution.

The Bonferroni correction provides another way of controlling the EER,
by explicitly reducing the per comparison error rate and then using a simple t
test (like the least significant difference procedure) to compare group means.
Suppose that we are interested in k possible comparisons, either all a(a−1)/2
pairwise comparisons or a − 1 comparisons with a control, where a is the
number of groups. The Bonferroni correction adjusts the per comparison
error rate as follows. Let α be the per comparison error rate, while α′ is the
desired EER. If we conduct each comparison at the per comparison rate of

α =
α′

k
, (13.28)

then it can be shown the EER will not exceed α′ (Hsu 1996). For example,
suppose we are interested in all k = a(a − 1)/2 pairwise comparison among
groups. We would then conduct each test at the

α =
α′

k
=

α′

a(a− 1)/2
(13.29)

level. We would use the same t test as in the least significant difference
procedure, but adjust the value α according to this formula. We then have

BSD = c α′
a(a−1)/2

,a(n−1)

√
2MSwithin

n
, (13.30)

where BSD is the difference judged to be significant given the Bonferroni
correction. We would accept H0 : µi = µj (or H0 : µi − µj = 0) if Ȳi − Ȳj
falls inside the interval (−BSD,BSD), or equivalently if |Ȳi − Ȳj| < BSD.
Conversely, we would reject H0 if |Ȳi− Ȳj| ≥ BSD. A confidence interval for
µi − µj based on the Bonferroni correction would have the form(

Ȳi − Ȳj −BSD, Ȳi − Ȳj +BSD
)
. (13.31)

To make things more concrete, we can calculate the value of BSD for the
algae cover example (Kneitel & Lessin 2010). From our previous output, we
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have a = 5 groups, n = 5 replicates per group, and MSwithin = 0.1122. If we
set the EER to be α′ = 0.05, by the above formula we have

α =
α′

a(a− 1)/2
=

0.05

5(5− 1)/2
=

0.05

10
= 0.005. (13.32)

For α = 0.005, we have c0.005,20 = 3.1534, and so

BSD = c α′
a(a−1)/2

,a(n−1)

√
2MSwithin

n
= 3.1534

√
2(0.1122)

5
= 0.6681. (13.33)

Note that the value of BSD = 0.6681 is larger than HSD = 0.6339 value for
the Tukey procedure. Thus, the Bonferroni method requires a greater differ-
ence among means before declaring they are significantly different, implying
it has lower power than the Tukey procedure. It would also generate larger
confidence intervals and so provides less precision in estimation.

Given these drawbacks, why would the Bonferroni correction be used?
The Bonferroni procedure is quite general and can be used to control the EER
for other testing procedures, not just comparisons among means in ANOVA.
For example, it is common to have a collection of statistical tests that address
a particular question. We might have a single experiment in which a number
of different Y variables are measured, with a separate ANOVA conducted
on each variable. If enough variables are examined it is possible that some
could be significant by chance, and we could control the EER for all these
tests using the Bonferroni correction, with k being the number of Y variables.
There is also a version of this procedure similar in spirit to REGW, called
the sequential Bonferroni method (Rice 1989). The sequential Bonfer-
roni alleviates to some extent the lack of power in the standard Bonferroni
correction. This procedure is implemented in proc multtest in SAS.

The Sidak correction is another procedure used to control the EER, which
provides slightly more power than the Bonferroni method. Let α be the
per comparison error rate, while α′ is the desired EER. If we conduct each
comparison at the per comparison rate of

α = 1− (1− α′)1/k, (13.34)

then the actual EER will not exceed α′. For example, suppose we are inter-
ested in all k = a(a − 1)/2 pairwise comparison among groups. We would
then conduct each test at the

α = 1− (1− α′)1/k = 1− (1− α′)1/[a(a−1)/2] (13.35)
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level. For α′ = 0.05 and a = 5 groups, we obtain

α = 1− (1− α′)1/[a(a−1)/2] = 1− (1− 0.05)1/10 = 0.0051. (13.36)

We would then compare pairs of means using the same test as for the Bonfer-
roni correction, except that we would use α = 0.0051 rather than α = 0.005.
This value of α is a bit larger than the corresponding Bonferroni one, making
the Sidak correction slightly more powerful.

SAS implements both the Bonferroni and Sidak corrections in the means

statement with the options bon or sidak, similar to using the tukey option.

13.6 Vascular plant cover - SAS demo

Kneitel & Lessin (2010) also examined vascular plant cover in their study
of the effect of eutrophication on vernal pools in California. Vascular plant
cover (cover) was derived by subtracting algal cover (algae) from total cover
(total), then arcsine-square root transformed before analysis (see Chapter
15). See data step in the SAS program below.

The proc glm code compares all possible pairs of group means using the
Tukey procedure, and also compares the Control treatment with the other
treaments using Dunnett’s procedure. This was done to provide more exam-
ples of these procedures. In practice, you should choose one procedure
for comparing the means.

The diagram generated by the Tukey procedure indicates two significant
differences among treatments (Fig. 13.15). Reading the diagram, we see the
Control-High and Control-VeryHigh comparisons were significant, because they
have different lines. No other pairs of groups were significantly different.
Figure 13.12 indicates how these results could be graphically displayed using
letters instead of lines. We see that vascular plant cover actually decreased
with increased nutrient levels, likely due to inhibition from the algal mats
that form (Kneitel and Lessin 2010).

If the lines diagram is confusing, we can also determine which groups
are significantly different by examining the confidence intervals generated by
the Tukey procedure (Fig. 13.14). Confidence intervals that do not include
zero indicate a significant difference among groups, because of the duality
between confidence intervals and tests (see Chapter 10). The significant
tests are indicated by *** in the SAS output.
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The output for Dunnett’s procedure shows that the High and VeryHigh

treatments were significantly different from the Control group (Fig. 13.16).

SAS Program

* Kneitel_2010_cover2.sas;

title ’Multiple comparisons for vascular plant cover’;

title2 ’Data from Kneitel and Lessin (2010)’;

data kneitel;

input treat $ richness total algae;

* Apply transformations here;

vcover = total-algae;

y = arsin(sqrt(vcover/100));

datalines;

Control 8 78 1

Control 5 84 7

Control 10 115 45

Control 7 200 100

Control 6 72 20

Low 8 73 15

Low 7 124 70

Low 8 116 50

Low 8 92 5

Low 7 138 60

Medium 7 124 85

Medium 8 116 80

Medium 8 145 60

Medium 6 154 100

Medium 7 129 90

High 6 134 95

High 7 138 95

High 8 103 70

High 8 119 75

High 6 132 80

VeryHigh 6 148 95

VeryHigh 5 134 95

VeryHigh 5 119 100

VeryHigh 5 117 90

VeryHigh 5 129 80

;

run;

* Print data set;

proc print data=kneitel;

* Plot means, standard errors, and observations;

proc gplot data=kneitel;

plot y*treat=1 / vaxis=axis1 haxis=axis1;
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symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with comparisons;

proc glm order=data plots=diagnostics data=kneitel;

class treat;

model y = treat;

* Tukey procedure - controls the EER;

means treat / tukey cldiff lines;

* Dunnett’s procedure - controls EER for comparisons with a control;

means treat / dunnett(’Control’);

run;

quit;
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Figure 13.11: Kneitel 2010 cover2.sas - proc print
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Figure 13.12: Kneitel 2010 cover2.sas - proc gplot
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Figure 13.13: Kneitel 2010 cover2.sas - proc glm
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Figure 13.14: Kneitel 2010 cover2.sas - proc glm
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Figure 13.15: Kneitel 2010 cover2.sas - proc glm
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Figure 13.16: Kneitel 2010 cover2.sas - proc glm
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13.7 False discovery rate procedure

The multiple comparison procedures we have examined control the EER,
but at the cost of power. This is especially true for studies with many
treatments or groups. For example, suppose we have a = 5 treatments and
want to conduct all pairwise comparisons using the Bonferroni method, with
an EER of α′ = 0.05. There are k = a(a − 1)/2 = 5(4)/2 = 10 pairwise
comparisons, and so we would conduct each comparison at the α = α′/k =
0.05/10 = 0.005 level. For a = 10 treatments, a similar calculation suggests
that each comparison should be conducted at the α = 0.0011 level, yielding
a much more conservative test. As the number of treatments increases, this
makes it less likely significant differences will be found, and so the power to
detect differences among treatments decreases. The number of treatments
has similar effects on other multiple comparison procedures that control the
EER.

The false discovery rate or FDR method provides an alternative ap-
proach to multiple comparisons and tests. For example, suppose that the
LSD method finds a number of significant comparisons among treatments,
which are termed discoveries. The LSD method only controls the per com-
parison error rate, and if there are many comparisons some of the significant
ones could be Type I errors. The FDR method controls the expected pro-
portion of these significant comparisons that are Type I errors, and therefore
are false discoveries (Benjamini & Hochberg 1995). This differs substantially
from methods that control the EER, which are concerned with keeping the
number of Type I errors low. One will have more Type I errors using the
FDR, but the proportion of them is controlled, and the power to detect dif-
ferences among treatments will be higher than EER methods. This approach
seems particularly useful for studies that screen many treatments or groups,
possibly for future work, and it is more important to identify possible effects
than controlling the number of Type I errors (Verhoeven et al. 2005).

The FDR method for multiple comparisons works as follows (Benjamini
& Hochberg 1995). Suppose you have k pairwise comparisons, and obtain a
P value for each one using the LSD procedure. Let P[1] ≤ P[2] ≤ . . . ≤ P[k]

be the P values for these tests, ordered from smallest to largest, with P[i] the
ith one. Let α∗ be the specified false discovery rate. We then examine the
ordered P values from largest to smallest (from i = k to 1), examining at
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each step whether

P[i] ≤
i

k
α∗. (13.37)

We can see that the right side of this equation decreases from α∗ to α∗/k as
i decreases. The first time this inequality is true, we declare that this pair-
wise comparison and all further ones are significantly different. Benjamini &
Hochberg (1995) show that this procedure controls the false discovery rate.
The same method can also be used in other multiple testing scenarios, not
just multiple comparisons among means.

As an example of this procedure, consider the algae cover example we
examined earlier (Kneitel and Lessin 2010). There are ten pairwise compar-
isons among the different nutrient treatments. We first obtain the P values
for each comparison using the LSD method (see SAS demo below), and order
these from largest to smallest (Table 13.1). We then compare the P values
with the right side of Eq. 13.37, beginning at the top of the table. We see
that first comparison that satisfies Eq. 13.37 is high vs. low, and so we de-
clare this comparison and all further ones to be significant. Thus, the FDR
procedure found six of ten pairwise comparisons to be significant, similar to
the LSD procedure. The Tukey and REGW procedures, which control the
EER, found only two significant comparisons.

Table 13.1: Ordered P values for LSD comparisons of algae cover in different
nutrient treatments (Kneitel and Lessin 2010). The last column calculates
the right side of Eq. 13.37 for α∗ = 0.05 and k = 10 pairwise comparisons.

Comparison i P[i]
i
k
α∗

control–low 10 0.8902 0.0500
medium–high 9 0.8887 0.0450
medium–very high 8 0.5578 0.0400
high–very high 7 0.4693 0.0350
high–low 6 0.0258 0.0300
control–high 5 0.0192 0.0250
low–medium 4 0.0191 0.0200
control–medium 3 0.0141 0.0150
low–very high 2 0.0051 0.0100
control–very high 1 0.0037 0.0010
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13.7.1 False discovery rate - SAS demo

The FDR procedure can be implemented in two steps using SAS. We first
need to obtain the P values for the LSD procedure. This can be accomplished
by adding an lsmeans statement to our previous program, with a pdiff option:

lsmeans treat / adjust=t pdiff;

The result is a table of P values for each comparison (Fig. 13.17).

Figure 13.17: Kneitel 2010 algae fdr1.sas - proc glm
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We then use proc multtest to carry out the FDR procedure. The P values
for each comparison are supplied in a SAS data set, labeled as raw_p. The
data set is specified using the inpvalues option, while the FDR procedure
is requested using the fdr option. The output consists of the original and
adjusted P values, with the adjustment made according to the FDR proce-
dure. For an FDR of 0.05, adjusted P values less than 0.05 are judged to be
significant. See complete program below. We observe that six of ten pairwise
comparisons have an adjusted P value less than 0.05, and so were significant
by the FDR procedure (Fig. 13.18).

* Kneitel_2010_algae_fdr2.sas;

title ’Multiple comparisons for algae cover’;

title2 ’False discovery rate (Benjamini and Hochberg 1995)’;

data pvalues;

input comparison :$18. raw_p;

datalines;

Control-High 0.0192

Control-Low 0.8902

Control-Medium 0.0141

Control-VeryHigh 0.0037

High-Low 0.0258

High-Medium 0.8887

High-VeryHigh 0.4693

Low-Medium 0.0191

Low-VeryHigh 0.0051

Medium-VeryHigh 0.5578

;

* Multiple comparisons using fdr;

proc multtest inpvalues=pvalues fdr;

run;

quit;
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Figure 13.18: Kneitel 2010 algae fdr2.sas - proc multcomp
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13.9 Problems

1. White-tailed deer are voracious consumers of landscaping plants. A
frustrated homeowner/professor is interested in testing whether differ-
ent repellents actually reduce deer herbivory. Replicate plots of house-
plants are established and four different treatments applied to the plots:
(1) a control with no treatment, (2) hot pepper oil repellent, (3) rotten
egg repellent, and (4) livestock blood repellent. There were 4 replicate
plots per treatment. The amount of herbivory (percentage of plants
eaten) after one month are given in the following table.

Control Hot pepper Rotten eggs Blood
61.1 54.4 32.0 36.2
64.9 67.9 28.5 38.3
61.6 54.6 21.6 31.1
67.8 58.1 38.8 44.1

(a) Test whether there is an overall effect of treatment on the percent-
age of plants eaten, using one-way anova and SAS. Report your
results using P values and discuss the significance of the test.

(b) Use the Tukey procedure to compare the different treatments, and
interpret your results. Which pairs of treatments are significantly
different? Do the treatments fall into particular groups?

(c) Suppose the homeowner is only interested in treatments that are
different from the control. Use the Dunnett method to compare
the three treatments with the control one. Which treatments are
significantly different from the control?

2. PCB concentrations were measured in the sediment of Crab Orchard
Lake, at 11 different sites (Kohler et al. 1990). Three samples were
taken at each site, yielding the data shown in the table below. Site
10 is near an abandoned dump site for a manufacturer of electrical
transformers.
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Site PCB (mg/kg), sample 1-3
1 0.0453, 0.0626, 0.527
2 0.0395, 0.0494, 0.0416
3 0.0234, 0.0451, 0.0541
4 0.033, 0.0643, 0.0517
5 0.0394, 0.0810, 0.0266
6 0.0294, 0.0425, 0.0538
7 0.0255, 0.0440, 0.0427
8 0.0323, 0.0382, 0.0360
9 0.0533, 0.0407, 0.0626
10 0.160, 0.437, 0.343
11 0.135, 0.142, 0.0592

(a) Test whether there is an overall effect of site on PCB concentra-
tion, using one-way ANOVA and SAS. Treat site as a fixed effect.
Report your results using P values and discuss the significance of
the test. A log transformation should be applied before analysis.

(b) Use the REGW procedure to compare the different sites, and inter-
pret your results. Which pairs of sites are significantly different?
Do the sites fall into particular groups?

3. An entomologist wants to compare the attractiveness of nine different
baits (A-I) for bark beetles. There were three replicate traps for each
bait treatment. The table below lists the number of beetles captured
in each trap.

Bait Beetles, trap 1-3
A 27, 36, 26
B 25, 19, 37
C 8, 16, 12
D 15, 8, 12
E 68, 42, 57
F 43, 32, 47
G 10, 12, 19
H 71, 62, 53
I 19, 11, 21

(a) Test whether there is an overall effect of bait on beetle captures,
using one-way ANOVA and SAS. Report your results using P
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values and discuss the significance of the test. Apply a log trans-
formation before analysis.

(b) Use the FDR procedure to compare the different baits, and inter-
pret your results. Which baits are significantly different?



Chapter 14

Analysis of Variance
(Two-Way)

Two-way ANOVA examines how two different factors, such as different ex-
perimental treatments, affect the means of the different groups. For example,
we might be interested in how different baits, as well as trap color, affect the
number of insects caught in the traps. If we conducted an experiment where
traps were deployed with different combinations of bait and trap color, this
would be a two-way factorial design, where the term factorial implies all
possible combinations of the two factors. If there were three different baits
(A, B, and C) and two trap colors (black, white), a factorial design implies
there would be six different treatment combinations in the experiment (A-
black, A-white, B-black, B-white, C-black, C-white). There would be one
or more traps deployed with each treatment combination. It is customary
to call one of the factors in a two-way design ‘Factor A’, while the other is
‘Factor B’.

Similar to one-way ANOVA designs, the factors in two-way ANOVA can
be either fixed or random. In the insect trapping experiment discussed above,
both bait and trap color would be fixed effects because they were selected by
the investigator. There are then F tests for each factor in the design, and
potentially a test for the interaction of the two factors. An interaction
between two factors implies there is a joint effect of the two fac-
tors beyond that predicted by each factor operating additively. For
example, insects might be strongly attracted to A-black traps, more than
would be predicted by the bait and trap color effects observed in the rest
of the treatments. We will focus some effort on the analysis of this design

383
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because it is one of the more common ones.
There are other possible two-way designs, including one fixed and one

random effect, or more rarely both effects are random. We will examine
a popular design where one factor is fixed and the other random, called
a randomized block design. There is an F test for the fixed effect in
this design, and this test is often the primary goal of the analysis. With
respect to the random effects, it is common to simply estimate the variance
components associated with these effects and not conduct any tests, although
these are still available. This design is ubiquitous in field studies because it
helps control for certain forms of spatial or temporal heterogeneity in the
observations, permitting a more powerful test of any treatment or group
effects.

What do the data look like for a two-way ANOVA design? We will first
examine a simplified data set from a trapping study of the bark beetle preda-
tor T. dubius (Reeve et al. 2009). These predators feed on bark beetles which
attack and kill pine trees, and are attracted to the pheromones of the bark
beetles as well as odors emitted by damaged pines. Visual cues may also play
a role in their behavior, in particular the dark vertical silhouette provided
by the bole of the tree. Three different baits were used: frontalin + turpen-
tine (FRT), ipsdienol + turpentine (IDT), and ipsenol + turpentine (IST).
Frontalin, ipsdienol, and ipsenol are bark beetle pheromones, while turpen-
tine contains volatiles similar to those in pine resin. The traps were also
painted two different colors, black vs. white, to manipulate their appearance
to the predators. Thus, there were a total of six treatments (three baits, two
colors) in the design. The different treatments were randomly assigned to
trapping locations along transects in a pine forest, with four replicates per
treatment. The number of predators caught in each trap were counted after
several weeks of trapping (Table 14.1). The fourth column in the table shows
the values after applying a log transformation, which is commonly used with
count data (see Chapter 15).

We will use the notation Yijk to reference the observations in two-way
ANOVA designs. The i subscript refers to the group or treatment within
Factor A (bait), j the group or treatment within Factor B (trap color), while
k refers to the observation within the treatment. For example, Y123 refers to
the third observation in the FRT bait - W color treatment, which is 0.903.

We will also examine data from an experiment that examined how nu-
trient and water availability, as well as resource heterogeneity in space or
time, affect biomass production in grassland plants (Maestre & Reynolds
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2007). Plants from a grassland community were seeded in small containers
in the greenhouse, with the treatments consisting of different levels of nitro-
gen and watering. There were three nitrogen and three watering levels in
the experiment, for a total of nine treatments, with four replicate containers
per treatment. The experiment also included treatments were the nitrogen
was heterogeneously distributed in the container and watering was pulsed in
time, but we will defer analysis of these other factors to Chapter 19. The
total biomass of the plants was then determined after 100 d of growth (Table
14.2).

The data sets presented in this chapter are balanced designs with the
same number of replicates per group, because this simplifies the formulas.
They can be extended to unbalanced designs, but we will let SAS handle the
details of the calculations in this case. We will later see how unbalanced data
sets can influence the tests in two-way ANOVA.
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Table 14.1: Example 1 - Effect of bait and trap color on catches of T. dubius, a bark beetle predator (Reeve
et al. 2009). The baits used were frontalin + turpentine (FRT), ipsdienol + turpentine (IDT), and ipsenol
+ turpentine (IST), and the traps were painted either black (B) or white (W). Also shown are the means
for each treatment group (Ȳij·) and preliminary calculations to find SSwithin

.

Bait Color T. dubius Yijk = log10(T.dubius+ 1) i j k Ȳij· (Yijk − Ȳij·)2

FRT B 18 1.279 1 1 1 1.150 1.664×10−2

FRT B 12 1.114 1 1 2 1.296×10−3

FRT B 22 1.362 1 1 3 4.494×10−2

FRT B 6 0.845 1 1 4 9.303×10−2

FRT W 12 1.114 1 2 1 0.980 1.796×10−2

FRT W 15 1.204 1 2 2 5.018×10−2

FRT W 7 0.903 1 2 3 5.929×10−3

FRT W 4 0.699 1 2 4 7.896×10−2

IDT B 0 0.000 2 1 1 0.369 1.363×10−1

IDT B 2 0.477 2 1 2 1.161×10−2

IDT B 1 0.301 2 1 3 4.658×10−3

IDT B 4 0.699 2 1 4 1.087×10−1

IDT W 2 0.477 2 2 1 0.314 2.665×10−2

IDT W 1 0.301 2 2 2 1.626×10−4

IDT W 2 0.477 2 2 3 2.665×10−2

IDT W 0 0.000 2 2 4 9.844×10−2
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Bait Color T. dubius Yijk = log10(T.dubius+ 1) i j k Ȳij· (Yijk − Ȳij·)2

IST B 2 0.477 3 1 1 0.725 6.126×10−2

IST B 2 0.477 3 1 2 6.126×10−2

IST B 10 1.041 3 1 3 1.002×10−1

IST B 7 0.903 3 1 4 3.186×10−2

IST W 1 0.301 3 2 1 0.719 1.745×10−1

IST W 4 0.699 3 2 2 3.901×10−4

IST W 14 1.176 3 2 3 2.091×10−1

IST W 4 0.699 3 2 4 3.901×10−4
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Table 14.2: Example 2 - Effect of nutrient and water availability on the total
biomass of grassland plants grown in microcosms (Maestre & Reynolds 2007).

N (mg) Water (ml/week) Yijk = Biomass i j k
40 125 4.372 1 1 1
40 125 4.482 1 1 2
40 125 4.221 1 1 3
40 125 3.977 1 1 4
40 250 7.400 1 2 1
40 250 8.027 1 2 2
40 250 7.883 1 2 3
40 250 7.769 1 2 4
40 375 7.226 1 3 1
40 375 8.126 1 3 2
40 375 6.840 1 3 3
40 375 7.901 1 3 4
80 125 5.140 2 1 1
80 125 3.913 2 1 2
80 125 4.669 2 1 3
80 125 4.306 2 1 4
80 250 9.099 2 2 1
80 250 9.711 2 2 2
80 250 9.123 2 2 3
80 250 9.709 2 2 4
80 375 10.701 2 3 1
80 375 11.552 2 3 2
80 375 11.356 2 3 3
80 375 9.759 2 3 4
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N (mg) Water (ml) Yijk = Biomass i j k
120 125 5.021 3 1 1
120 125 4.970 3 1 2
120 125 5.055 3 1 3
120 125 4.862 3 1 4
120 250 9.029 3 2 1
120 250 10.791 3 2 2
120 250 9.115 3 2 3
120 250 10.319 3 2 4
120 375 12.189 3 3 1
120 375 14.381 3 3 2
120 375 13.153 3 3 3
120 375 14.066 3 3 4

14.1 Random assignment of treatments

A essential step in executing ANOVA designs is the random as-
signment of treatments to experimental units. For instance, in the
Example 2 experiment we would want to randomly assign nitrogen and wa-
tering levels to the microcosms. This avoids any bias on the part of the
experimenter in assigning the treatments to the containers, and also ensures
that the replicates for each treatment are spread and intermingled through-
out the greenhouse. What could happen if the treatments are not randomly
assigned? Suppose that all the replicates for a given treatment in Example
2 are placed next to each other in the greenhouse, perhaps because this is
convenient when applying the treatments. If a particular location happens
to be warmer or receive more sunlight than another location, then the plants
may be larger in that location and so bias the results of the experiment. We
may falsely conclude a particular treatment has an effect on biomass because
of this location effect. The random assignment of treatments avoids biases of
this sort and also ensures independence of the observations, a basic assump-
tion of most statistical models (Hurlbert 1984; Potvin 1993). Experiments
with this feature are also known as completely randomized designs. We
will illustrate the random assignment of treatments using a SAS program
below.
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14.1.1 Random assignment of treatments - SAS Demo

The program below shows one way of randomly assigning treatments to con-
tainers for the Example 2 experiment. We first input the different treatment
combinations using a data step, with one line in the data set for each repli-
cate. The data step also assigns a random number to each observation. The
program uses a uniform random variable generated by the ranuni function,
but any continuous random variable would work. We then use proc sort to
sort the observations in ascending order by this random variable, thereby ran-
domly shuffling the treatments (see Fig. 14.2). We would then assign to the
first container the first treatment combination in the shuffled observations,
the second container the second treatment combination, and so forth.

* Rand_treatments.sas;

title "Random assignment of Example 2 treatments";

data treat;

input nitrogen water;

* Generate a uniform random variable;

u = ranuni(0);

datalines;

40 125

40 125

40 125

40 125

40 250

40 250

40 250

40 250

etc.

;

run;

title2 "Original order of treatments";

proc print data=treat;

run;

* Sort treatments by value of u;

proc sort out=shuffled data=treat;

by u;

run;

title2 "Randomly shuffled treatments";

proc print data=shuffled;

run;
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quit;

etc.

Figure 14.1: rand treatments.sas - proc print
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etc.

Figure 14.2: rand treatments.sas - proc print
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14.2 Two-way fixed effects model

Suppose that we want to model the observations in studies like Example 1 or
2, where there are two factors that are manipulated and are fixed effects. Let
Factor A be one treatment (such as bait type) while Factor B is the other
treatment (trap color). Let the symbol Yijk stand for the kth observation
(k = 1, 2, . . . , n) in the ith Factor A treatment and jth Factor B treatment.
For example, with the Example 1 data set we have Y111 = 1.279 while Y222 =
0.301 (see Table 14.1). One commonly used model for such a design (Searle
1971) is

Yijk = µ+ αi + βj + (αβ)ij + εijk. (14.1)

Here µ is the grand mean of the observations, while αi is the deviation from µ
caused by the ith treatment in Factor A, while βj is the deviation caused by
the jth treatment in Factor B. These terms are called the main effects in the
model. The term (αβ)ij represents an interaction between Factors A and B,
implying a shift in the mean for a particular treatment combination beyond
the effects of Factor A and B. An interaction between two factors A and B
is often symbolized as ‘A × B.’ It is also considered a fixed effect when both
A and B are fixed effects. The εijk term represents random departures from
the mean value predicted by the main effects and interaction due to natural
variability among the observations, and are also assumed to be independent.
The model also assumes that

∑
αi = 0,

∑
βj = 0, and

∑
(αβ)ij = 0, but this

does not affect its generality. The same model can also be used to describe the
observations for studies where there are a groups or levels for Factor A, and
b for Factor B, with any number of replicates (n) per treatment combination,
as well as unbalanced designs with different numbers of replicates.

It follows for the ith level of Factor A and jth of Factor B that E[Yijk] =
µ+ αi + βj + (αβ)ij and V ar[Yijk] = σ2, using the rules for expected values
and variances. Thus, for the ith and jth level we have Yijk ∼ N(µ + αi +
βj + (αβ)ij, σ

2). We can illustrate how the different parameters work in this
model by plotting the distribution of the data for different parameter values.
The behavior of the model is described for four different scenarios below. We
will model an experiment similar to Example 1, where there are three levels
for Factor A (a = 3) and two for Factor B (b = 2).
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14.2.1 Factor A effect

Suppose that Factor A has a strong effect on Yijk, but there is only a minimal
effect of Factor B and no interaction between the two factors. To make
things concrete, let µ = 1.5, α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.1, β2 =
−0.1, (αβ)ij = 0 for all i and j, and σ2 = 0.05. Figure 14.3 shows the
distribution of the observations in each treatment group. Note that the mean
for treatment 1 under Factor A is shifted upward from µ while treatment 3
is shifted downward, for both levels of Factor B. The distribution for each
treatment combination has the same variance, namely σ2 = 0.05.

14.2.2 Factor B effect

Suppose the reverse situation is now true, with Factor B having a strong effect
on Yijk while Factor A has a minimal effect, again with no interaction. This
could be modeled using α1 = 0.1, α2 = 0, α3 = −0.1, β1 = 0.5, β2 = −0.5,
and (αβ)ij = 0 for all i and j. Figure 14.4 shows the pattern that results.
Note that the mean for treatment 1 under Factor B is shifted upward from
µ, while treatment 2 is shifted downward, for all three levels of Factor A.

14.2.3 Factor A and B effect

If both factors have an effect on Yijk, we would expect to see a combination
of the previous patterns, with the treatment groups shifted away from each
other (Fig. 14.5). This figure uses α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.3, β2 =
−0.3, and (αβ)ij = 0 for all i and j.

14.2.4 Interaction effect

We now examine how an A × B interaction influences the model. Suppose
that α1 = 0.5, α2 = 0, α3 = −0.5, β1 = 0.3 and β2 = −0.3 as in the pre-
vious figure, but now (αβ)11 = 0.2, (αβ)12 = −0.2, (αβ)21 = 0, (αβ)22 =
0, (αβ)31 = −0.2, and (αβ)32 = 0.2. We see that Factor B has a substantial
effect under treatment 1 for Factor A, and smaller effect under treatment 2,
and almost no effect under treatment 3 (Fig. 14.6). Note that the distribu-
tions under the different treatment combinations no longer move in parallel
as in Fig. 14.5. This pattern is diagnostic of an interaction in the analysis of
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real data. We will later examine a data set where there is strong interaction
between the two factors.

The objective in two-way ANOVA is to test whether Factor A, B, or both
have an effect on the group means, and whether there is interaction between
the two factors. For Factor A this amounts to testing H0 : all αi = 0, while
for Factor B we would test H0 : all βj = 0. For interaction between the
two factors, we would test H0 : all (αβ)ij = 0. The corresponding alternative
hypotheses are H1 : some αi 6= 0, H1 : some βj 6= 0, and H1 : some (αβ)ij 6= 0.
We will discuss how these null hypotheses are tested in the next section.
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Figure 14.3: Fixed effects model for two-way ANOVA showing a Factor A
effect.

Figure 14.4: Fixed effects model for two-way ANOVA showing a Factor B
effect.
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Figure 14.5: Fixed effects model for two-way ANOVA showing both Factor
A and B effects.

Figure 14.6: Fixed effects model for two-way ANOVA showing an A × B
interaction between the two factors.
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14.3 Hypothesis testing for two-way ANOVA

We now develop statistical tests for each of the null hypotheses listed above.
All work in a similar fashion to the F test for one-way ANOVA. For Factor A
and B in the model, as well as the interaction term, there is a corresponding
sum of squares and mean square term. There is also an overall sum of squares
and mean square within groups. These quantities are used to construct three
different F tests, one for Factor A, Factor B, and the A × B interaction.
These three tests are also examples of likelihood ratio tests, in which the fit
is compared between the null and alternative models (Searle 1971). We will
illustrate the calculations for these tests using the Example 1 data set, with
Factor A being bait while Factor B is trap color.

14.3.1 Sum of squares and mean squares

We begin by calculating the group means for each treatment combination.
For the Example 1 data, this amounts to calculating a group mean for each
combination of bait and trap color. These group means are shown in Table
14.1 and labeled as Ȳij·. Here the ‘·’ notation implies the mean was calculated
using all the observations in that group (k = 1, 2, . . . , n). A grand mean can
then be calculated as the mean of these group means, or equivalently by
summing all the observations and dividing by their total number. We label

this grand mean as
¯̄̄
Y . It can be generally calculated using the formula

¯̄̄
Y =

∑a
i=1

∑b
j=1 Ȳij·

ab
. (14.2)

For the Example 1 data set, we have

¯̄̄
Y =

1.150 + 0.980 + 0.369 + 0.314 + 0.725 + 0.719

6
= 0.709. (14.3)

We next calculate a mean corresponding to each level of Factor A by averag-
ing across the levels of Factor B, which we denote as ¯̄Yi··. It can be calculated
using the formula

¯̄Yi·· =

∑b
j=1 Ȳij·

b
. (14.4)

For the Example 1 data set, we have

¯̄Y1·· =
1.150 + 0.980

2
= 1.065, (14.5)
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¯̄Y2·· =
0.369 + 0.314

2
= 0.342, (14.6)

and
¯̄Y3·· =

0.725 + 0.719

2
= 0.722. (14.7)

The difference ¯̄Yi·· − ¯̄̄
Y is a measure of the shift generated by Factor A in

the observations, as well as an estimate of αi for each level of Factor A. We
can obtain a single measure of these shifts by squaring and summing them
across all groups to obtain a sum of squares for Factor A, or SSA. It can be
calculated using the general formula

SSA = nb
a∑
i=1

( ¯̄Yi·· − ¯̄̄
Y )2. (14.8)

SSA has a−1 degrees of freedom. We can calculate a mean square for Factor
A using the formula

MSA =
SSA
a− 1

. (14.9)

Note the factor nb in the expression for SSA, which scales MSA so that it
estimates σ2 if H0 : all αi = 0 is true (no Factor A effect). If H1 is true,
implying some αi 6= 0, then MSA will become larger. For the Example 1
data, we have

SSA = 4(2)
[
(1.065− 0.709)2 + (0.342− 0.709)2 + (0.722− 0.709)2

]
(14.10)

= 8
[
1.265× 10−1 + 1.353× 10−1 + 1.501× 10−4

]
= 2.096. (14.11)

and

MSA =
2.096

3− 1
= 1.048. (14.12)

We can similarly calculate a mean corresponding to each level of Factor B,
averaging across levels of Factor A. The general formula for these means is

¯̄Y·j· =

∑a
i=1 Ȳij·
a

. (14.13)

For the Example 1 data set, we have

¯̄Y·1· =
1.150 + 0.369 + 0.725

3
= 0.748 (14.14)
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and
¯̄Y·2· =

0.980 + 0.314 + 0.719

3
= 0.671. (14.15)

The difference ¯̄Y·j·− ¯̄̄
Y is a measure of the shift generated by Factor B in the

observations, as well as an estimate of βj for each level of Factor B. Squaring
and summing them across all groups, we obtain a sum of squares for Factor
B, or SSB. It can be calculated using the general formula

SSB = na
b∑

j=1

( ¯̄Y·j· − ¯̄̄
Y )2. (14.16)

SSB has b− 1 degrees of freedom. We can then calculate a mean square for
Factor B using the formula

MSB =
SSB
b− 1

. (14.17)

For the Example 1 data, we have

SSB = 4(3)
[
(0.748− 0.709)2 + (0.671− 0.709)2

]
(14.18)

= 12
[
1.485× 10−3 + 1.485× 10−3

]
= 3.565× 10−2 (14.19)

and

MSB =
3.565× 10−2

2− 1
= 3.565× 10−2. (14.20)

We can also calculate a sum of squares and mean square to test for the
A × B interaction. The sum of squares for interaction, SSAB, is calculated
in general using the formula

SSAB = n
a∑
i=1

b∑
j=1

(Ȳij· − ¯̄Yi·· − ¯̄Y·j· +
¯̄̄
Y )2. (14.21)

The terms within this expression estimate (αβ)ij, and are measures of the
difference between the means for each treatment combination and the values
predicted by the model without any interaction. SSAB has (a − 1)(b − 1)
degrees of freedom. Its associated mean square is defined by the formula

MSAB =
SSAB

(a− 1)(b− 1)
. (14.22)
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For the Example 1 data, we have

SSAB = 4[(1.150− 1.065− 0.748 + 0.709)2 (14.23)

+(0.980− 1.065− 0.671 + 0.709)2 (14.24)

+(0.369− 0.342− 0.748 + 0.709)2 (14.25)

+(0.314− 0.342− 0.671 + 0.709)2 (14.26)

+(0.725− 0.722− 0.748 + 0.709)2 (14.27)

+(0.719− 0.722− 0.671 + 0.709)2 (14.28)

= 5[2.111× 10−3 + · · ·+ 2.836× 10−2] = 2.836× 10−2. (14.29)

and

MSAB =
2.836× 10−2

(3− 1)(2− 1)
= 1.418× 10−2. (14.30)

These sum of squares and mean squares measure how Factor A, B, and
the A × B interaction influence the means of each treatment combination.
What about variability within each group? We can calculate SSwithin using
the general formula

SSwithin =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − Ȳij·)2 (14.31)

which has ab(n − 1) degrees of freedom. The associated mean square is
calculated as

MSwithin =
SSwithin
ab(n− 1)

. (14.32)

The last column of Table 14.1 shows the preliminary calculations for SSwithin.
Adding this column across all the treatment groups yields

SSwithin = 1.644× 10−2 + · · ·+ 3.901× 10−4 = 1.361 (14.33)

and

MSwithin =
1.361

(3)(2)(4− 1)
= 7.561× 10−2. (14.34)

There is one more sum of squares that is often calculated in two-way
ANOVA, the total sum of squares. It is defined as

SStotal =
a∑
i=1

b∑
j=1

n∑
k=1

(Yijk − ¯̄̄
Y )2. (14.35)



402 CHAPTER 14. ANALYSIS OF VARIANCE (TWO-WAY)

It measures the variability of the observations around the grand mean of the

data (
¯̄̄
Y ) and has abn − 1 degrees of freedom. An interesting feature of the

sum of squares is that they add to the total sum of squares when the design
is balanced, as do the degrees of freedom. In particular, we have

SSA + SSB + SSAB + SSwithin = SStotal (14.36)

and

(a− 1) + (b− 1) + (a− 1)(b− 1) + ab(n− 1) = abn− 1. (14.37)

Thus, the sum of squares and degrees of freedom can be partitioned into
components corresponding to every source of variation in the study. For
Example 1, we have SStotal = 3.521 with 3(2)(4)−1 = 23 degrees of freedom.

14.3.2 ANOVA tables and tests

We can organize the different sum of squares and mean squares into an
ANOVA table. It lists the different sources of variation in the data (Factor
A, B, A × B interaction, within groups, and total) and their degrees of
freedom. Table 14.3 shows the general layout of such a table for two-way
ANOVA designs.

Also shown in the table are F statistics used test to whether Factor
A, Factor B, and their interaction have an effect on the observations. The
numerator of the test statistic is the mean square for each factor (MSA,MSB,
or MSAB), while the denominator is always MSwithin. Thus, we use Fs =
MSA/MSwithin to test for the effect of Factor A. Under H0 : all αi = 0 this
statistic has an F distribution with df1 = a−1 and df2 = ab(n−1). Similarly,
we use Fs = MSB/MSwithin to test for an effect of Factor B. Under H0 : all
βj = 0 it has an F distribution with df1 = b− 1 and df2 = ab(n− 1). Finally,
we use Fs = MSAB/MSwithin to test for an interaction between A and B.
Under H0 : all (αβ)ij = 0 it has an F distribution with df1 = (a− 1)(b− 1)
and df2 = ab(n− 1).

All these tests are examples of likelihood ratio tests. For example, con-
sider the test for the A × B interaction. To construct the likelihood ratio
test for the interaction, we first find the maximum likelihood estimates of
various parameters under H1 vs. H0. Recall that the observations in the
two-way ANOVA model are described as

Yijk = µ+ αi + βj + (αβ)ij + εijk. (14.38)
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where µ is the grand mean, αi is the effect of the ith level of Factor A, βj
is the effect of the jth level of Factor B, (αβ)ij is effect of the interaction,
and εijk ∼ N(0, σ2). This is the statistical model under the alternative
hypothesis H1 : some (αβ)ij 6= 0, implying an interaction effect. Under H0 :
all (αβ)ij = 0, the model reduces to

Yijk = µ+ αi + βj + εijk. (14.39)

We would need to find the maximum likelihood estimates under both H1 and
H0, as well as LH0 and LH1 , the maximum height of the likelihood function
under H0 and H1. We would then use the likelihood ratio test statistic

λ =
LH0

LH1

. (14.40)

It can be shown that there is a one-to-one correspondence between −2 ln(λ)
and Fs for the interaction effect, and so the F test is actually a likelihood
ratio test (Searle 1971), as are the tests for the other effects. Large values of
the test statistic −2 ln(λ) or Fs indicate a lower value of the likelihood under
H0 relative to H1, and thus a poorer fit of the H0 model.

Table 14.4 shows the results for the Example 1 data set, including the
F statistics and P values obtained using Table F. In examining the test
results, it is customary to examine the test for the interaction first,
followed by the main effects. If the interaction is nonsignificant this sug-
gests the two main effects have a simple additive effect on the observations,
provided they are significant. If the interaction is significant the interpreta-
tion requires more attention. If one or more of the main effects are significant,
it suggests the observations are driven by both interaction and main effects.
Fig. 14.6 shows a theoretical example where an interaction, Factor A, and
Factor B all influence the observations.

For the bait × trap color interaction, we see that Fs = 0.19 with df1 = 2
and df2 = 18, and from Table F find that P > 0.100. Thus, the interaction
was nonsignificant for these data (F2,18 = 0.19, P > 0.100). The color effect
was also nonsignificant (F1,18 = 0.47, P > 0.100), but the bait effect was
highly significant (F2,18 = 13.86, P < 0.001). Each bait represents a different
bark beetle pheromone, and apparently some baits are more attractive than
others for T. dubius.
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Table 14.3: General ANOVA table for two-way designs with replication, showing formulas for different mean
squares and F tests.

Source df Sum of squares Mean square Fs
Factor A a− 1 SSA MSA = SSA/(a− 1) MSA/MSwithin
Factor B b− 1 SSB MSB = SSB/(b− 1) MSB/MSwithin
AB interaction (a− 1)(b− 1) SSAB MSAB = SSAB/(a− 1)(b− 1) MSAB/MSwithin
Within ab(n− 1) SSwithin MSwithin = SSwithin/ab(n− 1)
Total abn− 1 SStotal

Table 14.4: ANOVA table for the Example 1 data set, including P values for the tests.

Source df Sum of squares Mean square Fs P
Bait 2 2.096 1.048 13.86 < 0.001
Color 1 3.565× 10−2 3.565× 10−2 0.47 > 0.100
Bait × Color 2 2.836× 10−2 1.418× 10−2 0.19 > 0.100
Within 18 1.361 7.561× 10−2

Total 23 3.521
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14.3.3 Two-way ANOVA for Example 1 - SAS demo

The same calculations for the Example 1 study can be carried out using
proc glm (SAS Institute Inc. 2018). This procedure is primarily intended for
fixed effects ANOVA models, and this study has two fixed effects, bait type
and trap color, plus the interaction is also considered a fixed effect.

The first step in the program (see below) is to read in the observations us-
ing a data step, with one variable denoting the bait treatment (bait), another
the trap color (color), and the third the number of T. dubius captured per
trap (Tdubius). These numbers are then log-transformed using a SAS function
to yield the variable y = log10(Tdubius+1). We add one to the observations
before taking the log to avoid problems with zeroes.

The data are then plotted using proc gplot, with the bait treatment on
the x-axis and separate lines drawn for each color (SAS Institute Inc. 2016).
This is accomplished with the command plot y*bait=color. The rest of the
gplot statements control the appearance of the symbols and axes.

The next section of the program conducts the two-way ANOVA using
proc glm. The class statement tells SAS that both bait and color are used to
classify the observations into the six treatment groups. The model statement
tells SAS the form of the ANOVA model. Recall that the model for fixed
effects two-way ANOVA is given by the equation

Yijk = µ+ αi + βj + (αβ)ij + εijk (14.41)

The αi, βj, and (αβ)ij terms in this model equate directly with the bait,
color, and bait*color entries in the model statement. The lsmeans statement
causes glm to calculate quantities called least squares means for each level of
bait and color. When the data are balanced these are equivalent to the means
for each treatment group, but least squares means have some advantages
for unbalanced data and other statistical models. The option adjust=tukey

requests multiple comparisons among treatments using the Tukey method.
This is useful for comparing the different bait treatments, but for color there
is only one comparison (black vs. white) and in this case would be equivalent
to the F test for color.

The proc glm output provides information similar to that summarized in
an ANOVA table (see Fig. 14.9). The degrees of freedom, sum of squares,
mean squares, F statistics and P values for the bait, color, and bait ×
color interaction are listed near the bottom of the output under Type III SS.
The degrees of freedom, sum of squares, and mean square for the variation
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within groups are labeled as Error above this section (this terminology will
be explained in Chapter 15). The output labeled Type I SS is produced by
sequentially fitting the different terms in the model, in the order listed in
the model statement. Type III sums of squares are more generally useful
than Type I for ANOVA designs, although the results are the same when
the design is balanced. The output labeled Model refers to the combined
variation due to bait, color, plus their interaction. The associated F statistic
tests whether any or all of these effects influence the observations vs. the null
hypothesis that they have no effect. This particular test is not used much
with ANOVA designs.

We now examine the results of these tests, beginning with the interac-
tion (Fig. 14.9). We see that the bait × color interaction was nonsignif-
icant (F2,18 = 0.19, P = 0.8311). The color effect was also nonsignifi-
cant (F1,18 = 0.47, P = 0.5011), while bait was highly significant (F2,18 =
13.85, P = 0.0002). Examining the graph and Tukey results (Fig. 14.8,
14.10), we see that predator densities for the FRT and IST treatments were
significantly higher than for IDT. Note that the lines connecting the different
treatments are roughly parallel, further indicating an absence of interaction.
The effect of trap color appears minimal in this study, although trap catches
were somewhat higher for black traps.

SAS Program

* Tdubius_bait_color.sas;

title "Two-way ANOVA for T. dubius trapping";

title2 "Data from Reeve et al. (2009)";

data Tdubius;

input bait $ color $ Tdubius;

* Apply transformations here;

y = log10(Tdubius+1);

datalines;

FRT B 18

FRT B 12

FRT B 22

FRT B 6

FRT W 12

FRT W 15

FRT W 7

FRT W 4

etc.
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;

run;

* Print data set;

proc print data=Tdubius;

run;

* Plot means, standard errors, and observations;

proc gplot data=Tdubius;

plot y*bait=color / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=Tdubius;

class bait color;

model y = bait color bait*color;

lsmeans bait color / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.7: Tdubius bait color.sas - proc print

Figure 14.8: Tdubius bait color.sas - proc gplot



14.3. HYPOTHESIS TESTING FOR TWO-WAY ANOVA 409

Figure 14.9: Tdubius bait color.sas - proc glm
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Figure 14.10: Tdubius bait color.sas - proc glm
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14.3.4 Two-way ANOVA for Example 2 - SAS demo

We next analyze the Example 2 data set using SAS. These data involve the
total biomass of grass plants grown in small containers, where the treatments
are nitrogen or water availability. The SAS program is similar to the previous
example but with different variable names. Examining the output in Fig.
14.13, we see that the nitrogen × water interaction was highly significant
(F4,27 = 11.31, P < 0.0001). The interaction can be observed in Fig. 14.12,
which shows that the lines connecting the treatments are not parallel. Note
that the greatest response of biomass to nitrogen occurred at the highest
water level, while the response was minimal at the lowest level (Maestre &
Reynolds (2007). Thus, low water levels apparently prevent growth even
when nitrogen is abundant.

The analysis also found highly significant main effects of nitrogen (F2,27 =
64.28, P < 0.0001) and water (F2,27 = 456.46, P < 0.0001) on biomass (Fig.
14.13). There were also significant differences between every nitrogen or
water treatment (Fig. 14.14). We can judge the relative strength of these
effects by examining Fig. 14.12 as well as their sum of squares values, which
are a measure of the amount of variation explained by each effect. They
suggest that watering had the most effect on biomass, followed by nitrogen
and the nitrogen × water interaction.



412 CHAPTER 14. ANALYSIS OF VARIANCE (TWO-WAY)

SAS Program

* Maestre_biomass.sas;

title "Two-way ANOVA for total biomass";

title2 "Data from Maestre and Reynolds (2007)";

data maestre;

input nitrogen water biomass;

* Apply transformations here;

y = log10(biomass);

datalines;

40 125 4.372

40 125 4.482

40 125 4.221

40 125 3.977

40 250 7.400

40 250 8.027

40 250 7.883

40 250 7.769

etc.

;

run;

* Print data set;

proc print data=maestre;

run;

* Plot means, standard errors, and observations;

proc gplot data=maestre;

plot y*nitrogen=water / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=maestre;

class nitrogen water;

model y = nitrogen water nitrogen*water;

lsmeans nitrogen water / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.11: Maestre biomass.sas.sas - proc print

Figure 14.12: Maestre biomass.sas.sas - proc gplot
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Figure 14.13: Maestre biomass.sas - proc glm
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Figure 14.14: Maestre biomass.sas - proc glm
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14.3.5 Tests for main effects with interaction

There is disagreement among statisticians on whether tests of the main effects
are appropriate when there is significant interaction. Two different proce-
dures have been developed. The SAS one involves fitting models with and
without a given main effect, but always including interaction terms, yield-
ing what SAS calls Type III sums of squares and tests (Speed et al. 1978,
Shaw & Mitchell-Olds 1993, SAS Institute Inc. 2018). This has the bene-
fit of generating tests for the interaction and main effects in a single pass
(see preceding SAS demo). However, there are authors that believe tests of
the main effects are questionable in the presence of interaction (e.g., Cox
1984, Winer et al. 1991, Stewart-Oaten 1995). One issue is whether a model
with interaction but lacking a main effect is even plausible (Stewart-Oaten
1995). These considerations motivate a different procedure. The first step
is to examine the test for interaction using the full two-way ANOVA model.
If interaction appears weak or absent, there are two alternate ways of test-
ing the main effects. One is to drop the interaction and rerun the model,
examining the main effects in the usual fashion. Another method is to use
what SAS calls Type II sums of squares, obtained using the option \ss2 in
the model statement. The tests based on these sums of squares assume there
is no interaction. If the interaction is significant the main effects tests are
ignored, although one can still test for Factor A effects at each level of Fac-
tor B, or vice versa (Winer et al. 1991). These are called tests of simple
effects, and can be conducted using the SAS slice option for lsmeans.

The modified SAS code to implement these procedures is listed below,
along with the corresponding output for the Example 2 data set. We see that
the nitrogen × water interaction was highly significant (F4,27 = 11.31, P <
0.0001), and so we skip the tests of the main effects (Fig. 14.15). Note that
the main effects sum of squares are identical to our previous ones using SAS
Type III tests, but this would only be true for the special case of balanced
designs with equal n for each treatment (see next section for unbalanced
designs). The slice option is used to test for a nitrogen effect at every level
of water, and vice versa (Fig. 14.16). We see that the effect of nitrogen was
significant at the lowest water level, while highly significant at the other two
levels. It appears the nitrogen effect was smaller at low water levels (see Fig.
14.12). The water effect was highly significant at every level of nitrogen.
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SAS Program

* Two-way ANOVA with interaction;

title3 "MODEL WITH INTERACTION - USE THIS OUTPUT IF INTERACTION SIGNIFICANT";

proc glm plots=diagnostics data=maestre;

class nitrogen water;

model y = nitrogen water nitrogen*water / ss2;

lsmeans nitrogen*water / slice=water slice=nitrogen;

run;

* Two-way ANOVA without interaction;

title3 "MODEL WITHOUT INTERACTION - USE THIS OUTPUT IF INTERACTION NS";

proc glm data=maestre;

class nitrogen water;

model y = nitrogen water / ss2;

lsmeans nitrogen water / adjust=tukey cl lines;

run;
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Figure 14.15: Maestre biomass2 new.sas - proc glm
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Figure 14.16: Maestre biomass2 new.sas - proc glm
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14.4 Unbalanced designs and two-way ANOVA

The examples we have examined so far are balanced designs, with equal num-
bers of observations in each treatment combination. For these designs, the
various sums of squares are independent and additive (SSA +SSB +SSAB +
SSwithin = SStotal), the different methods of calculating the sum of squares
(Type I, II, and III) yield the same results, and the resulting tests are the
same. This is not the case for unbalanced two-way (or higher) designs, which
occur frequently in practice. These are designs where there are fewer obser-
vations in some treatments than others, possible only a single observation.
These designs can be analyzed using the same SAS procedures and programs
as before, but the various sums of squares are no longer additive, and the
tests are not independent (Shaw & Mitchell-Olds 1993). For this reason, if
the lack of balance is severe the analysis should be interpreted with some
caution.

We will use the Example 2 data set, with nine observations removed, to
illustrate the analysis of unbalanced designs (see Table 14.5). The number
of observations varies from n = 1 to 4 across treatments. These data can
be analyzed using the same program as before. To show the results for both
Type II and III sums of squares, the option \ ss2 ss3 was added to the model

statement. Examining the output (Fig. 14.17), we see that the bait × trap
color interaction was nonsignificant (F2,9 = 0.29, P = 0.7563). The color
effect was also nonsignificant (Type II: F1,9 = 0.94, P = 0.3576, Type III:
F1,9 = 0.98, P = 0.3475), but the bait effect was highly significant (Type II:
F2,9 = 8.11, P < 0.0097, Type III: F2,9 = 8.15, P = 0.0096). This is basically
the same result as we obtained earlier for this study, despite the lack of
balance. We can also see that the sums of squares are no longer additive.
For example, with Type III sums of squares we have SSA + SSB + SSAB +
SSwithin = 0.9106 + 0.0549 + 0.0322 + 0.5028 = 1.5005. This does not equal
SStotal = 1.4562.
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Table 14.5: Example 2 - Unbalanced design.

Bait Color T. dubius
FRT B 18
FRT W 12
FRT W 15
FRT W 7
FRT W 4
IDT B 2
IDT B 1
IDT B 4
IDT W 2
IDT W 1
IST B 2
IST B 2
IST B 10
IST B 7
IST W 4
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Figure 14.17: Tdubius bait color unbalanced.sas - proc glm
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14.5 Two-way ANOVA without replication

The designs we have examined so far assume there are multiple observations
for each treatment combination, implying n > 1 for each group. However, it
is possible to analyze studies where there is only replicate per group (n = 1)
although this requires a change in the model. With so little data, it is not
possible to estimate the interaction terms nor easily conduct a test for the
interaction. However, we can fit a simplified model of the form

Yij = µ+ αi + βj + εij. (14.42)

Note that the interaction term is absent. In addition, we no longer need the
third subscript k for the observations because there is only one observation
per treatment group. One can visualize the behavior of this model using the
same figures as for the two-way model with replication (see Fig. 14.3-14.5),
except that the model does not incorporate interaction.

It is important to realize that interaction could still be present
in the data, even though we cannot test for it using this model. If
interaction is present it will reduce the power to detect main effects, because
it adds variability to the observations in a way not accounted for by the
model. Even if interaction is absent, this design will obviously have less
power than a design with replication.

For these designs, we will be interested in testing whether Factor A or B
have an effect on the groups means. For Factor A, this amounts to testing
H0 : all αi = 0, while for Factor B we would test H0 : all βj = 0. No test of
this type is possible for the interaction.

14.5.1 Hypothesis testing

The sums of squares, mean squares, and other quantities for two-way ANOVA
without replication are similar to those for designs with replication. We will
illustrate the calculations using another data set for the insect predator T.
dubius (Example 3, Table 14.6). This predator is most abundant during
cool periods of the year in the southern USA, possibly because it cannot
tolerate high temperatures. A study was conducted to see how temperature
(which we call Factor A) and relative humidity (Factor B) affect the mortal-
ity rate of its eggs in the laboratory (Reeve 2000). Eggs and environmental
chambers were in short supply, however, so only a single replicate was con-
ducted at each temperature and humidity combination. Six temperatures
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(15◦, 20◦, 25◦, 30◦, 35◦, and 37.5◦C) and three relative humidity treatments
(55%, 75%, and 100%) were used. This corresponds to a = 6 and b = 3 in
the formulas below. An arcsine-square root transformation was applied to
the mortality rate observations, a common practice for data in the form of
proportions.

We begin by calculating a mean corresponding to each level of Factor A
by averaging across the levels of Factor B, which we denote as Ȳi·. It can be
calculated using the formula

Ȳi· =

∑b
j=1 Yij

b
. (14.43)

For example, we have

Ȳ1· =
0.379 + 0.325 + 0.615

3
= 0.440 (14.44)

for the first temperature treatment (15◦C) in Example 3. The means for
other temperature values are given in Table 14.6. We similarly can find
means corresponding to each level of Factor B by averaging across the levels
of Factor A. The general formula is

Ȳ·j =

∑a
i=1 Yij
a

. (14.45)

For the first humidity treatment in Example 3, we have

Ȳ·1 =
0.379 + 0.439 + 0.358 + 0.466 + 0.970 + 1.571

6
= 0.697. (14.46)

The means for the other humidity treatments are Ȳ·2 = 0.731 and Ȳ·3 = 0.719.
A grand mean ¯̄Y can then be calculated by averaging across the values of Ȳi·
or equivalently by summing all the observations and dividing by their total
number. It can be generally calculated using the formula

¯̄Y =

∑a
i=1 Ȳi·
a

. (14.47)

For the Example 3 data set, we have

¯̄Y =
0.440 + 0.502 + 0.454 + 0.521 + 0.806 + 1.571

6
= 0.716. (14.48)
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We next develop sums of squares and means squares for this design. The
difference Ȳi· − ¯̄Y is a measure of the shift generated by Factor A in the
observations, and also estimates αi. Squaring and summing them across all
the levels of Factor A, we obtain SSA. It is calculated using the general
formula

SSA = b

a∑
i=1

(Ȳi· − ¯̄Y )2. (14.49)

SSA has a − 1 degrees of freedom. Its mean square is calculated using the
formula

MSA =
SSA
a− 1

. (14.50)

Note the factor b in the expression for SSA, which as usual scales MSA so
that it estimates σ2 under H0. For the Example 3 data, we have

SSA = 3
[
(0.440− 0.716)2 + (0.502− 0.716)2 + · · ·+ (1.571− 0.716)2

]
(14.51)

= 3 [0.076176 + 0.045796 + 0.068644 + 0.038025 + 0.008100 + 0.731025]
(14.52)

= 2.903298 (14.53)

(14.54)

and

MSA =
2.903298

6− 1
= 0.580660. (14.55)

We similarly define SSB using the general formula

SSB = a
b∑

j=1

(Ȳ·j − ¯̄Y )2. (14.56)

SSB has b− 1 degrees of freedom. We can then calculate a mean square for
Factor B using the formula

MSB =
SSB
b− 1

. (14.57)

For the Example 3 data, we have

SSB = 6
[
(0.697− 0.716)2 + (0.731− 0.716)2 + (0.719− 0.716)2

]
(14.58)

= 6 [0.000361 + 0.000225 + 0.000009] (14.59)

= 0.003570. (14.60)
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and

MSB =
0.003570

3− 1
= 0.001785. (14.61)

We now need a measure of the variability of the observations. We previously
used SSwithin for this purpose, which measured the variability of the obser-
vations within each treatment group. However, in two-way designs without
replication there is only a single observation in these groups (n = 1). If we
assume there is no interaction, however, we can use an interaction-like sum
of squares as a measure of variability. In particular, we have

SSwithin =
a∑
i=1

b∑
j=1

(Yij − Ȳi· − Ȳ·j + ¯̄Y )2. (14.62)

The squared terms within this expression measure the difference between the
one observation for each treatment combination and the values predicted by
the model without any interaction. Note the similarity to SSAB for designs
with replication. SSwithin has (a − 1)(b − 1) degrees of freedom, and the
associated mean square is defined by the formula

MSwithin =
SSwithin

(a− 1)(b− 1)
. (14.63)

The last column of Table 14.6 shows the preliminary calculations for SSwithin.
Adding this column across all the treatment groups yields

SSwithin = 0.131334 (14.64)

and

MSwithin =
0.131334

(6− 1)(3− 1)
= 0.013133. (14.65)

The total sum of squares is given by the formula

SStotal =
a∑
i=1

b∑
j=1

(Yij − ¯̄Y )2 (14.66)

and has ab−1 degrees of freedom. For Example 3, we calculate that SStotal =
3.038202 with 17 degrees of freedom.

As before, we can organize the different sum of squares and mean squares
into an ANOVA table. Table 14.7 shows the general layout of such a table
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for two-way designs without replication. We use Fs = MSA/MSwithin to
test for the effect of Factor A. Under H0 : all αi = 0 this statistic has an
F distribution with df1 = a − 1 and df2 = (a − 1)(b − 1). Similarly, we use
Fs = MSB/MSwithin to test for an effect of Factor B. Under H0 : all βj = 0
it has an F distribution with df1 = b− 1 and df2 = (a− 1)(b− 1).

Table 14.8 shows the results for the Example 3 data set, including the F
statistics and P values obtained using Table F. The temperature effect was
highly significant (F5,10 = 44.214, P < 0.001) while humidity was nonsignif-
icant (F2,10 = 0.136, P > 0.100). Examining the data in Table 14.6, we see
that mortality rates sharply increased as temperature increased.
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Table 14.6: Example 3 - Effect of temperature and relative humidity on the mortality rate of T. dubius eggs.
Also shown are the means for each temperature level (Ȳi·) and preliminary calculations to find SSwithin

.

Temp. (◦C) Humidity (%) Mortality Yij = sin−1(
√

Mortality) i j Ȳi· (Yij − Ȳi. − Ȳ.j + ¯̄Y )2

15 55 0.137 0.379 1 1 0.001764
15 75 0.102 0.325 1 2 0.440 0.016900
15 100 0.333 0.615 1 3 0.029584
20 55 0.181 0.439 2 1 0.001936
20 75 0.337 0.619 2 2 0.502 0.010404
20 100 0.188 0.448 2 3 0.003249
25 55 0.123 0.358 3 1 0.005929
25 75 0.259 0.534 3 2 0.454 0.004225
25 100 0.205 0.470 3 3 0.000169
30 55 0.202 0.466 4 1 0.001296
30 75 0.321 0.602 4 2 0.521 0.004356
30 100 0.226 0.495 4 3 0.000841
35 55 0.680 0.970 5 1 0.033489
35 75 0.447 0.732 5 2 0.806 0.007921
35 100 0.431 0.716 5 3 0.008649

37.5 55 1.000 1.571 6 1 0.000361
37.5 75 1.000 1.571 6 2 1.571 0.000225
37.5 100 1.000 1.571 6 3 0.000036
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Table 14.7: General ANOVA table for two-way designs without replication, showing formulas for different
mean squares and F tests.

Source df Sum of squares Mean square Fs
Factor A a− 1 SSA MSA = SSA/(a− 1) MSA/MSwithin
Factor B b− 1 SSB MSB = SSB/(b− 1) MSB/MSwithin
Within (a− 1)(b− 1) SSwithin MSwithin = SSwithin/(a− 1)(b− 1)
Total ab− 1 SStotal

Table 14.8: ANOVA table for the Example 3 data set, including P values for the tests.

Source df Sum of squares Mean square Fs P
Temperature 5 2.903298 0.580660 44.214 < 0.001
Humidity 2 0.003570 0.001785 0.136 > 0.100
Within 10 0.131334 0.013133
Total 17 3.038198
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14.5.2 Two-way ANOVA no replication - SAS demo

We now analyze these same data using SAS. The program is similar to pre-
vious ones for two-way designs with replication, except that the interaction
term needs to be deleted from the model statement. Because there are several
levels of temperature (temp) and relative humidity (rh) in the experimental
design, it seems reasonable to use multiple comparisons to compare the dif-
ferent groups using an lsmeans statement. See SAS program and output
below.

Examining Fig. 14.20, we see a highly significant effect of temperature
on egg mortality (F5,10 = 44.31, P < 0.0001), while the effect of humidity
was nonsignificant (F2,10 = 0.13, P = 0.8777). The results are similar to the
manual calculations in Table 14.6. The Tukey procedure (Fig. 14.21) finds
that 37.5◦C was significantly different from all the other temperatures, while
35◦C was significantly different from 15◦C and 25◦C. No other differences
were significant. There were also no significant differences among the hu-
midity treatments. Figure 14.19 suggests that mortality was constant up to
30◦C, then rapidly increased.

SAS Program

* Clerid_eggs_th.sas;

title "Two-way ANOVA for T. dubius egg mortality";

title2 "No replication";

data mortality;

input temp rh mortrate;

* Apply transformations here;

y = arsin(sqrt(mortrate));

datalines;

15 55 0.137

15 75 0.102

15 100 0.333

20 55 0.181

20 75 0.337

20 100 0.188

25 55 0.123

25 75 0.259

25 100 0.205

30 55 0.202

30 75 0.321

30 100 0.226

35 55 0.680

35 75 0.447
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35 100 0.431

37.5 55 1.000

37.5 75 1.000

37.5 100 1.000

;

run;

* Print data set;

proc print data=mortality;

run;

* Plot means, standard errors, and observations;

proc gplot data=mortality;

plot y*temp=rh / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Two-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=mortality;

class temp rh;

model y = temp rh;

lsmeans temp rh / adjust=tukey cl lines;

run;

quit;
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etc.

Figure 14.18: Clerid eggs th.sas - proc print
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Figure 14.19: Clerid eggs th.sas - proc gplot
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Figure 14.20: Clerid eggs th.sas - proc glm
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Figure 14.21: Clerid eggs th.sas - proc glm
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14.6 Randomized block designs

Suppose that we are interested in the yield of five different strains (A, B,
C, D, and E) of corn, with five replicates per strain. One possible design
would be to randomly assign the strain treatments to 30 small plots scattered
throughout a large field, in a completely randomized design (Fig. 14.22). The
resulting data from this design could be analyzed using one-way ANOVA
(Chapter 11), with strain as the treatment. One problem with this design
is soil fertility, moisture, and other factors could vary across this large field.
This spatial heterogeneity would make it more difficult to see any treatment
effects because it would increase the variance among replicate plots.

A common two-way design, the randomized block design, provides a
possible solution to this spatial heterogeneity problem. Suppose that soil
fertility and moisture are more homogeneous on smaller spatial scales, as
often seems to be true. We could then select six plots within this field,
called blocks, and within sections of each block plant the five corn strains
(see Fig. 14.23). The order of the different treatments within each block
would be randomized, hence the name randomized blocks. This ensures that
the sequence of treatments varies across blocks, and that each treatment
has different strains for neighbors in each block. The resulting data would
then be analyzed using a two-way model with a fixed treatment effect and a
random block effect, which helps account and control for spatial heterogeneity
in the system. The block is considered a random effect because the blocks
are usually selected from a potentially large collection of possible blocks. A
statistical model with both fixed and random effects is called a
mixed model.

Another example of a randomized block design could be insect traps
baited with different attractants, say A, B, C, D, and E. Different stands
in the forest would be the blocks. Five traps would be deployed in each
stand along a transect, with baits randomly assigned to the traps within the
transect. In another type of randomized block design, the blocks are differ-
ent times rather than locations in space. For example, suppose that we want
to test six different diets for rearing fish in ponds, but only have six ponds
available. We could randomly assign the diets to the ponds and conduct the
experiment, obtaining one replicate of each treatment. We would then repeat
the study several more times using the same ponds, with the treatments ran-
domly assigned each time. Each time would be treated as a separate block
in the analysis.
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Figure 14.22: Completely randomized design with five treatments (A, B, C,
D, and E) and six replicates per treatment.

Figure 14.23: Randomized block design with five treatments (A, B, C, D,
and E) and six blocks.
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14.6.1 Randomized block models

There are two effects in a randomized block design, a fixed treatment and
a random block effect, usually denoted as Factor A and B. The model com-
monly used to analyze these designs has the form

Yij = µ+ αi +Bj + εij. (14.67)

Here µ, αi, and εij are defined as in previous models, while Bj ∼ N(0, σ2
B).

The model thus has two variance components, the variance among blocks
(σ2

B) and the variance of εij (σ2).
Note that there is no interaction term in this model, although there could

be interaction in the data. A randomized block design has just one obser-
vation per combination of treatment and block, and so there are insufficient
data to estimate an A × B interaction. However, there are variants of the
randomized block design that have two or more replicates of each Factor A
treatment per block. In this, case, we could fit a model with interaction of
the form

Yij = µ+ αi +Bj + (αB)ij + εij. (14.68)

Here (αB)ij ∼ N(0, σ2
AB). The interaction term in these designs is considered

to be a random effect because it involves the random block effect. This
model has three variance components, the interaction variance (σ2

AB), the
block variance (σ2

B), and the variance of εij (σ2).

14.6.2 Hypothesis testing and variance components

We will use proc mixed in SAS to analyze the data for randomized block de-
signs (SAS Institute Inc. 2018). The default method in SAS estimates the
variance components in the model using a method called restricted maximum
likelihood, or REML. This process involves separating the fixed effects from
the likelihood function, then estimating the variance components of the ran-
dom effects by maximizing this restricted likelihood (hence the name). Once
these are determined, the fixed effects parameters are estimated and F tests
generated for those effects (Littell et al. 1996, McCulloch & Searle 2001).
For a randomized block design, the null hypothesis tested for Factor A would
be H0 : all αi = 0. However, there is no ANOVA table nor related quantities
like sum of squares and mean squares. The emphasis in proc mixed is on the
estimation of variance components rather than tests on them, although tests
can be constructed if necessary (see below).
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14.6.3 Randomized block design - SAS demo

We will illustrate a proc mixed analysis for the randomized block design using
a different trapping study of T. dubius (Reeve et al. 2009). Six different
stands were located in the forest and considered to be blocks. Five traps
were placed in a line at 30 m intervals within each stand, and then a bait
treatment randomly assigned to each trap. There were five such treatments:
blank trap (BLANK), α-pinene (AP), frontalin + α-pinene (FRAP), ipsdienol + α-
pinene (IDAP), and ipsenol + α-pinene (ISAP). As mentioned earlier, frontalin,
ipsdienol, and ipsenol are bark beetle pheromones while α-pinene is a major
component of pine resin. The number of predators caught in each trap was
then counted. See SAS program with data below.

The count data were manipulated in two ways before analysis. A log
transformation was applied to predator counts to ensure the observations
meet the assumptions of ANOVA (see Chapter 15). All observations for the
BLANK treatment were also removed using the statement

if treat="BLANK" then delete;

because this treatment caught no insects. The proc mixed portion of the
program basically implements the model for randomized block designs. We
first need to tell SAS the variables categorizing the groups in the data, using
a class statement. For the trapping study, the variables treat and block

identify the treatment and block variables, so we use the statement

class treat block;

Next, recall that the randomized block model has the form

Yij = µ+ αi +Bj + εij. (14.69)

Here, the SAS variable treat corresponds to αi, the fixed effect in the model,
while block corresponds to Bj, the random effect. One feature of proc mixed

is the separation of fixed and random effects in the model – all fixed effects
are placed in the model statement while random effects are included in the
random statement. Thus, the model statement for the trapping data would be

model y = treat / ddfm=kr;

while the random statement is

random block;



440 CHAPTER 14. ANALYSIS OF VARIANCE (TWO-WAY)

The ddfm=kr option specifies the Kenward-Rogers method of calculating the
degrees of freedom (SAS Institute Inc. 2018), a general method for calcu-
lating the degrees of freedom that works in a variety of circumstances. An
lsmeans statement of the form

lsmeans treat / pdiff=all adjust=tukey adjdfe=row;

is also used to compare the different bait treatments using the Tukey method.
See complete program listing and output below.

From Fig. 14.27, we see there was a highly significant effect of bait treat-
ment on the number of predators trapped (F3,13.9 = 54.68, P < 0.0001).
Note the non-integer degrees of freedom for this F statistic. This has oc-
curred because the data are unbalanced (one observation is a missing value)
and proc mixed is adjusting the test. The Tukey output (Fig. 14.28) shows
a column of adjusted P values, with the adjustment made according to the
Tukey procedure. Adjusted P values less than 0.05 are judged to be signif-
icant. We see that every pair of bait treatments was significantly different
except for IDAP vs. ISAP. The graph (Fig. 14.25) and least squares means
show that FRAP caught the most insects, IDAP and ISAP were intermediate,
while AP caught the fewest.

The proc mixed output also provides estimates of the two variance com-
ponents in the model, the block variance (σ2

B) and the variance of εij (σ2).
They are listed under the Covariance Parameter Estimates in the SAS output
(Fig. 14.27), labeled as block and Residual, along with confidence intervals
for these estimates. We see that the block variance σ2

B = 0.3332 was large
relative to σ2 = 0.1831. The block variance can be directly observed in Fig.
14.25 as the vertical spread between different blocks. In most cases, we are
primarily interested in testing the fixed effects in the model, with the random
effects and their associated variance components of less importance. They
are included in the model and analysis to account and control for spatial
heterogeneity in the observations. We will examine a likelihood ratio test for
the block variance in the next section.



14.6. RANDOMIZED BLOCK DESIGNS 441

SAS Program

* TrapRCBD_clerids.sas;

title "Randomized block ANOVA for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

2 AP 1

2 BLANK 0

2 FRAP 124

2 IDAP 13

2 ISAP 20

3 AP 0

3 BLANK 0

3 FRAP 14

3 IDAP .

3 ISAP 2

4 AP 0

4 BLANK 0

4 FRAP 15

4 IDAP 11

4 ISAP 7

5 AP 0

5 BLANK 0

5 FRAP 29

5 IDAP 7

5 ISAP 7

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;
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run;

* Print data set;

proc print data=trapexp;

run;

* Plot means, standard errors, and observations;

proc gplot data=trapexp;

plot y*treat=block / vaxis=axis1 haxis=axis1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

proc mixed cl plots=residualpanel data=trapexp;

class treat block;

model y = treat / ddfm=kr;

random block;

lsmeans treat / pdiff=all adjust=tukey adjdfe=row;

run;

quit;

etc.

Figure 14.24: TrapRCBD clerids.sas - proc print
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Figure 14.25: TrapRCBD clerids.sas - proc gplot
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Figure 14.26: TrapRCBD clerids.sas - proc mixed
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Figure 14.27: TrapRCBD clerids.sas - proc mixed
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Figure 14.28: TrapRCBD clerids.sas - proc mixed
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14.6.4 Likelihood ratio test for the block effect

In the preceding example, the block variance σ2
B = 0.3332 appeared large

relative to σ2 = 0.1831, the variance due to εij. The block effect was also
clearly visible in Fig. 14.25. A further step would be a test of H0 : σ2

B = 0
vs. H1 : σ2

B > 0. If the test is significant it provides further evidence
for variability among blocks in the density of insects. Littell et al. (1996)
recommend a likelihood ratio test for this purpose.

We can construct this test by fitting two different models to the data,
corresponding to H0 vs. H1. Under H0 : σ2

B = 0 the statistical model for a
randomized block design reduces to

Yij = µ+ αi + εij (14.70)

because Bj = 0 for all j under H0. The statistical model under H1 : σ2
B > 0

is just the full model for randomized block designs:

Yij = µ+ αi +Bj + εij (14.71)

We now need to find maximum likelihood estimates of the model parameters
under both H1 and H0, as well as LH0 and LH1 , the maximum height of the
likelihood function under H0 and H1. We would then use the likelihood ratio
test statistic

−2 ln(λ) = 2 ln(LH1)− 2 ln(LH0). (14.72)

The SAS program below finds the likelihoods for both models using proc mixed.
Two separate calls to proc mixed are required, one for each model. The like-
lihoods are labeled -2 Res Log Likelihood in the output, which is almost the
form required above except for the sign (see Fig. 14.29, 14.30). Examining
the output, we see that −2 ln(LH0) = 47.4 and −2 ln(LH1) = 39.0. We then
have

−2 ln(λ) = −39.0− (−47.4) = −39.0 + 47.4 = 8.4 (14.73)

How do we obtain a P value for this test statistic? For any likelihood ratio
test, the quantity −2 ln(λ) has approximately a χ2 distribution under H0.
The degrees of freedom for the test are equal to the difference in the number
of parameters for the two models (H1 vs. H0). There is a difference in one
parameter between the two models here, because H1 has the block variance
σ2
B while under H0 this is assumed to be zero. We therefore have df = 1, and

from Table C find that P < 0.005. We are actually conducting a one-tailed
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test, however, because H1 is a one-tailed alternative. Thus, the P value is
half this quantity, or P < 0.0025. It appears the variance due to blocks was
highly significant.

We can calculate the P value more exactly using a simple SAS program
(see below). In the data step, the program reads in the values of −2 ln(LH0),
−2 ln(LH1), and df , then calculates the P value using the SAS function
probchi. We find that P = 0.0019 (Fig. 14.31).

SAS Program

* TrapRCBD_clerids_block_test.sas;

title "Randomized block ANOVA for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

etc.

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;

run;

title2 "H0 true - no block effect";

proc mixed cl data=trapexp;

class treat;

model y = treat / ddfm=kr;

run;

title2 "H1 true - there is a block effect";

proc mixed cl data=trapexp;

class treat block;



14.6. RANDOMIZED BLOCK DESIGNS 449

model y = treat / ddfm=kr;

random block;

run;

quit;

Figure 14.29: TrapRCBD clerids block test.sas - proc mixed (1)
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Figure 14.30: TrapRCBD clerids block test.sas - proc mixed (2)
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SAS Program

* lrtpvalue.sas;

title "P-value for likelihood ratio test";

data values;

*Data are -2lnL values under H0 and H1, plus degrees of freedom;

input m2lnLH1 m2lnLH0 df;

m2lnl = -m2lnLH1 - (-m2lnLH0);

* Find P-value;

Pvalue = (1 - probchi(m2lnl,df))/2;

datalines;

39.0 47.4 1

;

run;

proc print data=values;

run;

Figure 14.31: lrtpvalue.sas - proc print
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14.8 Problems

1. An entomologist is interested in how bark beetles respond to traps
baited with two treatments, their own pheromone (P) vs. the pheromone
plus a repellent chemical (PR). They also want to see if trap color (black
vs. white) affects the response of the beetles. They conduct an experi-
ment in which these two factors are randomly assigned to traps in one
section of the forest, with five replicate traps for each treatment. The
counts of bark beetles responding to each trap are listed below.

Bait Trap color Counts for five replicate traps
P Black 138, 569, 196, 139, 726
PR Black 96, 168, 25, 36, 152
P White 174, 99, 293, 67, 122
PR White 52, 27, 11, 57, 93

(a) Write an appropriate ANOVA model for this design, and state
which effects are fixed or random. Is it possible to include an
interaction term in the model?

(b) Use SAS to analyze these data using your ANOVA model, log
transforming the observations. Interpret the results of all the tests.
Attach your SAS program and output.

2. A research group is interested in the effects of diet and temperature on
the growth rate of fish in aquaculture. They conduct an experiment
with three different diet treatments (A, B and C) crossed with three
rearing temperatures (15, 20 and 25◦C). Two fish tanks are assigned to
each treatment combination and the growth rate (g/week) determined
for each tank. The following data were obtained:

Diet Temp Growth rate (two tanks)
A 15 24.7, 22.3
A 20 31.9, 28.9
A 25 32.6, 31.3
B 15 19.6, 14.2
B 20 30.5, 26.5
B 25 25.5, 32.8
C 15 21.1, 21.3
C 20 23.4, 23.4
C 25 28.2, 25.8
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(a) Write an appropriate ANOVA model for this design, and state
which effects are fixed or random. Is it possible to include an
interaction term in the model?

(b) Use SAS to analyze these data using your ANOVA model. You
may use any method for dealing with interactions. Interpret the
results of all the tests.

(c) Use the Tukey method to compare the different diet treatments,
and then the temperature treatments. Interpret the results.



Chapter 15

Assumptions and
Transformations

Analysis of variance as well as regression analysis (see Chapter 17) make a
number of assumptions about the nature of the observations. These assump-
tions are embodied in the statistical model used in the analysis. For example,
recall the model for fixed effects one-way ANOVA:

Yij = µ+ αi + εij. (15.1)

Here µ is the grand mean while αi is the deviation from µ caused by the ith
level of Factor A. The εij term represents random departures from the mean
value predicted by Factor A due to natural variability. It is assumed that
εij ∼ N(0, σ2) and that these random variables are also independent of one
another. We examine these assumptions in more detail below and discuss
how their violation can affect the validity of the statistical analyses. We
then describe how variance-stabilizing transformations are used to fix
certain violations of these assumptions. We also present a common method
for identifying these violations known as residual analysis.

15.1 ANOVA assumptions

15.1.1 Independence of observations

One key assumption embodied in the above model is that the error terms
εij are independent, implying that the observations Yij are also independent.

455
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How would a lack of independence influence the results of ANOVA? The
consensus is that a lack of independence can greatly influence the validity of
ANOVA, including the Type I error rate and power of the F test, as well as
the estimation of group effects (Glass et al. 1972).

As an example of an experimental design where the observations are not
independent, suppose that we conduct an insect trapping experiment with
two bait treatments, A and B. We place all of the bait A traps in one location
and bait B ones in a second location. If location influences the abundance of
insects, we would expect the trap catches at a particular site to be high or
low for this reason, separate of any treatment effect. As a consequence, the
observations at a particular location are related to one another and so not
independent. We would also be more likely to find a bait effect if these data
were analyzed using one-way ANOVA, simply because of the location effect.
Thus, the Type I error rate of the F test would be higher. This combina-
tion of poor experimental design and an inappropriate statistical analysis has
been called pseudoreplication (Hurlbert 1984). While there are multiple
traps within each location, they are not true replicates because the obser-
vations are not independent, and treatment and location effects cannot be
separated. This design basically has only one replicate per treatment, one
for each location.

Fortunately, the assumption of independence will usually be satisfied by
good experimental design and execution (Hurlbert 1984). In the insect bait
experiment, a better experimental design would randomly allocate bait types
to traps at both locations, and the analysis would also include a location
(block) effect in the statistical model. Randomization also helps ensure that
estimates of the treatment effects are unbiased. For example, bait type A
might be messier to use than B, and the experimenter might be tempted to
do those replicates last or place them in a different location. This poten-
tial source of bias by the experimenter is avoided by randomization of the
treatments.

15.1.2 Homogeneity of variances

Another key assumption of ANOVA is that the variance is similar among
treatment groups, also known as the homogeneity of variances assumption
or homoscedasticity. This follows from the assumption that εij has a
variance of σ2 regardless of the treatment group. We can also see this from a
graphical presentation of the one-way ANOVA model, where each treatment
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group has the same distribution with the same variance except for shifts due
to Factor A (see Fig. 11.1 in Chapter 11). The condition of unequal variances
is also called heteroscedasticity.

If the homogeneity of variances assumption is not satisfied this can strongly
affect the validity of the F test in ANOVA, especially when the design is un-
balanced (Glass et al. 1972). If the treatments with higher variances have
smaller sample sizes, then the actual Type I error rate will be higher than its
nominal value (say α = 0.05). Conversely, if the treatments with higher vari-
ances have larger sample sizes, the actual Type I error rate will be smaller
than its nominal value. We will see later in this chapter how variance-
stabilizing transformations can be used to equalize the variance among
groups, making the observations better conform to this assumption.

15.1.3 Normality

A further assumption of ANOVA is that the error term εij is normally dis-
tributed, and as a consequence so are the observations (Yij values). The
assumption of normality appears to be less important for the validity of
ANOVA than homogeneity of variances. Many studies indicate that the
ANOVA F test has the nominal Type I error rate (α = 0.05) even when
the observations have distributions quite different from the normal, although
power may be increased or decreased relative to the normal (see Table 16,
Glass et al. 1972). For large values of n per group, ANOVA is likely to be a
valid procedure regardless of the distribution of the observations due to the
central limit theorem (Chapter 7). In practice, a transformation that equal-
izes the variance among groups also seems to normalize the observations,
solving both problems.

15.1.4 Absence of outliers

An assumption of ANOVA related to normality is the absence of outliers.
Outliers are observations that lie far from the other observations
in a particular study. The source of the outlier could be a rare biological
event, or simply a data entry error or bad measurement with an instrument.
Because it lies far from the other observations, an outlier will increase the
size of MSwithin and alter the estimated effect of its treatment group. If
the outlier is a data error then there is justification for deleting it from the
observations. If the source is unclear or the outlier is a valid observation, then
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one common approach is to conduct the statistical analysis with and without
the outlier and present both results. Outliers can be often be identified using
residual analysis (see below).

15.1.5 Additivity

ANOVA models are known as additive models because the observations are
modeled as the sum of several factors. For example, the model for two-way
fixed effects ANOVA without replication is

Yij = µ+ αi + βj + εij. (15.2)

Thus, the Yij values are modeled as the sum of the grand mean, the effects
of Factor A and B, and a random term representing variability among the
observations. Additivity of effects is a basic assumption of ANOVA.

However, some biological processes like survival and reproduction are
inherently multiplicative processes. For example, suppose our observations
are the number of offspring surviving to maturity from a single female. This
number will be the product of the fecundity of the female and the survival
rate of the offspring. We now apply a number of treatments that could
potentially influence both these factors. The resulting observations could be
described using the model

Yij = λsifjγij, (15.3)

where λ is the average number of offspring surviving to maturity, while si
and fj are the differential effects of the survival and fecundity treatments.
The term γij is a multiplicative error term with a distribution that takes only
positive values, and it is typically required that E[γij] = 1. Note that these
must all be positive quantities in order for the number of offspring (Yij) to
be positive.

Can data of this type be analyzed using ANOVA? The answer is yes,
because we can use a log transformation to make the data additive. Taking
the log of both sides of this model, we obtain

log Yij = log λ+ log si + log fj + log γij. (15.4)

The result is an additive model the same as for unreplicated two-way ANOVA,
and the data can be analyzed using standard ANOVA methods. This is one
reason why studies of reproduction and survival as well as population dy-
namics routinely use the log transformation.
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15.2 Variance-stabilizing transformations

Variance-stabilizing transformations are often used by statisticians to equal-
ize the variance of observations across different treatment groups, so that the
homogeneity of variances assumption is better satisfied. We have already em-
ployed these transformations in some of our analyses, including the log and
arcsine-square root transformations.

The different transformations are derived as follows. Suppose we have a
random variable Y that describes the data, and there is a functional rela-
tionship between its variance V ar[Y ] = v and its mean E[Y ] = m. More
specifically, suppose that we have

v = f(m) (15.5)

where f is some function. For example, with the Poisson distribution for
parameter λ we have V ar[Y ] = E[Y ] = λ (Chapter 7), and so v = m is the
functional relationship. It can then be shown that a function g that satisfies
the equation

g(m) =

∫
θdm√
f(m)

, (15.6)

where θ is a constant, will be a variance-stabilizing transformation (Bartlett
1947). To see how this process works, suppose that a random variable Y has
a Poisson distribution. We find that

g(m) =

∫
θdm√
m

= θ
m1/2

1/2
+ C = 2θ

√
m+ C ∝

√
m. (15.7)

Thus, the variance-stabilizing transformation for Poisson data is
√
Y .

As another example, suppose that v = m2 so that the variance increases
with the square of the mean. Negative binomial data will have this form for
large m, because v = m + m2/k for this distribution (Chapter 7). For this
relationship between v and m, we have

g(m) =

∫
θdm√
m2

=

∫
θdm

m
= θ logm+ C ∝ logm, (15.8)

implying that log Y is the variance-stabilizing transformation. Either natural
or base 10 log transformations can be used and will yield identical results
for the statistical tests in ANOVA. The log Y transformation is a ‘stronger’
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transformation than the
√
Y because it corrects for a stronger relationship

between v and m.
A variance-stabilizing transformation is also needed for proportions, be-

cause the variance of a proportion depends on its mean. To see this, suppose
that we observe l different individuals from some population and record their
sex. Let Y be the number of individuals in the sample that are female. The
variable Y would be a binomial random variable with parameters l and p,
where p is the proportion of females in the population, and so E[Y ] = lp
and V ar[Y ] = lp(1 − p) (see Chapter 5). Then, a binomial proportion
would be Y/l, the proportion of females in the sample. For this proportion,
we have E[Y/l] = lp/l = p while V ar[Y/l] = lp(1 − p)/l2 = p(1 − p)/l. If
we set m = p, then v = V ar[Y/l] = m(1 − m)/l and so v is a function of
m. Using the same method as above, we find that the variance-stabilizing
transformation for binomial proportions is sin−1(

√
Y ) or arcsin(

√
Y ). This

transformations maps proportions from 0 to 1 to the interval 0 to π/2. The
largest effect of the transformation is on proportions close to 0 or 1.

Table 15.1 lists the commonly used variance-stabilizing transformations.
Also listed are variants of the transformations that are useful when the data
include zeroes, as often occurs in count data. In the next section, we will
illustrate the use of these transformations, and how the appropriate trans-
formation can be determined through residual analysis.

Table 15.1: Variance-stabilizing transformations for various v = f(m) and
the data for which they are useful.

v = f(m) Transformation Comments

v = m
√
Y ,
√
Y + 1/2 (zeroes) Poisson data

v = m2 log Y, log(Y + 1) (zeroes) Overdispersed count data,
many other types

v = m(1−m)/l arcsin(
√
Y ) Proportions

15.3 Residual analysis

The details of residual analysis are presented in this section. We begin by
defining predicted and residual values using one-way ANOVA as an example,
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for both fixed and random effects (similar results hold for more complex de-
signs). We then illustrate residual analysis and the use of variance-stabilizing
transformations with some examples.

15.3.1 Models, estimates, and predictors

ANOVA is based on statistical models that contain a number of parameters.
For example, the statistical model for fixed effects one-way ANOVA has the
form

Yij = µ+ αi + εij, (15.9)

where µ is the grand mean, αi is the deviation from the µ caused by the
ith treatment, and εij ∼ N(0, σ2). We saw earlier how likelihood methods
could be used to estimate the parameters µ, αi, and σ2 for this model. For
the random effects version, the model contained a random variable Ai ∼
N(0, σ2

A), and is written as

Yij = µ+ Ai + εij. (15.10)

The parameters in this model are µ, σ2
A, and σ2, and these quantities can

also be estimated using likelihood methods. It is also possible to estimate the
random variable Ai itself, more specifically the value realized in a particular
group and study. Estimators of Ai are often called predictors in this con-
text, because they concern random variables rather than model parameters
(Searle et al. 1992).

15.3.2 Predicted and residual values

We can use these estimates to generate a predicted value for each observa-
tion Yij in the data set. For the fixed effects model listed above, the predicted

value of Yij is Ŷij = µ̂ + α̂i, where µ̂ and α̂i are the estimated values of µ
and αi. Note that all observations in the ith group would have the same
predicted value.

What actually are the predicted values here? Recall that for the fixed
effects model, the maximum likelihood estimates of these parameters are

µ̂ = ¯̄Y (15.11)

and
α̂i = Ȳi· − ¯̄Y. (15.12)
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Thus,

Ŷij = µ̂+ α̂i = ¯̄Y + Ȳi· − ¯̄Y = Ȳi·. (15.13)

So, the predicted value for the ith group is just the mean of that group.

Similarly, for the random effects model the predicted value of Yij is Ŷij =

µ̂+ Âi, where µ̂ = ¯̄Y and Âi is the predictor of Ai. It turns out that the best
predictor for the realized value of Ai is ‘shrunk’ relative to αi and has the
form

Âi =
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.14)

(Searle et al. 1992). It depends on σ2
A and σ2 as well as Ȳi· and ¯̄Y . It follows

that

Ŷij = µ̂+ Âi = ¯̄Y +
σ2
A

σ2
A + σ2/n

(Ȳi· − ¯̄Y ) (15.15)

for the random effects model. Thus, Ŷij is not equal to Ȳi· in this situation

but lies closer to the grand mean ¯̄Y , unless n is large. In practice, estimates
of the two variance components are used to generate the predicted value.

In assessing the validity of our statistical models, we will also be interested
in the residuals of the observations, which are defined as the difference
Yij − Ŷij. The residuals essentially provide an estimate of the error term εij
for each observation, which we can call ε̂ij. Why is this so? The model for
one-way ANOVA can be expressed as

Yij − (µ+ αi) = εij. (15.16)

If we insert estimates for µ and αi in this equation, we obtain an estimate of
εij:

Yij − (µ̂+ α̂i) = Yij − Ŷi = ε̂ij. (15.17)

There is an interesting relationship between these residual values and
MSwithin. Suppose that we use the sample variance of the ε̂ij values to
estimate the variance of εij, namely σ2. The sum of squares associated with
this sample variance is

SS =
a∑
i=1

n∑
j=1

(ε̂ij)
2 =

a∑
i=1

n∑
j=1

(Yij − (µ̂+ α̂i))
2 , (15.18)
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and the degrees of freedom are a(n − 1). Dividing SS by its degrees of
freedom, we obtain an estimator of σ2 based on the residuals:

σ̂2 =

∑a
i=1

∑n
j=1 (Yij − (µ̂+ α̂i))

2

a(n− 1)
. (15.19)

How is this quantity related to MSwithin, our other estimate of σ2? If we
plug µ̂ = ¯̄Y and α̂i = Ȳi· − ¯̄Y into this equation, we obtain

σ̂2 =

∑a
i=1

∑n
j=1

(
Yij − ( ¯̄Y + Ȳi· − ¯̄Y )

)2

a(n− 1)
(15.20)

=

∑a
i=1

∑n
j=1

(
Yij − Ȳi·)

)2

a(n− 1)
(15.21)

= MSwithin. (15.22)

Thus, MSwithin can be expressed in terms of the residuals from the ANOVA
estimation process. This relationship is true for all ANOVA models (and
regression as well). Because MSwithin can be expressed using the residual
or error terms, MSwithin is also called MSresidual or MSerror, and SSwithin
similarly named SSresidual or SSerror. This terminology is used in SAS output
as well.

It is also possible to express MSamong in terms of the maximum likelihood

estimates of the parameters. Because α̂i = Ȳi· − ¯̄Y , we have

MSamong =
n
∑a

i=1(Ȳi· − ¯̄Y )2

a− 1
=
n
∑a

i=1 α̂
2
i

a− 1
. (15.23)

From this result, it is clear that MSamong is an increasing function of the
values of α̂i, the estimated treatment effects (Winer et al. 1991).

15.3.3 Evaluating ANOVA assumptions

Residuals play a key role in determining if a particular data set satisfies the
assumptions of ANOVA. They can be used to evaluate three of the assump-
tions: (1) homogeneity of variances among groups, (2) absence of outliers,
and (3) normality of the error terms.

We can evaluate the homogeneity of variances assumption through a plot
of the residuals vs. predicted values. If the variances are homoge-
neous among groups, the points should be equally scattered for
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each group. This is because the residuals are estimates of the εij values
and are supposed to have the same variance across groups. If the residual vs.
predicted plot shows a definite pattern, such as a increase or decrease in the
scatter as the predicted values increase, this suggests a variance-stabilizing
transformation may be needed. This type of plot is also useful for detecting
any outliers in the data. If an outlier is present it will have a very
large residual value. The normality assumption can be evaluated using a
normal quantile plot of the residuals. If the residuals are normal, then
this plot will be a straight diagonal line.

15.3.4 Residual analysis and transformations - SAS
demo

We will illustrate residual analysis and the use of transformations with data
from a trapping study of the predatory insect Thanasiumus dubius (Reeve
et al. 2009). This study used a randomized block design with five bait
treatments and six blocks, previously analyzed in Chapter 14. Note that the
model for this design contains both fixed and random effects, but predicted
values and residuals can still be generated through a more complex process
(Searle et al. 1992)

The complete program for this example is listed below for reference. We
can generate a residual vs. predicted plot, and a normal quantile plot, by
adding the option plots=residualpanel to the proc mixed statement. We first
analyze the data using no transformation by setting y = count in the data

step. Examining the residual vs. predicted plot, we see an increase in the
scatter of the residuals as the predicted values increase (Fig. 15.1, top left),
especially for the largest predicted values. This implies that the variance
of the observations increases with their mean (v is some function of m). In
addition, the normal quantile plot (bottom left) does not appear to be a
straight diagonal line. Neither assumption appears to be satisfied in this
analysis.

We next analyze the data using a square root transformation by setting
y = sqrtcount in the data step. The residual vs. predicted plot shows less
scatter of the residuals for larger predicted values, although there is still
some spread (Fig. 15.2). The normal quantile plot is now a straight diagonal
line.

We then try a log transformation of the data, setting y = logcount in the
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data step. The residual vs. predicted plot shows the same scatter across
the range of predicted values (Fig. 15.3), and the normal quantile plot is
a straight diagonal line. This is the desired outcome with the data now
satisfying the homogeneity of variances and normality assumptions. There
also appear to be no outliers (extreme residual values) in these observations.
We can then proceed to interpret the rest of the analysis, such as
the F test and multiple comparisons. They should be valid at this
point because the ANOVA assumptions are satisfied. See Chapter
14 for the interpretation of this analysis.
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SAS Program

* TrapRCBD_clerids.sas;

title "Randomized block anova for trapping experiment data";

data trapexp;

input block $ treat $ count;

* Apply transformations here;

sqrtcount = sqrt(count);

logcount = log(count+1);

* Choose which variable is used for plots and anova;

y = logcount;

* Delete blank traps;

if treat="BLANK" then delete;

datalines;

1 AP 4

1 BLANK 0

1 FRAP 79

1 IDAP 7

1 ISAP 10

2 AP 1

2 BLANK 0

2 FRAP 124

2 IDAP 13

2 ISAP 20

3 AP 0

3 BLANK 0

3 FRAP 14

3 IDAP .

3 ISAP 2

4 AP 0

4 BLANK 0

4 FRAP 15

4 IDAP 11

4 ISAP 7

5 AP 0

5 BLANK 0

5 FRAP 29

5 IDAP 7

5 ISAP 7

6 AP 2

6 BLANK 0

6 FRAP 70

6 IDAP 14

6 ISAP 20

;
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run;

* Print data set;

proc print data=trapexp;

run;

* Plot means, standard errors, and observations;

proc gplot data=trapexp;

plot y*treat=block / vaxis=axis1 haxis=axis1;

symbol1 i=j v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Mixed model analysis;

proc mixed cl plots=residualpanel data=trapexp;

class treat block;

model y = treat / ddfm=kr;

random block;

lsmeans treat / pdiff=all adjust=tukey;

run;

quit;
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Figure 15.1: TrapRCBD.sas - proc mixed (no transform)

Figure 15.2: TrapRCBD.sas - proc mixed (
√
Y transform)
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Figure 15.3: TrapRCBD.sas - proc mixed (ln(Y + 1) transform)
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15.3.5 arcsin(
√
Y ) transformation - SAS demo

As another example of residual analysis and transformation, we will ana-
lyze the observations from an experiment involving an insect predator and
the survival of a pest insect on which it feeds. Plots are established each
containing 20 pest insects, and a predator treatment (0, 1, or 2 predators)
randomly assigned to each plot. There were n = 10 plots per predator treat-
ment. The proportion of pest insects surviving was determined for each plot.
We will analyze this experiment using one-way ANOVA and proc glm, with
the predator treatment a fixed effect. Residual plots can be requested using
the option plots=diagnostics. See complete program below.

We first analyze these data using untransformed proportions, using y = prop

in the data step, where prop is the proportion of surviving pest insects. Ex-
amining the residual vs. predicted plot (Fig. 15.4, top left), we see that
the variability of the observations for one treatment is smaller. This is the
0 predator treatment and has a very high survival rate. The normal quan-
tile plot (second row, left) is a straight diagonal line, so this assumption is
apparently satisfied.

We then analyze the experiment using the transformation arcsin(
√
Y )

where Y is the proportion, using y = arsin(sqrt(prop)) in the data step. The
residual vs. predicted plot shows an equal scatter of the residuals across
the predicted values, suggesting the homogeneity of variances assumption is
satisfied (Fig. 15.5). The normal quantile plot is a straight diagonal line
once more. What has happened here? The transformation has spread out
the survival rates for the 0 predator treatment, thus equalizing the variances
among the treatment groups.

Examining the ANOVA output (Fig. 15.8), we see there was a highly
significant effect of the predator treatment on the survival rate of the pest
insect (F2,27 = 21.26, P < 0.0001). Pest survival decreased as the number of
predators increased (Fig. 15.7).
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SAS Program

* arcsine.sas;

title ’One-way ANOVA for proportions’;

data arcsine;

input predators survivors;

prop = survivors/20;

* Apply transformations here;

y = arsin(sqrt(prop));

datalines;

0 18

0 18

0 18

0 16

0 19

0 19

0 17

0 18

0 20

0 17

1 14

1 17

1 15

1 10

1 17

1 14

1 13

1 17

1 14

1 15

2 12

2 16

2 16

2 12

2 6

2 12

2 13

2 10

2 9

2 10

;

run;

* Print data set;

proc print data=arcsine;

run;
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* Plot means, standard errors, and observations;

proc gplot data=arcsine;

plot y*predators=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way anova with all fixed effects;

proc glm plots=diagnostics data=arcsine;

class predators;

model y = predators;

run;

quit;
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Figure 15.4: arcsine.sas - proc glm (no transform)
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Figure 15.5: arcsine.sas - proc glm (arcsin(
√
Y ) transform)
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etc.

Figure 15.6: arcsine.sas - proc print
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Figure 15.7: arcsine.sas - proc gplot
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Figure 15.8: arcsine.sas - proc glm
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15.3.6 Transformations when data are limited

In many real studies, we will have insufficent data to determine the appropri-
ate variance-stabilizing transformation using residual analysis. For example,
we may not have enough points to determine if the variance is related to
the mean, or whether the normality assumption is satisfied. In this situa-
tion you may have to guess the appropriate transformation. For count data
you would use the

√
Y or log Y transformation. Most count data are more

overdispersed or clumped than the Poisson distribution, however, and so the
log Y transformation will usually be a better choice than

√
Y . You would

use the arcsin(
√
Y ) transformation for proportion data, especially if there

are some proportions near 0 or 1.
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Chapter 16

Nonparametric Tests

The statistical tests we have examined so far are called parametric tests,
because they assume the data have a known distribution, such as the normal,
and test hypotheses about the parameters of this distribution. Examples
of such tests are the F test in ANOVA, and one- or two-sample t tests.
Parametric tests can also be constructed for other distributions, such as the
Poisson and binomial.

While ANOVA and other procedures are derived assuming the data are
normal, they can also be validly applied to non-normal data provided sample
sizes are large, due to the central limit theorem (Glass et al. 1972). For
example, the means used in the ANOVA F tests are assumed to have a
normal distribution, which will be true for normal data. This will also hold
for non-normal data, provided the sample sizes are sufficiently large for the
central limit theorem to operate (Chapter 7). Thus, the tests used in ANOVA
will still be valid for large sample sizes, regardless of the distribution of the
data. Valid in this context means the tests have the correct Type I error rate
(such as α = 0.05) and power levels.

There are conditions where parametric procedures are less than ideal,
such as non-normal data and relatively small sample sizes. We cannot rely on
the central limit theorem here, and so parametric tests based on the normal
distribution might be invalid. Nonparametric tests are often useful in this
situation, because they do not assume a particular probability distribution
for the data. For this reason they are also known as distribution-free
methods. Nonparametric tests can be more powerful than parametric tests
for non-normal data (Conover 1999; Hollander et al. 2014). The increase
in power can be substantial for distributions with heavy tails compared to

481
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the normal distribution, which implies that extreme observations are more
common. While nonparametric tests are less powerful than parametric ones
for normal data, the loss of power is often quite minimal.

We will examine three types of nonparametric tests for one-way designs.
The first are tests based on ranks. These replace the data values with their
rank values, obtained by ordering the data from smallest to largest. They
then utilize test statistics that are functions of these ranks rather than the
original data values. We will cover rank tests for two or more groups, in par-
ticular the Wilcoxon and Kruskal-Wallis tests (Conover 1999; Hollander et
al. 2014). They are used to test whether the distributions for each group dif-
fer in location, and serve a function similar to parametric tests like one-way
ANOVA. We will also examine the two-sample Kolmogorov-Smirnov test,
which can detect differences in both the shape and location of two distribu-
tions (Conover 1999; Hollander et al. 2014). It makes use of the empirical
distribution function for each group, the empirical counterpart of the cu-
mulative distribution function for continuous random variables (Chapter 6).
The last type of nonparametric test we will consider are randomization tests.
These tests examine whether the data are consistent with a null hypothesis of
randomness (Hinkelmann & Kempthorne 1994; Manly 1997). The behavior
of a test statistic (often a parametric one like an F statistic) is examined
under this null hypothesis, in a process that involves randomly permuting or
rearranging observations across the groups many times.

We will use data from a study of chitons (a kind of mollusk) in the inter-
tidal zone (Flores-Campaña et al. 2012) to illustrate the use of nonparametric
tests. Populations of Chiton albolineatus were sampled from three islands in
Mazatlan Bay, Mexico. For each island, samples were taken from sites that
were exposed or sheltered from wave action, and the body length of the chi-
tons measured. The authors found that the distribution of chiton length
was non-normal, and so used the nonparametric Kruskal-Wallis test to com-
pare the lengths of chitons across islands and sites. They found significant
differences in length among various combinations of island and site, and a
tendency for chiton to be larger in exposed sites. We will use a small subset
of these data in our calculations, shown in Tables 16.1 and 16.2.
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Table 16.1: Example 1 - Body lengths of Chiton albolineatus in the intertidal
zone of the island of Venados (Flores-Campaña et al. 2012). Chitons were
sampled from sites sheltered or exposed to wave action. Also shown are the
rank values (Rij) for each observation, and the sum of the ranks for each
groups (

∑ni
j=1 Rij, where ni is the sample size for each group.)

Site Yij = Length (mm) Rij i j
∑ni

j=1Rij

Sheltered 44.39 20 1 1
Sheltered 22.30 3 1 2
Sheltered 21.31 2 1 3
Sheltered 23.80 5 1 4
Sheltered 26.23 8 1 5 70
Sheltered 27.98 10 1 6
Sheltered 28.10 11 1 7
Sheltered 24.39 6 1 8
Sheltered 22.32 4 1 9
Sheltered 15.16 1 1 10
Exposed 30.20 16 2 1
Exposed 29.36 14 2 2
Exposed 28.88 12 2 3
Exposed 32.23 19 2 4
Exposed 26.54 9 2 5 140
Exposed 24.85 7 2 6
Exposed 30.54 17 2 7
Exposed 31.36 18 2 8
Exposed 28.98 13 2 9
Exposed 29.49 15 2 10
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Table 16.2: Example 2 - Body length of C. albolineatus on the sheltered side
of three islands, located in Mazatlan Bay, Mexico (Flores-Campaña et al.
2012). Also shown are the rank values (Rij) for each observation, and the
sum of the ranks for each group (

∑ni
j=1Rij)

Site Yij = Length (mm) Rij i j
∑ni

j=1Rij

Lobos 23.86 16 1 1
Lobos 20.20 6 1 2
Lobos 29.32 27 1 3
Lobos 23.56 13 1 4
Lobos 24.32 17 1 5 157
Lobos 22.33 12 1 6
Lobos 23.69 14 1 7
Lobos 26.78 21 1 8
Lobos 27.32 23 1 9
Lobos 21.22 8 1 10

Pajaros 32.90 29 2 1
Pajaros 32.73 28 2 2
Pajaros 26.94 22 2 3
Pajaros 29.09 26 2 4
Pajaros 12.32 1 2 5 142
Pajaros 15.25 5 2 6
Pajaros 25.87 19 2 7
Pajaros 20.21 7 2 8
Pajaros 13.96 3 2 9
Pajaros 12.48 2 2 10
Venados 44.39 30 3 1
Venados 22.30 10 3 2
Venados 21.31 9 3 3
Venados 23.80 15 3 4
Venados 26.23 20 3 5 166
Venados 27.98 24 3 6
Venados 28.10 25 3 7
Venados 24.39 18 3 8
Venados 22.32 11 3 9
Venados 15.16 4 3 10
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16.1 Wilcoxon two-sample test

The Wilcoxon test provides a nonparametric alternative to a two-sample t
test or a one-way ANOVA for two groups (see Chapter 11). It does not
assume any particular distribution of the data, except that it is a continuous
one (see Chapter 6). The null and alternative hypotheses for the Wilcoxon
test are expressed in terms of the cumulative distribution for the two groups,
say F1(y) and F2(y). Under the null hypothesis the two distribution are
supposed to be identical, which can be expressed as H0 : F2(y) = F1(y) for
all y (Fig. 16.1). Under the alternative, one distribution is shifted from
the other by a distance ∆, but they otherwise have the same shape (Conover
1999; Hollander et al. 2014). This can be expressed as H1 : F2(y) = F1(y−∆)
(Fig. 16.2).

Figure 16.1: Cumulative distributions for two groups under H0 : ∆ = 0.

The Wilcoxon test statistic W is based on the ranks of the observations.
The observations are first assigned ranks from the smallest to the largest
across the two groups. The test statistic is then the sum of the ranks for
one of the groups. Typically the one with the smallest sample size is chosen,
or if the sample sizes are equal, one is arbitrarily selected (SAS uses group
order). For the Example 1 data the sample sizes are equal, so we could use
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Figure 16.2: Cumulative distributions for two groups under H1 : ∆ = 10.

the summed ranks for the Sheltered chiton group, namely

W =

n1∑
j=1

R1j = 70 (16.1)

(Conover 1999; Hollander et al. 2014). We would expect small values of
this statistic when F1 is located to the left of F2 (∆ > 0), because this
implies that values of Y1j are more likely to be small relative to Y2j ones.
Conversely, large values of the statistic would occur when F1 is to the right of
F2 (∆ < 0). W is also sensitive to differences in the expected values (means)
of the two distributions, because of the relationship between expected values
and distributions. For a two-tailed test, we would reject H0 if W is sufficiently
large, or sufficiently small. An exact P value for both one- and two-tailed
tests can be calculated using the distribution of W . We will let SAS handle
the calculations for exact tests.

For large sample sizes, the distribution of W under H0 approaches the
normal distribution with mean and variance given by

EH0 [W ] =
n1(n1 + n2 + 1)

2
(16.2)

and

V arH0 [W ] =
n1n2(n1 + n2 + 1)

12
. (16.3)
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The expected value formula assumes W is calculated using the first group.
We then have

Z =
W − EH0 [W ]√
V arH0 [W ]

∼ N(0, 1) (16.4)

for large sample sizes. We can use this approximation to find P values for
both one- and two-tailed tests (Hollander et al. 2014).

The Wilcoxon statistic W can be derived starting with a two-sample t
test (see Chapter 11), and simply replacing the observations with their rank
values (Bickel & Doksum 1977). It is also equivalent to the Mann-Whitney
U test, another common nonparametric test. Modifications of the Wilcoxon
test are also available to deal with the problem of tied observations. The
tied observations are assigned the average of the tied ranks, and the variance
equation is modified to account for the number of ties (Hollander et al. 2014).

Wilcoxon test - sample calculation

For the Example 1 data, we see that W = 70 for the Sheltered chitons (see
Table 16.1). We will use the normal approximation for this statistic to obtain
a two-tailed P value for the test. We have EH0 [W ] = 10(10+10+1)/2 = 105
and V arH0 [W ] = 10 · 10(10 + 10 + 1)/12 = 175, and so

Z =
70− 105√

175
= −2.646. (16.5)

From Table Z, we find that P [Z < −2.646] = 1−P [Z < 2.646] ≈ 1−0.9960 =
0.0040. The two-tailed P value is then twice this value, or P = 2(0.0040) =
0.0080.

16.1.1 Wilcoxon test for Example 1 - SAS demo

We now conduct the Wilcoxon test using the Example 1 data and the SAS
procedure npar1way, which implements a number of nonparametric procedures
for one-way (single factor) designs (SAS Institute Inc. 2018). See program
listing below. The Wilcoxon test is invoked by adding the wilcoxon option
in the proc npar1way statement. The class statement identifies the group
variable, while var selects the dependent variable. The exact wilcoxon line
generates exact P values for the test. The program also includes proc gplot

code to plot the group means (SAS Institute Inc. 2016a). For purposes
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of comparison, a one-way ANOVA is also conducted using proc glm. See
program and output below (Fig. 16.3-16.6).

We see that the Wilcoxon two-tailed test was highly significant, for both
the exact test (W = 70, P = 0.0068) and the normal approximation (Z =
−2.6080, P = 0.0091). The value of Z calculated by SAS differs slightly from
our earlier result, because it includes a correction that improves the normal
approximation. From the summed ranks for each group, as well as the graph,
it appears that the Sheltered chitons were smaller than the Exposed ones.
Note that the parametric one-way ANOVA for these data was non-significant
(F1,18 = 2.13, P = 0.1619). This likely occurred because of one very large and
one small chiton at the Sheltered site, which would be outliers in the ANOVA.
In the analysis using ranks, these are simply the largest and smallest rank
values, only one step away from the next ones.
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SAS Program

* WKWtest_chitons_Venados.sas;

title ’Wilcoxon and Kruskal-Wallis tests for chiton length’;

data chitons;

input site :$10. length;

datalines;

Sheltered 44.39

Sheltered 22.30

Sheltered 21.31

Sheltered 23.80

Sheltered 26.23

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Plot means, standard error, and observations;

proc gplot data=chitons;

plot length*site / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Kruskal-Wallis/Wilcoxon tests;

proc npar1way wilcoxon data=chitons;

class site;

var length;

exact wilcoxon;

run;

* One-way ANOVA for comparison;

proc glm data=chitons;

class site;

model length = site;

run;

quit;
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Figure 16.3: WKWtest chitons Venados.sas - proc print



16.1. WILCOXON TWO-SAMPLE TEST 491

Figure 16.4: WKWtest chitons Venados.sas - proc gplot
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Figure 16.5: WKWtest chitons Venados.sas - proc npar1way
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Figure 16.6: WKWtest chitons Venados.sas - proc glm
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16.2 Kruskal-Wallis test

The Kruskal-Wallis test is an extension of rank methods to one-way designs
with three or more groups. The null and alternative hypotheses are similar to
the Wilcoxon test, with the cumulative distributions for the different groups
the same under H0, and differing by shift parameters under H1. The Kruskal-
Wallis test is sensitive to these shifts as well as differences among the means
of the groups.

The Kruskal-Wallis test statistic H is calculated using the ranks of the
observations across all groups. Suppose we have a different groups, and for
simplicity assume the same sample size n for each group. The Kruskal-Wallis
test statistic is

H =
12n

an(an+ 1)

a∑
i=1

(∑n
j=1Rij

n
− an+ 1

2

)2

(16.6)

(Conover 1999; Hollander et al. 2014). Note that the left term in parentheses
is the mean rank for each group, while the right one is the mean rank across
all the groups. This implies that H will become large when the mean rank
differs among groups, similar to the way differences in the group means affect
the F statistic for one-way ANOVA. In fact, the Kruskal-Wallis statistic can
be derived from the F test by substituting ranks for the observations (Bickel
& Doksum 1977). A more complex form of H is used when sample sizes are
unequal, or when there are ties in the data. Under H0, H has approximately
a χ2 distribution with a− 1 degrees of freedom.

Kruskal-Wallis test - sample calculation

We will illustrate the Kruskal-Wallis test using both the Example 1 and 2
data sets. For Example 1, we have two groups with ten observations each, so
a = 2 and n = 10. The summed ranks for the two groups are 70 (Sheltered)
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and 140 (Exposed). It follows that

H =
12 · 10

2 · 10(2 · 10 + 1)

[(
70

10
− 2 · 10 + 1

2

)2

+

(
140

10
− 2 · 10 + 1

2

)2
]

=
120

420

[
(7− 10.5)2 + (14− 10.5)2

]
= 0.2857 [12.25 + 12.25]

= 7.00.

The degrees of freedom are a − 1 = 2 − 1 = 1. From Table C, we find
that P < 0.01, and so the Exposed and Sheltered chitons were significantly
different in length (H = 7.00, df = 1, P < 0.01).

The Example 2 data involves chitons collected from three different islands
(a = 3), with ten chitons sampled per island (n = 10). The summed ranks for
the three islands are 157, 142, and 166. From this information, we calculate
that

H =
12 · 10

3 · 10(3 · 10 + 1)

·

[(
157

10
− 3 · 10 + 1

2

)2

+

(
142

10
− 3 · 10 + 1

2

)2

+

(
166

10
− 3 · 10 + 1

2

)2
]

=
120

930

[
(15.7− 15.5)2 + (14.2− 15.5)2 + (16.6− 15.5)2

]
= 0.129 [0.04 + 1.69 + 1.21]

= 0.38.

The degrees of freedom are a − 1 = 3 − 1 = 2. From Table C, we find
that P < 0.9. There was no significant difference in length among the three
islands (H = 0.38, df = 2, P < 0.9).

16.2.1 Kruskal-Wallis test for Example 1 - SAS demo

The Kruskal-Wallis test is automatically calculated when the wilcoxon option
for proc npar1way is used (see previous output). We see there was a highly
significant difference in length betwee the Sheltered and Exposed sites (H =
7.00, df = 1, P = 0.0082).
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16.2.2 Kruskal-Wallis test for Example 2 - SAS demo

The Kruskal-Wallis test for the Example 2 data is shown below (Fig. 16.9).
There was no significant difference in length among the three islands (H =
0.38, df = 2, P = 0.8272). Note that an exact version of this test is also
provided (P = 0.8386).

SAS Program

* KWtest_chitons_3islands.sas;

title ’Kruskal-Wallis test for chiton length’;

data chitons;

input island $ length;

datalines;

Lobos 23.86

Lobos 20.20

Lobos 29.32

Lobos 23.56

Lobos 24.32

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Plot means, standard error, and observations;

proc gplot data=chitons;

plot length*island / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Kruskal-Wallis/Wilcoxon tests;

proc npar1way wilcoxon data=chitons;

class island;

var length;

exact wilcoxon;

run;

quit;
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etc.

Figure 16.7: KWtest chitons 3islands.sas - proc print
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Figure 16.8: KWtest chitons 3islands.sas - proc gplot

Figure 16.9: KWtest chitons 3islands.sas - proc npar1way
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16.3 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is a nonparametric procedure used to com-
pare the probability densities of two groups or samples, using their cumula-
tive distributions (see Chapter 6). Let F1(y) be the cumulative distribution
function for the first group, while F2(y) is the second. The null hypothesis
for the Kolmogorov-Smirnov test is H0 : F2(y) = F1(y), which means that
the two groups have the same distribution. The alternative hypothesis is
H1 : F2(y) 6= F1(y) for some y, implying there is some difference in the dis-
tributions, which could involve their location, general shape, variance, and
so forth. This is a broader alternative hypothesis than the rank tests we
examined earlier, where the distributions had the same shape but differed by
location.

The Kolmogorov-Smirnov test statistic is calculated using the empiri-
cal distribution functions of the two groups, which estimates the underlying
cumulative distribution function. For a sample with ni observations, the
empirical distribution function is defined as

Gi(y) =
Number of Yij values ≤ y

ni
. (16.7)

Gi(y) increases in a step-like fashion as y increases, with a jump occurring at
every value of Yij (Conover 1999; Hollander et al. 2014). Fig. 16.10 shows
these functions for the two sites in Example 1. The Kolmogorov-Smirnov
test uses the maximum vertical distance between the two functions as the
test statistic. The distance is defined using the formula

D = max
y
|G1(y)−G2(y)| (16.8)

(Conover 1999; Hollander et al. 2014). D is the largest distance between
G1(y) and G2(y) over all values of y, with the absolute value making it a
positive quantity. We would then reject H0 for sufficiently large values of D.
The P value for the test can be calculated exactly for small sample sizes,
and there is also a large sample approximation for the test. We will let
SAS handle the details. This test can also be used when there are ties in
the observations, in which case it is conservative, meaning it is less likely to
reject H0 (Hollander et al. 2014).
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Figure 16.10: Empirical distribution functions for the Example 1 data. Also
shown is the maximum value of D for the two samples.

16.3.1 Kolmogorov-Smirnov test for Example 1 - SAS
demo

The SAS procedure npar1way can also be used for the Kolmogorov-Smirnov
test (SAS Institute Inc. 2018). It is invoked by adding the edf option in the
proc npar1way statement (see program below). This option also generates a
graph of the empirical distribution function for the two groups (Fig. 16.10).
An exact version of test can be calculated using the line exact ks. The
program also includes proc gchart code to generate histograms of the two
groups (SAS Institute Inc. 2016a). This seems more appropriate for the
Kolmogorov-Smirnov test than plotting the means, because this test can
detect differences in both shape and location. Examining the SAS output,
we see that D = 0.7 (Fig. 16.12). The P value for the exact version of the
test was significant (P = 0.0123), implying there was some difference in the
distributions of the two sites. The graph generated by proc gchart suggests
they differed in both location and variance (Fig. 16.11).
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SAS Program

* KStest_chitons_Venados.sas;

title ’Kolmogorov-Smirnov test for chiton length’;

data chitons;

input site :$10. length;

datalines;

Sheltered 44.39

Sheltered 22.30

Sheltered 21.31

Sheltered 23.80

Sheltered 26.23

etc.

;

run;

* Print data set;

proc print data=chitons;

run;

* Histograms for the two groups;

proc gchart data=chitons;

vbar length / group=site axis=axis1 gaxis=axis1 maxis=axis2;

axis1 label=(height=2) value=(height=2) width=3 minor=none;

axis2 label=(height=1.5) value=(height=1.5) width=1.5;

run;

* Kolmogorov-Smirnov test;

proc npar1way edf data=chitons;

class site;

var length;

exact ks;

run;

quit;
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Figure 16.11: KStest chitons Venados.sas - proc gchart
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Figure 16.12: KStest chitons Venados.sas - proc npar1way
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16.4 Randomization tests

Randomization tests are another common kind of nonparametric test used for
one-way designs, as well as more complex ones (Hinkelmann & Kempthorne
1994; Manly 1997). The null hypothesis for these tests is different from other
tests we have considered, which involved statements about probability distri-
butions and their parameters. For randomization tests, the null hypothesis
is that all possible permutations (rearrangements) of the data among groups
are equally likely, given no treatment or group effects, with the observed data
being one such arrangement (Hinkelmann & Kempthorne 1994; Manly 1997).
These tests commonly employ a parametric test statistic to examine the null
hypothesis, one that is sensitive to potential differences among groups. For
one-way designs, the Fs statistic from one-way ANOVA (Chapter 11) is often
used to detect differences in the group means. To conduct a randomization
test using this statistic, we first calculate the value of Fs(obs) for the observed
data. Similar to one-way ANOVA, we then need to determine if Fs(obs) is
sufficiently large to consider rejecting H0. This is accomplished by permuting
or rearranging the observations many times across groups, and calculating
the value of Fs for each permutation. The justification for this procedure
follows directly from the definition of H0. The P value for the test is defined
as the proportion of the Fs values greater than or equal to Fs(obs), including
Fs(obs) as one of the values.

For small data sets it may be possible to carry out all possible permu-
tations, but for larger data sets this may be impractical. Instead, the ob-
servations are randomly rearranged across groups a large number of times,
in effect drawing a random sample from all possible permutations. The col-
lection of Fs values obtained by this process is called the randomization
distribution. How many of these randomizations are needed to generate an
accurate P value for the test? Some guidance is provided by Manly (1997),
who suggests that 1000 randomizations should be sufficient for P ≈ 0.05,
and 5000 for P ≈ 0.01.

An interesting feature of randomization tests is that the randomization
distribution of Fs under H0 can be approximated by the parametric F dis-
tribution (Hinkelmann & Kempthorne 1974) under some conditions. This
provides another justification for the use of F tests when the normality as-
sumption of these tests is violated.

We will use data on nematode intensities for male vs. female bob-
cats (Lynx rufus) to illustrate randomization tests. The sampled bobcats
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were recent roadkill collected from the Southern Illinois region (Francisco
A. Jimenez-Ruiz and Eliot A. Zieman, unpublished data). The guts were
examined for nematodes as well as other parasites, and the total number
counted (Table 16.3). These data have many zeroes as well as large values,
as is common for parasite intensity data. The data are clearly non-normal
and so a nonparametric test seems warranted.

Table 16.3: Example 3 - Number of nematode parasites found in the gut of
male and female bobcats collected from Southern Illinois .

Sex Nematodes Sex Nematodes Sex Nematodes Sex Nematodes
F 0 F 0 M 6 M 8
F 8 F 5 M 10 M 0
F 0 F 0 M 1 M 60
F 0 F 0 M 0 M 25
F 0 F 0 M 5 M 1
F 0 F 11 M 59 M 0
F 0 F 0 M 2 M 74
F 1 F 5 M 3 M 3
F 2 F 11 M 0 M 1
F 1 F 0 M 44 M 15
F 1 F 24 M 1 M 0
F 6 F 13 M 1 M 7
F 1 F 2 M 0 M 0
F 6 M 2 M 0
F 2 M 17
F 1 M 5
F 13 M 3
F 0 M 26
F 0 M 20
F 7 M 3
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16.4.1 Randomization test for Example 3 - SAS demo

We will analyze the bobcat data using both one-way ANOVA and the anal-
ogous randomization test, comparing the parasite intensities for male vs.
female cats. The SAS program below first generates a graph showing the
mean intensities for both sexes, then conducts a standard one-way ANOVA
(Fig. 16.14, 16.15). We see that the mean intensity for male bobcats was
higher than females, and the ANOVA showed this difference was significant
(F1,65 = 5.50, P = 0.0221).

The program then uses two SAS macro programs to conduct the random-
ization test (Cassell 2002). SAS macros are chunks of code that are used to
carry out custom calculations, ones not available in standard SAS procedures
(SAS Institute Inc. 2016b). They are inserted into a main program through
the use of %include statements, which point to the file locations of the macros
on the user’s computer. Note that the percent sign (%) tells SAS that a par-
ticular line contains macro code. The first macro, %rand_gen.sas, is used to
generate the desired number of random permutations of the data. Once the
macro is included in the program, it can be called using the following argu-
ments. The input data set is specified using the indata=parasites statement,
while the output data set specified by outdata=outrand contains all the ran-
domizations. The statement numreps=5000 sets the number of randomizations,
with the dependent variable specified by depvar=nematodes.

The next step in the randomization test is to conduct a one-way ANOVA
for each one of the randomizations, as well as the original data set. This
is accomplished using proc glm with a by replicate statement. The variable
replicate is generated by the rand_gen macro to number the different ran-
domizations. In addition, a data file containing the statistical output of the
ANOVA is specified using the statement outstat=outstat1. The ANOVA for
the original data corresponds to a replicate = 0 in this output file. The
noprint option is used to suppress the printing of each ANOVA.

The last step in the randomization test uses the second macro, %rand_anl.sas,
to determine the P value for the test. The data file containing the statistical
output from proc glm is specified using a randdata=outstat1 argument. The
where=_source_=’sex’ and _type_=’SS3’ argument tells the macro which part
of the statistical output to use, in particular the test associated with the sex
effect and Type III sum of squares. The testprob=prob statement tells the
macro to use the P value for this F test in calculating the P value for the ran-
domization test. The macro uses the P rather than Fs value to provide some
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additional flexibility for other kinds of tests (Cassell 2002). As the Fs and P
value for the ANOVA are related, it yields the same result. The P value for
the randomization test is provided in the SAS log. The testlabel=Model F test

argument provides some labeling for this output. Examining the SAS log,
we find that the randomization test was significant (P = 0.0182). The P
value for this test was smaller than the one found using one-way ANOVA,
and makes no assumptions about the distribution of the data.

The remaining portion of the program generates a graph of the random-
ization distribution of Fs, and displays the value of this statistic for the
original distribution (Fig. 16.16). We see that the original value of Fs lies
far above most of the randomizations. This illustrates the pattern for a sig-
nificant randomization test. For a non-significant test, we would see an Fs
value that is more central within the randomization distribution.
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SAS Program

* Randtest_bobcat_parasites.sas;

title ’Randomization test for bobcat parasites’;

data parasites;

input nematodes sex $;

datalines;

0 F

8 F

0 F

0 F

0 F

etc.

;

run;

* Print data set;

proc print data=parasites;

run;

* Plot means, standard error, and observations;

proc gplot data=parasites;

plot nematodes*sex / vaxis=axis1 haxis=axis1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* One-way ANOVA;

proc glm data=parasites;

class sex;

model nematodes = sex;

run;

* Include two macros for randomization test;

%include "/home/u49852288/sasuser.v94/Statistics Book 2/Chapter 16/rand_gen.sas";

%include "/home/u49852288/sasuser.v94/Statistics Book 2/Chapter 16/rand_anl.sas";

* Sampled randomization test;

%rand_gen(indata=parasites,outdata=outrand,depvar=nematodes,numreps=5000)

proc glm data=outrand noprint outstat=outstat1;

by replicate;

class sex;

model nematodes = sex;

run;

%rand_anl(randdata=outstat1,where=_source_=’sex’ and _type_=’SS3’,testprob=prob,testlabel=Model F test)

* Extract F values from outstat1 for null distribution graph;

data nulldist;

set outstat1;
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if _type_="SS3";

* Assign original F value to macro variable;

if replicate=0 then call symput(’F’,F);

run;

* Null distribution;

title2 "Null distribution";

proc univariate data=nulldist noprint;

var F;

histogram F / vscale=count href=&F hreflabel="F";

run;

quit;

etc.

Figure 16.13: Randtest bobcat parasites.sas - proc print
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Figure 16.14: Randtest bobcat parasites.sas - proc gplot
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Figure 16.15: Randtest bobcat parasites.sas - proc glm
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SAS Log

Randomization test for Model F test where _source_=’sex’ and _type_=’SS3’

has significance level of 0.0182

Figure 16.16: Randtest bobcat parasites.sas - proc univariate
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16.5 Limitations of nonparametric tests

While nonparametric tests can be useful for non-normal data, they do have
some drawbacks. One is that the number of designs that have nonparametric
tests are fairly limited. We have seen nonparametric tests analogous to one-
way ANOVA and two-sample t tests. There is also a rank test for randomized
block designs called Friedman’s test, as well as procedures for multiple com-
parisons (Hollander et al. 2014). Unfortunately, for more complex designs
there are few available procedures.

Although nonparametric tests are not based on a particular distribution,
they do make some assumptions. Consider the null and alternative hypothe-
ses for the Wilcoxon test. The two groups are assumed to have the same
cumulative distribution function, differing only by a shift parameter ∆. This
implies the two groups have the same variance under both hypotheses, simi-
lar to parametric tests. When the variances are unequal as well as the sample
sizes, both parametric and nonparametric tests may not be valid (Stewart-
Oaten 1995). In particular, they may not have the correct Type I error
rate.

Table 16.4 illustrates how unequal variances and sample sizes can affect
the Type I error rate. It summarizes a simulation study comparing the
validity of several different methods of comparing samples from two groups,
including parametric and nonparametric methods. The first six columns
give the theoretical mean, variance, and the sample sizes for the two groups.
The simulated data were normally distributed with these parameters. Each
data set was then analyzed using a two-sample t test, a Welch t test that
implements a correction for unequal variances, the Wilcoxon test, and a
randomization test. Any significant differences detected by these tests are
Type I errors, because the two groups have the same mean. A total of
5000 simulated data sets were generated and analyzed. The proportion of
simulated data sets showing significant results is an estimate of the Type
I error rate (α) for each test. If the test is conducted using α = 0.05, for
example, we would expect this proportion of the simulations to be significant.

Regardless of differences in the variance between the two groups, when
the sample sizes are equal all methods yielded a Type I error rate near the
nominal α = 0.05 level. When sample sizes are unequal, the t test, Wilcoxon
test, and the randomization test all yielded Type I error rates higher or lower
than α = 0.05. Note that the pattern depends on which group (high or low
variance) has the smaller sample size. Thus, the validity of these procedures
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depends on equal variances, especially when sample sizes are unequal across
groups. This assumption needs to be carefully examined within applying
both parametric and nonparametric tests.

The only valid test in this scenario was the Welch t test, which employs a
correction for unequal variances. The correction alters the degrees of freedom
for the test, based on the sample sizes and variances of the two groups (Stuart
et al. 1999). It is conducted automatically by proc ttest in SAS, with
the output labeled Satterthwaite (see Chapter 11). There is also a similar
procedure for one-way designs called Welch ANOVA. It can conducted under
proc glm using the welch option for the means statement.

Table 16.4: Effect of unequal variances and sample sizes on the estimated
Type I error rate for common parametric and nonparametric tests, using
α = 0.05 for all tests. See text for further details.

µ1 σ2
1 n1 µ2 σ2

2 n2 t Welch Wilcoxon Randomization
10 1 10 10 1 10 0.0474 0.0454 0.0422 0.0484
10 1 10 10 2 10 0.0516 0.0504 0.0514 0.0524
10 1 5 10 2 15 0.0208 0.0510 0.0236 0.0214
10 1 15 10 2 5 0.0956 0.0578 0.0662 0.0954
10 1 10 10 4 10 0.0510 0.0452 0.0464 0.0510
10 1 5 10 4 15 0.0104 0.0494 0.0170 0.0108
10 1 15 10 4 5 0.1588 0.0574 0.0836 0.1598
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16.7 Problems

1. Using the Example 3 data, conduct a Wilcoxon test comparing parasite
intensity in male vs. female bobcats. How do the results compare to
the randomization test for these data in the text?

2. Data were also collected on the number of cestode parasites found in the
bobcats from Example 3 (see below). Cestodes are another common
type of gut parasite. Conduct a randomization test comparing the
cestode intensity for male vs. female bobcats.

Sex Cestodes Sex Cestodes Sex Cestodes Sex Cestodes
F 1 F 0 M 9 M 3
F 7 F 7 M 31 M 2
F 9 F 6 M 5 M 2
F 0 F 33 M 0 M 0
F 1 F 2 M 10 M 3
F 1 F 1 M 6 M 7
F 8 F 18 M 0 M 2
F 0 F 6 M 0 M 5
F 0 F 1 M 6 M 1
F 32 F 14 M 9 M 1
F 11 F 12 M 6 M 4
F 4 F 6 M 18 M 0
F 3 F 0 M 4 M 3
F 13 M 9 M 1
F 2 M 6
F 2 M 5
F 12 M 17
F 4 M 4
F 1 M 8
F 3 M 11



Chapter 17

Linear Regression

Linear regression is a statistical method for examining the relationship be-
tween two continuous variables, typically called Y and X. It assumes a linear
relationship between the two variables, with a slope and intercept. One com-
mon purpose of linear regression is to establish whether changes in X cause
changes in Y , by testing whether the slope of this line is significantly dif-
ferent from zero. Another purpose is prediction. Given a value of X, linear
regression can be used to predict the value of Y and generate a confidence
interval for this prediction. The variable X is sometimes under the control
of the investigator, similar to a fixed effect in ANOVA, but can also be a
random variable.

A basic assumption of linear regression is that X could be causing changes
in Y , but not the reverse. For this reason, Y is often called the dependent
variable while X is the independent variable in the analysis. The term
regressor is also used for the independent variable in this context. For exam-
ple, we might be interested in the effect of temperature on the growth rate of
fish. Temperature might cause an increased growth rate, but clearly growth
rate cannot influence temperature. This causal relationship is a distinguish-
ing feature of regression as opposed to correlation analysis. Correlation
is used to examine the association between two continuous variables and
no causal direction is assumed (see Chapter 18). For example, we might be
interested in the relationship between fish length and weight but there is no
obvious causal relationship between the two variables.

Although linear regression assumes a different statistical model than ANO-
VA, there are a number of similarities in the estimation process and statisti-
cal tests for the two types. For example, both ANOVA and linear regression

517
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models use likelihood methods for parameter estimation and test construc-
tion, and employ F statistics to test various hypotheses. Both are examples
of general linear models, in which the model parameters and error terms
enter the model in an additive (linear) fashion.

What do the data look like for linear regression? As an example, we
will use data from study on the southern pine beetle, Dendroctonus frontalis
(Reeve et al. 1998). The study used cages to experimentally manipulate the
density of D. frontalis attacking pine trees. The independent or X variable in
the study was the number of beetles added to the cages, while the dependent
or Y variable was the number of attacks the beetles made through the bark
into the tree (Table 17.1). The notation Yi and Xi refers to the values for
the ith pair of numbers. For example, Y2 = 2.660 and X2 = 1.000. We
will later see there is a positive relationship between the two variables, with
attack density increasing as more beetles are added to the cages. Besides
establishing the relationship between the two variables, there was also some
interest in predicting the attack density as a function of the number of beetles
added to the cage, for use in future studies. We will use the linear regression
model to predict attack density for X = 1.75, a value not occurring in the
data set.
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Table 17.1: Example 1 - Observations from an experiment in which different numbers of the bark beetle D.
frontalis were introduced into cages and the resulting attack density recorded (Reeve et al. 1998). Here Y
is the attack density (attacks per 100 cm2 of bark) while X is the number of beetles added (×103). Also
shown are some preliminary calculations for the regression analysis.

i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

1 1.250 0.100 0.740 2.779 2.206 -0.956 0.914 5.176 10.440
2 2.660 1.000 0.002 -0.073 4.586 -1.926 3.711 0.011 3.316
3 7.330 2.000 1.081 2.962 7.231 0.099 0.010 7.563 8.116
4 1.600 1.250 0.084 -0.835 5.248 -3.648 13.305 0.588 8.301
5 2.620 0.500 0.212 0.856 3.264 -0.644 0.415 1.481 3.464
6 1.000 0.200 0.578 2.646 2.471 -1.471 2.162 4.042 12.118
7 4.340 1.500 0.291 -0.076 5.909 -1.569 2.461 2.038 0.020
8 5.230 0.750 0.044 -0.157 3.925 1.305 1.702 0.309 0.561
9 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925

10 3.250 0.500 0.212 0.567 3.264 -0.014 0.000 1.481 1.516
11 6.000 2.000 1.081 1.579 7.231 -1.231 1.516 7.563 2.307
12 4.750 1.500 0.291 0.145 5.909 -1.159 1.343 2.038 0.072
13 2.500 0.250 0.504 1.407 2.603 -0.103 0.011 3.528 3.925
14 8.750 2.000 1.081 4.439 7.231 1.519 2.307 7.563 18.223
15 6.000 1.000 0.002 0.060 4.586 1.414 1.998 0.011 2.307
16 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269
17 7.150 1.000 0.002 0.106 4.586 2.564 6.572 0.011 7.123
18 6.750 1.500 0.291 1.225 5.909 0.841 0.708 2.038 5.158
19 7.500 1.500 0.291 1.630 5.909 1.591 2.532 2.038 9.114
20 2.500 0.500 0.212 0.912 3.264 -0.764 0.584 1.481 3.925
21 5.000 2.000 1.081 0.540 7.231 -2.231 4.979 7.563 0.269
22 2.250 0.250 0.504 1.585 2.603 -0.353 0.124 3.528 4.978
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i Yi Xi (Xi − X̄)2 (Yi − Ȳ )(Xi − X̄) Ŷi = α̂ + β̂Xi Yi − Ŷi (Yi − Ŷi)2 (Ŷi − Ȳ )2 (Yi − Ȳ )2

23 1.250 0.125 0.698 2.699 2.272 -1.022 1.045 4.879 10.440
24 4.750 1.000 0.002 0.011 4.586 0.164 0.027 0.011 0.072
25 4.500 0.250 0.504 -0.013 2.603 1.897 3.599 3.528 0.000
26 9.560 2.000 1.081 5.281 7.231 2.329 5.423 7.563 25.795
27 5.000 0.500 0.212 -0.239 3.264 1.736 3.014 1.481 0.269∑

11.798 31.203 63.486 82.528 146.014
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17.1 Linear regression model

Suppose that we want to model the observations in studies like Example 1,
where Y is observed for a number of X values. Let Yi and Xi stand for the
ith pair of values. The linear regression model takes the form

Yi = α + βXi + εi, (17.1)

where α is the intercept and β the slope of a line, while εi ∼ N(0, σ2) (Searle
1971). Thus, the linear regression model represents the relationship between
Yi and Xi as a line on which random deviations due to natural variability
(εi) are imposed. The slope β is also called the regression coefficient.

For the ith pair of values, we have E[Yi] = α+βXi and V ar[Yi] = σ2 using
the rules for expected values and variances. Thus, Yi ∼ N(α + βXi, σ

2) for
any Xi value. The behavior of the linear regression model can be illustrated
by plotting this distribution across a range of Xi values. When β is positive,
the mean of Yi will increase as Xi increases (Fig. 17.1), while if β is negative
the mean would decrease (not shown). The variance remains the same for
all Xi. Note that the linear regression model has assumptions similar to the
ANOVA models – the observations are assumed be normal and have the same
variance.

The first objective in linear regression is to estimate the model parame-
ters, especially the slope β, and then test whether it is different from zero.
In particular, we will be interested in testing H0 : β = 0. If a test of this hy-
pothesis is significant this suggests a causal relationship (positive or negative)
between Y and X. The alternative hypothesis can be written as H1 : β 6= 0.
It is also possible to test whether the intercept differs from zero although
this is less common. We will discuss how these parameters are estimated and
hypotheses tested in the next section.

17.2 Linear regression and likelihood

The maximum likelihood method can be used to estimate the parameters for
regression models, similar to ANOVA models. Suppose we have n observa-
tions conforming to the linear regression model

Yi = α + βXi + εi. (17.2)
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Figure 17.1: The linear regression model plotted across a range of X values,
with α = 2.0, β = 3.0, and σ2 = 2.5.

This model has three parameters to estimate, namely α, β, and σ2 (the
variance of εi). What would the likelihood function be for these data? Con-
sider the first observation in the D. frontalis cage experiment, for which
Y1 = 1.250 and X1 = 0.100. For this observation, the model states that
Y1 ∼ N(α + βX1, σ

2), and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(Y1−(α+βX1))
2

σ2 =
1√

2πσ2
e−

1
2

(1.250−(α+β0.100))2

σ2 (17.3)

The likelihood Li for the ith observation would be similar, and the overall
likelihood is defined as their product:

L(α, β, σ2) = L1 × L2 × . . .× Ln. (17.4)

Finding the maximum likelihood estimates involves maximizing this quantity
with respect to the parameters α, β, and σ2. Using some calculus to find the
maximum, it can be shown that estimators of these parameters are

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
, (17.5)

α̂ = Ȳ − β̂X̄ (17.6)
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and

σ̂2 =

∑n
i=1(Yi − (α̂ + β̂Xi))

2

n− 2
=

∑n
i=1(Yi − Ŷi)2

n− 2
. (17.7)

Here Ŷi = α̂ + β̂Xi, the value of Yi predicted by the model at Xi.
We can gain some insight into the estimation process by rearranging the

likelihood function. It can be written in the form

L(α, β, σ2) =

(
1√

2πσ2

)n
e−

1
2

∑n
i=1(Yi−(α+βXi))

2

σ2 . (17.8)

Now examine the terms in the sum, which are of the form (Yi− (α+ βXi))
2.

Values of α and β that minimize these terms will make the overall likelihood
larger, because of the negative sign in the exponent. The likelihood will
reach its maximum when this sum is smallest. Thus, values of α and β that
minimize

n∑
i=1

(Yi − (α + βXi))
2 (17.9)

are the maximum likelihood estimates. These estimates are also called least
squares estimates because they minimize the sum of these squared terms. In
fact, we could directly estimate α and β using this method without recourse
to likelihood (Searle 1971). The two methods yield the same results when
the data have a normal distribution.

A likelihood ratio test for linear regression can be constructed as follows.
Suppose we want to test H0 : β = 0 vs. H1 : β 6= 0, the latter implying a
linear relationship between Y and X. The statistical model under H0 would
be

Yi = α + βXi + εi (17.10)

= α + εi (17.11)

because β = 0 under H0. The statistical model under H1 would be the full
model including a slope term, namely

Yi = α + βXi + εi. (17.12)

We would need to find the maximum likelihood estimates under both H1 (see
previous section) and H0, as well as LH0 and LH1 , the maximum height of
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the likelihood function under H0 and H1. We would then use the likelihood
ratio test statistic

λ =
LH0

LH1

. (17.13)

There is a one-to-one correspondence between −2 ln(λ) and the statistic Fs
used to test this null hypothesis (McCulloch & Searle 2001).

We can gain further insight into this test by defining various sum of
squares and mean squares used to calculate Fs. In particular, we will define
SSerror, SSregression, and SStotal and their associated mean squares, which
have functions similar to those in ANOVA. We will also summarize the cal-
culations in an ANOVA table.

SSerror describes variation in the data around the regression line, or vari-
ation not explained by the model. It is defined as

SSerror =
n∑
i=1

(
Yi − (α̂ + β̂Xi)

)2

=
n∑
i=1

(Yi − Ŷi)2. (17.14)

SSerror has n− 2 degrees of freedom. We can therefore define

MSerror =
SSerror
n− 2

= σ̂2. (17.15)

Thus, MSerror is equivalent to σ̂2, the maximum likelihood estimate of σ2,
the same relationship as found in ANOVA. SSerror and MSerror will be small
if the data lie on a straight line and large if the data are scattered around
the line.

SSregression describes variation in the data explained by the regression
model. It is defined as

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 (17.16)

and has one degree of freedom. We therefore have

MSregression =
SSregression

1
= SSregression. (17.17)

SSregression and MSregression will be large if the data have a strong positive or

negative slope. To see this, recall that Ŷi = α̂ + β̂Xi. If the estimated slope
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β̂ is large, the values of Ŷi will vary strongly as Xi changes and so generate
a large sum of squares.

The total sum of squares is defined (as in ANOVA) to be

SStotal =
n∑
i=1

(Yi − Ȳ )2 (17.18)

and has n−1 degrees of freedom. There is also a familiar relationship among
the different sums of squares, namely

SSregression + SSerror = SStotal. (17.19)

The likelihood ratio statistic used to test H0 : β = 0 is defined as

Fs =
MSregression
MSerror

. (17.20)

Under H0, Fs has an F distribution with df1 = 1 and df2 = n− 2 the degrees
of freedom. Given the definitions of MSregression and MSerror, we can see that
Fs tends to be large when the data have a strong slope (the numerator of this
expression) relative to the amount of scatter in the data (the denominator).

We can organize the different sum of squares and mean squares into an
ANOVA table for linear regression. It lists the different sources of variation
in the data (regression, error, and total), their degrees of freedom, as well as
the F test. Table 17.2 shows the general layout for linear regression.
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Table 17.2: General ANOVA table for linear regression, showing formulas for different mean squares and
the F test.

Source df Sum of squares Mean square Fs
Regression 1 SSregression MSregression = SSregression/1 MSregression/MSerror
Error n− 2 SSerror MSerror = SSerror/(n− 2)
Total n− 1 SStotal

Table 17.3: ANOVA table for the Example 1 data set, including a P value for the test.

Source df Sum of squares Mean square Fs P
Regression 1 82.528 82.528 32.504 < 0.001
Error 25 63.486 2.539
Total 26 146.014
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17.2.1 Sample calculation - β̂, α̂, and F test

We will illustrate the above calculations using the Example 1 data set, where
Y is D. frontalis attack density and X is the number of beetles added to
the cage. We are interested in estimating the slope and intercept (β and α)
of the relationship between the two variables, and then testing whether the
slope is significantly different from zero (H0 : β = 0).

The first step is to calculate the sample mean for both Y and X, and
we obtain Ȳ = 4.481 and X̄ = 0.960. We then calculate (Xi − X̄)2 for each
value of Xi (see Table 17.1) and sum these values to obtain

n∑
i=1

(Xi − X̄)2 = 11.798. (17.21)

We then calculate (Yi− Ȳ )(Xi− X̄) for each pair of numbers and sum these
to obtain

n∑
i=1

(Yi − Ȳ )(Xi − X̄) = 31.203. (17.22)

The estimate of β can then be calculated, and we find

β̂ =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
=

31.203

11.798
= 2.645. (17.23)

We can then estimate α using the formula

α̂ = Ȳ − β̂X̄ = 4.481− 2.645(0.960) = 1.942. (17.24)

The next step is to calculate the predicted values of Yi using the formula
Ŷi = α̂+ β̂Xi, for each value of Xi (see Table 17.1). We then calculate Yi− Ŷi
in another column - these are the residuals for each observation. Squaring
and summing the residuals, we find

SSerror =
n∑
i=1

(Yi − Ŷi)2 = 63.486, (17.25)

and

MSerror =
SSerror
n− 2

=
63.486

27− 2
= 2.539. (17.26)
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We next calculate a column consisting of (Ŷi− Ȳ )2 for each observation, then
sum these values to obtain

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 = 82.528, (17.27)

and so
MSregression = SSregression/1 = 82.528. (17.28)

We are now in a position to calculate Fs, the statistic used to test H0 :
β = 0. We have

Fs =
MSregression
MSerror

=
82.528

2.539
= 32.504. (17.29)

Under H0, Fs has an F distribution with df1 = 1 and df2 = 27 − 2 = 25
degrees of freedom. Using Table F, we find the P < 0.001. There was
a highly significant effect of beetles numbers on the attack density of D.
frontalis (F1,25 = 32.504, P < 0.001).

The last column in Table 17.1 calculates (Yi − Ȳ )2, the components of
SStotal. Summing these components we obtain SStotal = 146.014. It can also
be calculated using the formula SSregression + SSerror = SStotal. Table 17.3
shows the completed ANOVA table.

The observations for Example 1 and the fitted linear regression model
are shown in Fig. 17.2. The estimation procedure (maximum likelihood or
least squares) finds values of α and β that minimize the sum of the squared
differences between the data points and the line. In particular, it minimizes
the sum of the squared residuals, where the residuals are Yi− Ŷi = Yi− (α̂+
β̂Xi).
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Figure 17.2: Linear regression model fitted to the Example 1 data, where Y
is attack density and X is beetles added to the cages. The vertical dashed
line shows the residual Y4 − Ŷ4 = −3.648 for the i = 4 observation.
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17.3 Confidence and prediction intervals

In this section, we will derive confidence intervals for the parameters of the
regression model (α and β) that provide a measure of their precision (see
Chapter 9). We will also find confidence intervals for the mean value of Yi
at a given value of Xi. Another type of interval for linear regression are
prediction intervals. These are used to set limits for future Yi values given
some value of Xi. Both of these intervals are used in prediction, another
common purpose for linear regression. See Draper & Smith (1981) for further
details.

The confidence interval for the slope β is based on β̂, the maximum
likelihood estimate of β, and the standard error of this estimate sβ̂, given by
the formula

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
, (17.30)

where σ̂2 = MSerror. Note that sβ̂ depends on the scatter of the data around

the line (σ̂2) as well as the amount of variability in Xi. A study using a
larger range of Xi values will thus provide a more precise estimate
of β, because it reduces sβ̂. Increasing the sample size n would
also increase the precision, by increasing the sum of squares in the
denominator for sβ̂.

It can be shown that the quantity

β̂ − β
sβ̂

(17.31)

has a t distribution with n− 2 degrees of freedom, the same as for MSerror.
This fact can be used to derive a confidence interval for β. Using Table T, we
first find a value of cα,n−2 for n−2 degrees of freedom such that the following
equation is true:

P

[
−cα,n−2 <

β̂ − β
sβ̂

< cα,n−2

]
= 1− α. (17.32)

Rearranging this equation we obtain

P
[
β̂ − cα,n−2sβ̂ < β < β̂ + cα,n−2sβ̂

]
= 1− α. (17.33)
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It follows that the interval

(β̂ − cα,n−2sβ̂, β̂ + cα,n−2sβ̂) (17.34)

is a 100(1 − α)% confidence interval for β. The center of the confidence
interval would be β̂.

We may also want to test various null hypotheses concerning β. For
example, we may want to test H0 : β = β0 vs. H1 : β 6= β0, where β0 takes
some value of interest. Similar to the approach in Chapter 10, we would use
the test statistic

Ts =
β̂ − β0

sβ̂
. (17.35)

Under H0, Ts has a t distribution with n − 2 degrees of freedom, and we
would reject H0 for sufficiently large values of this statistic. For β0 = 0, this
test is equivalent to the F test we developed earlier for H0 : β = 0, and in
fact T 2

s = Fs. The t test is more general, however, because we can also test
H0 : β = β0 for any value of β0.

It is possible to derive similar t tests and confidence intervals for the
intercept parameter α. The t test is most commonly used to test H0 : α = 0.
If the test is significant this implies an intercept different from zero. We will
let SAS handle the calculations here.

We can also derive a confidence interval for the theoretical mean of Yi
at a given Xi value. Recall that according to the linear regression model,
E[Yi] = α + βXi. Thus, Yi has a mean of µi = α + βXi for any Xi value.
The confidence interval is based on Ŷi = α̂ + β̂Xi, the predicted value of Yi
at Xi. It also depends on the standard error sŶ of Ŷ , which is given by the
formula

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.36)

Note that the standard error sŶ depends on the value of (Xi − X̄)2, which
is the squared distance of Xi from X̄. The farther Xi is from X̄, the larger
the value of sŶ .

Using methods similar to the confidence interval for β, it can be shown
that a 100(1− α) confidence interval for µi = α + βXi has the form

(Ŷi − cα,n−2sŶ , Ŷi + cα,n−2sŶ ). (17.37)
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The interval will be broader for values of Xi far from X̄ because sŶ will be
larger. In other words, the precision of the confidence interval decreases with
the distance from X̄.

We next examine prediction intervals. Here, we are trying to find an
interval that contains a defined percentage of future Yi values for a given
value of Xi. These are similar in form to the intervals for the theoretical
mean µi = α + βXi, but are always wider because you are trying to enclose
a single future observation rather than a mean value.

The prediction interval is based on Ŷi = α̂ + β̂Xi, the predicted value of
Yi at Xi, and the standard error sŶ (1) of Ŷi, which is given by the formula

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
. (17.38)

Note the additional term (1+) within the square brackets, which makes this
standard error larger than sŶ . It also depends on the value of (Xi−X̄)2, and
so the farther Xi is from X̄, the larger the value of sŶ (1). It can be shown
that a 100(1− α) prediction interval for a single future Yi has the form

(Ŷi − cα,n−2sŶ (1), Ŷi + cα,n−2sŶ (1)). (17.39)

17.3.1 Sample calculation - confidence and prediction
intervals

We now illustrate the calculations for confidence intervals using the Example
1 data. We earlier found that β̂ = 2.645 and α̂ = 1.942. To find a confidence
interval for β, we first need to calculate sβ̂. From Table 17.1, we see that∑n

i=1(Xi − X̄)2 = 11.798, and we earlier calculated that σ̂2 = MSerror =
2.539. Inserting these quantities into the formula for sβ̂, we find

sβ̂ =

√
σ̂2∑n

i=1(Xi − X̄)2
=

√
2.539

11.798
= 0.464. (17.40)

A 95% confidence interval for β has the form

(β̂ − c0.05,n−2sβ̂, β̂ + c0.05,n−2sβ̂) (17.41)
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From Table T with df = n − 2 = 27 − 2 = 25, we find that c0.05,25 = 2.060.

Inserting this value, β̂ = 2.645, and sβ̂ = 0.464 in the above formula, we
obtain

(2.645− 2.060(0.464), 2.645 + 2.060(0.464)) (17.42)

or
(1.689, 3.601). (17.43)

We next find a confidence interval for the theoretical mean µi = α+ βXi

at Xi = 1.75. We first need to find the predicted value Ŷi for this value of
Xi, using the estimated intercept and slope. We have

Ŷi = α̂ + β̂Xi = 1.942 + 2.645(1.75) = 6.571. (17.44)

The standard error sŶ for this interval also uses
∑n

i=1(Xi−X̄)2 = 11.798 and
σ̂2 = 2.539, and we earlier found that X̄ = 0.960. Inserting these quantities
into the formula for sŶ , we find that

sŶ =

√
σ̂2

[
1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.45)

=

√
2.539

[
1

27
+

(1.75− 0.960)2

11.798

]
(17.46)

=

√
2.539

[
0.037 +

0.624

11.798

]
(17.47)

= 0.478. (17.48)

A 95% confidence interval for the theoretical mean µi = α + βXi has the
form

(Ŷ − c0.05,n−2sŶ , Ŷ + c0.05,n−2sŶ ) (17.49)

Inserting Ŷ = 6.571, sŶ = 0.478, and c0.05,25 = 2.060 in the above formula,
we find

(6.571− 2.060(0.478), 6.571 + 2.060(0.478)) (17.50)

or
(5.586, 7.556). (17.51)

Lastly, we calculate a prediction interval for a single future observation Yi
at Xi = 1.75. We earlier calculated that Ŷi = 6.571 for this value of Xi, and
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will again make use of
∑n

i=1(Xi − X̄)2 = 11.798, X̄ = 0.960 and σ̂2 = 2.539.
Inserting these quantities into the formula for sŶ (1), we obtain

sŶ (1) =

√
σ̂2

[
1 +

1

n
+

(Xi − X̄)2∑n
i=1(Xi − X̄)2

]
(17.52)

=

√
2.539

[
1 +

1

27
+

(1.75− 0.960)2

11.798

]
(17.53)

=

√
2.539

[
1 + 0.037 +

0.624

11.798

]
(17.54)

= 1.663. (17.55)

A 95% prediction interval for a single Yi has the form

(Ŷ − c0.05,n−2sŶ (1), Ŷ + c0.05,n−2sŶ (1)) (17.56)

Inserting Ŷ = 6.571, sŶ (1) = 1.663, and c0.05,25 = 2.060 in this formula, we
obtain

(6.571− 2.060(1.663), 6.571 + 2.060(1.663)) (17.57)

or
(3.145, 9.997). (17.58)

Note this interval is much wider than the interval for the theoretical mean
µi = α + βXi, which was (5.586, 7.556). This is because you are trying
to enclose a single future observation, a random variable Yi, rather than a
theoretical mean.

17.4 R2 values

R2 values are a measure of how well a statistical model explains the data.
Recall that the following relationship holds among the sum of squares in
linear regression:

SSregression + SSerror = SStotal. (17.59)

We can think of the different sum of squares as partitioning the variability in
the data into different sources. SSregression represents variability explained by
the regression line, SSerror represents variability of the observations around
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the regression line, while SStotal is the total amount of variability in the
data. The R2 value for a linear regression model is the proportion of total
variability explained by the model, or

R2 =
SSregression
SStotal

=
SSregression

SSregression + SSerror
. (17.60)

It is clear from this formula that R2 must range between 0 and 1 (0 ≤ R2 ≤
1). For the Example 1 data, we have

R2 = 82.528/146.014 = 0.565. (17.61)

Thus, 56.5% of the variation is explained by the regression model for these
data. Small R2 values indicate there is substantial variability in the data not
explained by the model, while large ones indicate the model explains most
of the variation.

More generally, we can define an R2 value for both ANOVA and regression
models as

R2 =
SSmodel
SStotal

=
SSmodel

SSmodel + SSerror
. (17.62)

For example, we have SSmodel = SSamong for one-way ANOVA while SSerror =
SSwithin. The R2 value here is the proportion of the variation explained by
the one-way ANOVA model, in particular the variation among the group
means. The SAS output for proc glm provides an R2 for ANOVA models of
this form.

17.5 Linear regression for Example 1 - SAS

demo

The linear regression analysis can be conducted using proc glm and a program
similar in structure to ANOVA ones (see SAS program below). We first input
the observations using a data step, with the first variable standing for attack
density (attacks) while the second is the number of beetles added (beetles).
The next two lines in the data step define which of these two variables are the
dependent and independent ones. The line y = attacks sets attack density as
the dependent variable, while x = beetles is the independent variable. The
remainder of the program then uses y and x rather than the original variables
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and so does not need to be changed for other data sets. Transformations of
the observations could also be applied at this point.

Note the additional observation at end of the data set, for which beetles

is 1.75 but attacks is a missing value. The purpose is to make proc glm calcu-
late confidence and prediction intervals for attack density for that particular
number of beetles.

The data are then plotted along with the fitted line plus confidence and
prediction intervals. This accomplished using the following proc gplot code
(SAS Institute Inc. 2016). The three y*x statements in the plot command
plot the same data in three different ways, which are then combined into one
graph using the overlay option. The first plot, using the symbol1 command,
draws the data points. The second plot, using the symbol2 command, draws
a regression line through the points and also plots 95% confidence intervals
for the mean of Yi at Xi, or µi = α+βXi, across the range of Xi values. The
third plot, using the symbol3 command, plots 95% prediction intervals for a
single future observation, again across the range of Xi values. A similar plot
is also generated by proc glm for linear regression models (see Fig. 17.9).

The regression analysis is conducted using proc glm as shown below (SAS
Institute Inc. 2018). There is no class statement because the independent
variable x is a continuous variable and does not fall into discrete groups
as with ANOVA. Note the similarity of the model statement to the linear
regression model. The option clparm is used to generate 95% confidence
intervals for α and β, while clm generates a 95% confidence interval for the
mean of Yi at each value of Xi. If we want prediction intervals it is necessary
to run proc glm a second time using the cli option in the model statement
(see below). This is necessary because proc glm cannot generate both types
of intervals at the same time.

The data points, regression line, and confidence or prediction intervals
are shown in Fig. 17.4. The prediction intervals are much wider than the
confidence intervals, because the prediction intervals are for single future Yi
while the confidence intervals enclose a mean. Note that both types of inter-
val increase in width as you move away from the center of the X values. This
follows from the fact that the standard errors involved in these calculations
are a function of (Xi − X̄)2, which increases as Xi moves away from X̄.

Examining the output for proc glm, first note that the slope β is labeled
as x while the intercept α is Intercept (Fig. 17.5). We see that attack density
y increases with beetle numbers x, because β̂ = 2.645 and is positive. The
effect of beetle numbers on attack density was highly significant (F1,25 =
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32.5, P < 0.0001). There are several F tests to chose from in the output, but
all give the same result for simple linear regression. Alternately, we could
report the t test for β (t25 = 5.70, P < 0.0001), which also tests H0 : β = 0.
We see that R2 = 0.565, indicating that 56.5% of the variation is explained
by the regression model.

The proc glm output also provides 95% confidence intervals for α and β.
A 95% confidence interval for the mean of Yi at each Xi value is also given
(Fig. 17.6), as well as 95% prediction intervals for a single future Yi (Fig.
17.7). These intervals were also calculated for Xi = 1.75 and match our
earlier results.

Note that the estimated intercept is some distance from zero (α̂ = 1.942),
and in fact the t test of H0 : α = 0 reported by SAS was highly significant
(t25 = 3.59, P = 0.0014). This cannot really be true because the addition of
zero beetles should give you an attack density of zero. A more resonable (and
possibly non-linear) model would require that the intercept be zero. This is
a potential pitfall when using linear regression. Many biological phenomenon
are approximately linear over some range of the data but the approximation
breaks down for more extreme values. A linear regression does not take this
possibility into account and so cannot provide a general explanation of some
phenomena.
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SAS Program

* SPBattack2.sas;

title ’Linear regression for D. frontalis attack density’;

data frontalis;

input attacks beetles;

* Apply transformations here;

y = attacks;

x = beetles;

datalines;

1.25 0.100

2.66 1.000

7.33 2.000

1.60 1.250

2.62 0.500

etc.

5.00 0.500

. 1.750

;

run;

* Print data set;

proc print data=frontalis;

run;

* Plot data and regression line;

proc gplot data=frontalis;

plot y*x y*x y*x / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=frontalis;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=frontalis;

model y = x / clparm cli;

run;

quit;
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etc.

Figure 17.3: SPBattack.sas - proc print



540 CHAPTER 17. LINEAR REGRESSION

Figure 17.4: SPBattack.sas - proc gplot
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Figure 17.5: SPBattack.sas - proc glm
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etc.

Figure 17.6: SPBattack.sas - proc glm

etc.

Figure 17.7: SPBattack.sas - proc glm
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Figure 17.8: SPBattack.sas - proc glm

Figure 17.9: SPBattack.sas - proc glm
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17.6 Assumptions and transformations

Linear regression makes the same assumptions as ANOVA, includ-
ing homogeneity of variances and normality, and the same types
of plots can be used to assess them. If the homogeneity of variances
assumption is satisfied, the points in a residual vs. predicted plot should
be equally scattered across the range of predicted values. Outliers can also
be identified using this plot. The normality assumption can be evaluated
using a normal quantile plot of the residuals, with a straight diagonal line
indicating this assumption is satisfied.

Examining the residuals from the Example 1 analysis, we see no obvious
pattern in the residual vs. predicted plot, suggesting the homogeneity of
variances assumption is satisfied (Fig. 17.8). No outliers were present. The
normal quantile plot suggests the normality assumption is satisfied.

Linear regression makes another key assumption, namely that
the relationship between Y and X is linear. This assumption can be
checked by examining a plot of Y vs. X. What can be done if the rela-
tionship seems nonlinear? We can sometimes fix this problem by applying a
transformation to Y , X, or both Y and X, so that linear regression can be
applied to the transformed data. This use of transformations greatly
extends the utility of linear regression. Some commonly used transfor-
mations are log Y vs. X, log Y vs. logX, Y vs. logX, and 1/Y vs. X. A
transformation that linearizes the data sometimes corrects for problems with
the homogeneity of variances and normality assumptions.

A transformation may be selected based on prior information about the
data and system. For example, a conservation biologist may be interested in
the relationship between island area A and the number of species S on the
island, and previous studies suggest that this relationship will be linear on a
log scale (MacArthur & Wilson 1967). Another approach is to try a number
of transformations and chose the one that makes the data most linear. We
will illustrate each approach with an example below.

In cases where no transformation can linearize the data, another possi-
bility would be nonlinear regression (Juliano 1993). This type of analysis
requires that the user specify a model Y = f(X, θ1, θ2, . . .) + ε for the data,
where f is a function with parameters θ1, θ2, . . . to be estimated. SAS imple-
ments this type of nonlinear regression in proc nlin, while proc nlmixed allows
for nonlinear functions as well as random effects and nonnormal distributions.
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17.6.1 Species-area data - SAS demo

For many organisms there is a relationship between a defined area of habitat,
such as an island, and the number of species found there. If S is the number
of species, and A the area of habitat, then the model S = cAz seems to
describe many data sets (MacArthur & Wilson 1967). Applying the log10

function to both sides of this equation, we obtain

log10 S = log10 c+ z log10A. (17.63)

This form of the model is linear and suggests linear regression could be used
to analyze species-area data. The SAS program listed below shows how
these transformations can be applied to the bird fauna on archipelagos and
islands of varying areas. The data are the number of species vs. island area
(square miles) for 23 islands. The data were simulated to resemble Fig. 9
in MacArthur & Wilson (1967). An extra observation is included with a
missing value for the number of species, but an island area of 5000 square
miles, to make proc glm calculate a confidence interval for the mean of this
island.

We first conduct the analysis without any transformation, with the line
y = species defining species as the dependent variable while x = area is the
independent one. Examining the proc gplot graph, note the nonlinear na-
ture of the relationship between the number of species and island area (Fig.
17.10). The picture improves after a log10 transformation is applied to both
variables (Fig. 17.11).

Now that the linearity assumption is satisfied, we can interpret the rest
of the SAS output (Fig. 17.13). We see that the number of species increased
with island area (β̂ = 0.241) and the effect was highly significant (F1,21 =
148.16, P < 0.0001). In terms of the original model, where S = cAz, we see
that β̂ = 0.241 is also an estimate of z. The R2 value is 0.876, indicating
that 87.6% of the variation is explained by the regression model. Confidence
intervals are also provided for the intercept and slope.

The proc glm output also includes a predicted value Ŷi = 1.800 at Xi =
3.699, which corresponds to an island area of 5000 (see Fig. 17.14). We
need to convert this predicted value to the original scale of measurement
using antilogs. We have Ŝi = 10Ŷi = 101.800 = 63.10 species. So, we predict
there would be 63 species on an island of 5000 square miles. The confidence
interval for the mean is (1.746, 1.855), which we can similarly convert to
(101.745, 101.855) or (55.72, 71.61).
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Examining the residual plots from this analysis, it appears the homogene-
ity of variances and normality assumptions were satisfied (Fig. 17.15).

SAS Program

* SAprob2.sas;

title ’Linear regression for species-area data’;

data sa;

input species area;

* Apply transformations here;

y = log10(species);

x = log10(area);

datalines;

15 28

104 113480

165 380358

116 33252

35 1010

33 305

78 37620

93 4762

50 213

76 2976

18 23

28 186

20 423

121 108512

53 364

22 269

102 11163

28 487

158 445409

19 70

111 38309

152 100873

55 1354

. 5000

;

run;

* Print data set;

proc print data=sa;

run;

* Plot data and regression line;

proc gplot data=sa;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;



17.6. ASSUMPTIONS AND TRANSFORMATIONS 547

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=sa;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=sa;

model y = x / clparm cli;

run;

quit;
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Figure 17.10: SAprob2.sas - proc gplot

Figure 17.11: SAprob2.sas - proc gplot
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etc.

Figure 17.12: SAprob2.sas - proc print
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Figure 17.13: SAprob2.sas - proc glm
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etc.

Figure 17.14: SAprob2.sas - proc glm

Figure 17.15: SAprob2.sas - proc glm
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17.6.2 Population growth rates - SAS demo

As another example of transformations, consider a study of the population
growth of phytophagous mites on leaf sections. An experiment was conducted
in which leaf sections are inoculated with a range of mite densities and the
number of offspring recorded one generation later. The number of offspring
per initial mite is the finite growth of the population, usually symbolized as
λ. This is the dependent variable in the analysis while mite density is the
independent one. The SAS program listed below gives the mite densities and
the λ values for this experiment.

We first conduct the analysis without any transformation. Looking at
the plot of Y (λ) vs. X (density), we see a curvilinear relationship (Fig.
17.16). A transformation is clearly needed, but which one? A natural log
transformation usually a good starting point for population data, both for
growth rates and numbers. We begin by log-tranforming the dependent
variable λ and find that the plot is now linear (Fig. 17.17).

Interpreting the proc glm output below (Fig. 17.19), we see that λ de-
creased with mite density (β̂ = −0.020) and the effect was highly significant
(F1,15 = 1695.22, P < 0.0001). The R2 value was 0.991, indicating that al-
most all the variation in the data was explained by the regression line. It
appears that the growth rate of the mites was adversely affected by their
density, probably through competition for resources or other intraspecific
interactions. The residual plots suggest the homogeneity of variances and
normality assumptions were satisfied (Fig. 17.20).

SAS Program

* logistic.sas;

title ’Linear regression for growth rate-density data’;

data grd;

input lambda density;

* Apply transformations here;

y = log(lambda);

x = density;

datalines;

7.32 5

4.82 15

4.69 25

3.90 35

2.65 45

2.52 55

1.70 65
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1.68 75

1.43 85

1.07 95

0.74 105

0.72 115

0.64 125

0.47 135

0.40 145

0.38 155

0.25 165

;

run;

* Print data set;

proc print data=grd;

run;

* Plot data and regression line;

proc gplot data=grd;

plot y*x=1 y*x=2 y*x=3 / overlay vaxis=axis1 haxis=axis1;

symbol1 i=none v=star c=black height=2 width=3;

symbol2 i=rlclm v=none c=red height=2 width=3;

symbol3 i=rlcli v=none c=blue height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Regression analysis with confidence intervals;

proc glm plots=diagnostics data=grd;

model y = x / clparm clm;

run;

* Regression analysis with prediction intervals;

proc glm data=grd;

model y = x / clparm cli;

run;

quit;
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Figure 17.16: logistic.sas - proc gplot

Figure 17.17: logistic.sas - proc gplot
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Figure 17.18: logistic.sas - proc print
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Figure 17.19: logistic.sas - proc glm
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Figure 17.20: logistic.sas - proc glm
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17.8 Problems

1. An experiment was conducted to measure the effect of density on the
rate of egg laying in cowpea weevils. Ten different densities were used in
the experiment, and the rate of egg laying determined for each density.
The following data were obtained:

Density Eggs per day
100 7.629
200 4.530
500 3.820
700 2.718

1200 2.403
1500 1.756
1700 1.772
2000 1.508
2200 1.518
2500 1.359

(a) Plot the rate of egg laying (Y ) vs. density (X), and observe the
nonlinear relationship between Y and X. Find a transformation
of Y and/or X that linearizes this relationship using SAS.

(b) For the transformed data, use SAS to plot a 95% confidence inter-
val for the mean of Yi and a 95% prediction interval for a single
value of Yi. Label the intervals (confidence or prediction) on the
gplot graph.

(c) Analyze the transformed data set using linear regression and SAS.
In your SAS output, label the 95% confidence intervals for the
intercept (α) and slope (β) in your SAS printout.

(d) Interpret the results of the regression analysis. Is there a sig-
nificant effect of density on the rate of egg production? What
direction is the effect?

2. A zoologist wants to establish the relationship between the length of
an animal and its weight. He wants to use length to predict weight in
future studies, because length is easier to measure. The lengths and
weights of a random sample of 20 animals were determined, yielding
the following data:
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Length (mm) Weight (g)
14.7 1.65
19.9 4.86
15.8 2.04
19.0 3.53
8.4 0.32

10.2 0.46
13.5 1.68
22.1 6.24
16.2 1.85
8.2 0.28

10.1 0.48
19.8 4.18
20.6 4.77
22.0 6.10
18.1 2.78
22.4 5.26
10.5 0.55
14.5 1.56
11.9 1.07
14.7 1.74

(a) Plot the weight (Y ) vs. length (X) using SAS, and observe the
nonlinear relationship between Y and X. Attach your graph of
this relationship. Then, find a transformation of Y and/or X
that linearizes this relationship. What transformation did you
use? Attach your graph showing the transformed relationship.

(b) Analyze the transformed data using linear regression and SAS.
Briefly interpret your results using P values. Is there a significant
effect of length on weight? What direction is the effect? Attach
your program and output.

(c) For animals that are 21 mm long, find a 95% confidence interval
for the mean weight.



Chapter 18

Correlation

Correlation is a statistical technique used to examine the association be-
tween two continuous variables. Unlike regression, correlation does not as-
sume a particular direction to the relationship among the variables, and there
is no dependent or independent variable. Instead, there are two random vari-
ables Y1 and Y2 that could be related in some way. Correlation may be used
to examine the relationship between just two variables, or as a screening tool
to examine the pairwise relationships among many variables.

We will use a classic data set to illustrate correlation, the iris flowers
examined by Fisher (1936). The data set contains measurements of iris
flowers for three different Iris species, but we will only examine I. setosa.
The variables measured were sepal length and width, and petal length and
width, for a total of 50 observations. We will use sepal length and width
for the first ten flowers to illustrate the calculations in a correlation analysis
(Table 18.1). The notation Y1i and Y2i refer to the values for the ith pair of
numbers. For example, Y11 = 5.1 and Y21 = 3.5. Figure 18.1 shows there
is a positive association between the two variables, with sepal length (Y1i)
and width (Y2i) appearing to increase together. We will later examine the
correlations among all four variables in the full data set.
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Table 18.1: Example 1 - Sepal length and width measurements for ten flowers of I. setosa (Fisher 1936),
showing some preliminary calculations for the correlation analysis. For these data, Ȳ1 = 4.86 and Ȳ2 = 3.31.
See Chapter 22 for the full data set.

i Y1i = Sepal length Y2i = Sepal width (Y1i − Ȳ1)(Y2i − Ȳ2) (Y1i − Ȳ1)2 (Y2i − Ȳ2)2

1 5.1 3.5 4.56×10−2 5.76×10−2 3.61×10−2

2 4.9 3.0 -1.24×10−2 1.60×10−3 9.61×10−2

3 4.7 3.2 1.76×10−2 2.56×10−2 1.21×10−2

4 4.6 3.1 5.46×10−2 6.76×10−2 4.41×10−2

5 5.0 3.6 4.06×10−2 1.96×10−2 8.41×10−2

6 5.4 3.9 3.19×10−1 2.92×10−1 3.48×10−1

7 4.6 3.4 -2.34×10−2 6.76×10−2 8.10×10−3

8 5.0 3.4 1.26×10−2 1.96×10−2 8.10×10−3

9 4.4 2.9 1.89×10−1 2.12×10−1 1.68×10−1

10 4.9 3.1 -8.40×10−3 1.60×10−3 4.41×10−2∑
48.6 33.1 6.34×10−1 7.64×10−1 8.49×10−1
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Figure 18.1: Scatterplot of I. setosa sepal length and width
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18.1 Correlation model

The statistical model for correlation is the bivariate normal distribution.
This is an extension of the normal distribution to a pair of random variables,
Y1 and Y2, that have a joint probability distribution. This differs from the
continuous (and discrete) random variables we previously studied, that model
the behavior of a single observation Y and so are classified as univariate
distributions.

The bivariate normal distribution has five parameters, the mean and stan-
dard deviation for Y1 and Y2 (µ1, σ1, µ2, σ2) and the parameter ρ, which ranges
between -1 and 1 (Stuart et al. 1999). This parameter describes the asso-
ciation between Y1 and Y2: if ρ > 0 then the two variables are positively
related, as in Fig. 18.1, while if the ρ < 0 they are inversely related. If ρ = 0
the two variables are independent of one another. The probability density
for the bivariate normal distribution is given by the function

f(y1, y2) =
1

2πσ1σ2

√
1− ρ2

×

exp

[
− 1

2(1− ρ2)

{(
y1 − µ1

σ1

)2

− 2ρ
y1 − µ1

σ1

y2 − µ2

σ2

+

(
y2 − µ2

σ2

)2
}]

.

(18.1)

A interesting property of this distribution is that each Y variable, when con-
sidered alone, also has a normal distribution. In particular, Y1 ∼ N(µ1, σ

2
1)

and Y2 ∼ N(µ2, σ
2
2). These are known as the marginal distributions of Y1

and Y2.

Figure 18.2 and Fig. 18.3 shows this distribution as a surface or contour
plot, for ρ = 0.7. This value of ρ implies a strong positive relationship
between the two variables, and so the probability density has a ridge-like
shape because Y1 and Y2 are likely to increase or decrease together. Fig.
18.4 shows a sample data set generated for the same parameter values of this
distribution. Note the relationship between Y1 and Y2 and the elliptical cloud
of points.

Figure 18.5 shows the distribution for a strong negative relationship be-
tween the variables (ρ = −0.7). A sample data set for the same parameter
values is shown in Fig. 18.6. Figure 18.7 and Fig. 18.8 show the patterns
when the two variables are unassociated or independent (ρ = 0).
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The usual goal in correlation is to estimate the value of ρ and then test
H0 : ρ = 0. This null hypothesis means the two variables are independent,
and if we can reject this suggests the two variables are associated or depen-
dent. It is also possible to test null hypotheses of the form H0 : ρ = ρ0, where
ρ0 is any value.
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Figure 18.2: Surface plot of the bivariate normal distribution for µ1 = µ2 =
5, σ2

1 = σ2
2 = 1, and ρ = 0.7.

Figure 18.3: Contour plot of the bivariate normal for the same parameter
values as Fig. 18.3
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Figure 18.4: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = 0.7.
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Figure 18.5: Contour plot of the bivariate normal for µ1 = µ2 = 5, σ2
1 = σ2

2 =
1, and ρ = −0.7.

Figure 18.6: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = −0.7.
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Figure 18.7: Contour plot of the bivariate normal for µ1 = µ2 = 5, σ2
1 = σ2

2 =
1, and ρ = 0.

Figure 18.8: Simulated data for the bivariate normal distribution with µ1 =
µ2 = 5, σ2

1 = σ2
2 = 1, and ρ = 0.
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18.2 Correlation and maximum likelihood

Maximum likelihood can be used to estimate the parameters for the bivariate
normal distribution, using methods like those for simpler ones. It turns out
that the sample mean Ȳ and standard deviation s can be used to estimate
µ1, σ1, µ2, and σ2 for this distribution. For the Example 1 data set, we
have Ȳ1 = 4.86, s1 = 0.29136, Ȳ2 = 3.31, and s2 = 0.30714. The maximum
likelihood estimator of ρ is the sample correlation coefficient, r, given by
the formula

r =

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)√∑n

i=1(Y1i − Ȳ1)2
∑n

i=1(Y2i − Ȳ2)2
(18.2)

(Stuart et al. 1999). Note that the sign of r depends on the numerator
of this expression. If Y1 and Y2 are positively or negatively associated, the
numerator will be positive or negative. For the Example 1 data, we have

n∑
i=1

(Y1i − Ȳ1)(Y2i − Ȳ2) = 0.634, (18.3)

n∑
i=1

(Y1i − Ȳ1)2 = 0.764, (18.4)

and
n∑
i=1

(Y2i − Ȳ2)2 = 0.849. (18.5)

Using these values, the correlation coefficient can then be calculated:

r =
6.34× 10−1

√
7.64× 10−1 × 8.49× 10−1

= 0.787. (18.6)

The equation for r can also be expressed using the standard deviations of the
two variables, and a quantity called the sample covariance. The sample
covariance is given by the formula

s12 =

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)

n− 1
. (18.7)

Dividing the top and bottom of the equation for r by n− 1, we have

r =
1

n−1

∑n
i=1(Y1i − Ȳ1)(Y2i − Ȳ2)√

1
n−1

∑n
i=1(Y1i − Ȳ1)2 1

n−1

∑n
i=1(Y2i − Ȳ2)2

(18.8)

=
s12√
s2

1s
2
2

=
s12

s1s2

(18.9)
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Thus, r can be expressed as the sample covariance s12 scaled by the standard
deviation s1 and s2 for each variable. This quantity is also known as the
Pearson correlation coefficient.

The square of the correlation coefficient is called the coefficient of de-
termination, and provides an indication of the amount of variability in Y1

explained by Y2, or vice versa. It is typically written as R2 like in linear
regression or ANOVA. The value of R2 ranges from zero to one, with values
near one implying a strong relationship (positive or negative) between Y1 and
Y2, while values near zero imply a weak one. For the Example 1 data, we
have R2 = 0.7872 = 0.619. About 62% of the variability in Y1 is explained
by Y2, or vice versa.

There is also a likelihood ratio test for H0 : ρ = 0 vs. H1 : ρ 6= 0,
equivalent to testing whether Y1 is independent of Y2. Under H0, the test
statistic

Ts = r

√
n− 2

1− r2
(18.10)

has a t distribution with n − 2 degrees of freedom, and we would reject H0

for sufficiently large values (Stuart et al. 1999). For the Example 1 data, we
have

Ts = 0.787

√
10− 2

1− 0.7872
= 3.608. (18.11)

Using Table T with 10 − 2 = 8 degrees of freedom, we see that P < 0.01.
The correlation between sepal length and width was highly significant (t8 =
3.608, P < 0.01), and so the two variables appear dependent, not indepen-
dent.

There is an approximate test for H0 : ρ = ρ0 vs. H0 : ρ 6= ρ0, for values
ρ0 different from zero. It uses a special transformation for r, the inverse
hyperbolic tangent function:

arctanh(r) =
1

2
ln

(
1 + r

1− r

)
, (18.12)

defined for −1 < r < 1. The effect of this transformation is to spread
out the distribution of r and make it more normal. Under H0, we have
E[arctanh(r)] ≈ arctanh(ρ0) and V ar[arctanh(r)] ≈ 1/(n− 3), and so

Zs =
arctanh(r)− arctanh(ρ0)√

1/(n− 3)
(18.13)

=
√
n− 3 [arctanh(r)− arctanh(ρ0)] ∼ N(0, 1) (18.14)
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for large n (Stuart et al. 1999). As an example of this test, suppose we want
to test H0 : ρ = 0.5 for the Example 1 data set. We have

Zs =
√

10− 3 [arctanh(0.787)− arctanh(0.5)] (18.15)

= 2.646(1.064− 0.549) = 1.363. (18.16)

Using Table Z and the method in Chapter 10, we find that P = 0.1738.
The correlation coefficient was not significantly different from 0.5 (Zs =
1.363, P = 0.1738).

18.2.1 Correlation for Example 1 - SAS demo

We can conduct a correlation analysis using proc corr in SAS (see program
below). We first input the observations using a data step. Within the
proc corr section of the program, we specify the variables to be analyzed using
a var statement (SAS Institute Inc. 2016). The option plots=(scatter matrix)

generates pairwise scatterplots of all the variables, and then a scatterplot ma-
trix that plots all possible pairs of variables in one graph.

From the proc corr output (Fig. 18.10), we see that the correlation be-
tween sepal length and width was highly significant (r = 0.787, P = 0.0069).
The pairwise scatterplot and scatterplot matrix are also shown (Fig. 18.11).
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SAS Program

* Iris.sas;

title "Correlation for Iris data";

data iris;

input seplen sepwid;

datalines;

5.1 3.5

4.9 3.0

4.7 3.2

4.6 3.1

5.0 3.6

5.4 3.9

4.6 3.4

5.0 3.4

4.4 2.9

4.9 3.1

;

run;

* Print data set;

proc print data=iris;

run;

* Correlation analysis and scatterplots;

proc corr data=iris plots=(scatter matrix);

var seplen sepwid;

run;

quit;
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Figure 18.9: Iris.sas - proc print
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Figure 18.10: Iris.sas - proc corr
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Figure 18.11: Iris.sas - proc corr
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18.2.2 Testing H0 : ρ = ρ0 - SAS demo

We can use a short SAS program to test H0 : ρ = 0.5 vs. H1 : ρ 6= 0.5 for the
Example 1 data (see program and output below). The program calculates
the P value for this two-tailed alternative (pvalue2) as well as both one-tailed
ones (p_val_gt,p_val_lt). We see that the correlation between sepal length
and width is not significantly different from 0.5 (Zs = 1.360, P = 0.1737).

SAS Program

* rhocalc.sas;

title ’Test Ho: rho = rho_0 where rho_0 is non-zero’;

data rhocalc;

* Input sample size, rho, and rho_0;

n = 10;

r = 0.787;

rho_0 = 0.5;

zs = sqrt(n-3)*(artanh(r)-artanh(rho_0));

* P-value for two-tailed test;

p_value2 = 2*(1 - probnorm(abs(zs)));

* P-values for one-tailed tests;

* Ho: rho = rho_0 vs. H1: rho > rho_0;

p_val_gt = 1 - probnorm(zs);

* Ho: rho = rho_0 vs. H1: rho < rho_0;

p_val_lt = probnorm(zs);

run;

* Print test results;

proc print data=rhocalc;

run;

Figure 18.12: rhocalc.sas - proc print



578 CHAPTER 18. CORRELATION

18.2.3 Correlation for I. setosa, all data - SAS demo

We now analyze the full data set for I. setosa, as listed in Chapter 22. We will
examine the correlation between sepal length, sepal width, petal length, and
petal width for all 50 flowers. The SAS program is similar to the Example
1 analysis, except that all four variables are listed in the data and proc corr

steps. From Fig. 18.14, we see there was a highly significant correlation
between sepal length and width (r = 0.743, P < 0.0001), and petal length
and width were also significantly correlated (r = 0.332, P = 0.0186). All the
remaining correlations were nonsignificant. It appears that measurements
of the same structure (petal or sepal) are correlated, but the correlation is
weaker between structures. The scatterplot matrix (Fig. 18.15) reflects these
patterns, with sepal length and width showing a strong positive association,
with a weaker one for petal length and width. The remaining pairs show no
obvious relationships.
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SAS Program

* Iris_all.sas;

title "Correlation for Iris data";

data iris;

input seplen sepwid petlen petwid;

datalines;

5.1 3.5 1.4 0.2

4.9 3.0 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5.0 3.6 1.4 0.2

etc.

4.8 3.0 1.4 0.3

5.1 3.8 1.6 0.2

4.6 3.2 1.4 0.2

5.3 3.7 1.5 0.2

5.0 3.3 1.4 0.2

;

run;

* Print data set;

proc print data=iris;

run;

* Correlation analysis and scatterplots;

proc corr data=iris plots=(scatter matrix);

var seplen sepwid petlen petwid;

run;

quit;
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etc.

Figure 18.13: Iris all.sas - proc print
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Figure 18.14: Iris all.sas - proc corr
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Figure 18.15: Iris all.sas - proc corr
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18.3 Correlation assumptions

The main assumption of correlation is that the data have a bivariate normal
distribution. If the data do not appear to be bivariate normal, it may be
useful to transform one or both variables. The same transformations used
in linear regression may be helpful (see Chapter 17). For example, suppose
that the relationship between Y1 and Y2 appears to be curved (Fig. 18.16).
A log transformation of Y2 makes the overall distribution more similar to
the bivariate normal (Fig. 18.17). Once the distribution appears correct, we
would calculate the correlation coefficient r and conduct our tests.

Figure 18.16: Simulated data showing a curved relationship between Y1 and
Y2.
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Figure 18.17: Simulated data showing a bivariate normal distribution for Y1

and ln(Y2).
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18.4 Nonparametric correlation

There are also nonparametric correlation methods useful when the observa-
tions are not bivariate normal. One common method is the Spearman rank
correlation test (Hollander et al. 2014). This procedure simply substitutes
the rank values of Y1 and Y2 in the formula for r, then proceeds as before.
We are still interested in testing whether Y1 and Y2 are independent, but no
distribution is specified.

We will illustrate the Spearman rank correlation procedure using the
Example 1 data set. The initial calculations are shown in Table 18.2. We
next calculate the Spearman rank correlation rs using the results from this
table. We have

rs =
62.00√

81.00× 81.50
= 0.763. (18.17)

If we want to test whether Y1 and Y2 are independent, we can use the same
test procedure as before, but substituting rs for r. For the Table 18.2 data,
we have

Ts = rs

√
n− 2

1− r2
s

= 0.763

√
10− 2

1− 0.7632
= 3.339. (18.18)

Using Table T with 10−2 = 8 degrees of freedom, we see that P < 0.02. The
test was significant (rs = 0.763, P < 0.02), which suggests the two variables
are not independent.
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Table 18.2: Preliminary calculations for Spearman rank correlation using the Example 1 data. Here R1i and
R2i are the rank values of sepal length and width, with R̄1 = R̄2 = 5.5. Note that tied ranks are assigned
their average value.

i Y1i = Sepal length Y2i = Sepal width R1i R2i (R1i − R̄1)(R2i − R̄2) (R1i − R̄1)2 (R2i − R̄2)2

1 5.1 3.5 9 8 8.75 12.25 6.25
2 4.9 3.0 5.5 2 0.00 0.00 12.25
3 4.7 3.2 4 5 0.75 2.25 0.25
4 4.6 3.1 2.5 3.5 6.00 9.00 4.00
5 5.0 3.6 7.5 9 7.00 4.00 12.25
6 5.4 3.9 10 10 20.25 20.25 20.25
7 4.6 3.4 2.5 6.5 -3.00 9.00 1.00
8 5.0 3.4 7.5 6.5 2.00 4.00 1.00
9 4.4 2.9 1 1 20.25 20.25 20.25

10 4.9 3.1 5.5 3.5 0.00 0.00 4.00∑
- - 55 55 62.00 81.00 81.50
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18.4.1 Spearman rank correlation for Example 1 - SAS
demo

The Spearman rank correlation and tests can be conducted in SAS by adding
the spearman option to the proc corr statement. For the Table 18.2 data, we
obtain rs = 0.763, P = 0.0102. See SAS code and output below.

SAS Program

proc corr data=iris plots=(scatter matrix) spearman;

Figure 18.18: Iris.sas - proc corr
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18.6 Problems

1. An entomologist was interested in variation in eye and head size for
leaf-cutting ants (Moser et al. 2004). A microscope was used to mea-
sure the width of the head (mm) and the surface area of the eyes and
ocelli (mm2). The surface areas were then square-root transformed.
The following data were obtained for the females of one species (Atta
sexdens).

(a) Calculate all pairwise correlations among these variables using
SAS. Interpret the results of this analysis, providing a P value
and discussing the significance of the test. Provide a biological
explanation for the positive correlations among these variables.

(b) Test whether each of the pairwise correlations is significantly dif-
ferent from 0.2.

(c) Calculate all pairwise Spearman rank correlations using SAS. In-
terpret the results of this analysis.



590 CHAPTER 18. CORRELATION

Head Eye Ocelli Head Eye Ocelli
4.1 0.660 0.311 3.8 0.633 0.290
4.1 0.651 0.301 3.9 0.659 0.293
4.1 0.614 0.287 4.0 0.633 0.287
4.1 0.668 0.301 4.1 0.614 0.295
4.0 0.659 0.298 4.2 0.678 0.295
4.1 0.659 0.306 4.2 0.668 0.292
4.1 0.678 0.311 4.1 0.668 0.304
4.0 0.668 0.311 4.2 0.678 0.298
4.0 0.601 0.285 4.2 0.678 0.286
3.9 0.651 0.288 3.9 0.646 0.295
4.1 0.678 0.303 4.0 0.633 0.295
4.1 0.665 0.298 4.1 0.659 0.295
4.2 0.668 0.306 4.0 0.646 0.296
4.0 0.668 0.306 4.1 0.655 0.298
4.1 0.678 0.306 4.0 0.659 0.290
4.0 0.659 0.301 4.1 0.678 0.298
3.9 0.659 0.298 4.1 0.678 0.301
4.1 0.678 0.304 4.1 0.668 0.298
4.2 0.668 0.299 4.1 0.659 0.295
4.1 0.659 0.304 4.2 0.678 0.301
4.1 0.665 0.301 3.9 0.687 0.296
4.2 0.665 0.307 4.0 0.614 0.293
4.1 0.651 0.306 4.1 0.668 0.298
4.2 0.659 0.293 4.3 0.678 0.304
4.1 0.659 0.301 4.1 0.646 0.297
4.0 0.659 0.301 4.2 0.655 0.301



Chapter 19

More Complex ANOVA
Designs

This chapter examines three designs that incorporate more factors and in-
troduce some new elements of experimental design. They are three-way
ANOVA, one-way nested ANOVA, and analysis of covariance (ANCOVA).
These are common designs whose elements can be combined to generate more
elaborate ones. A useful guide to complex ANOVA designs is Winer et al.
(1991), who provide a description and statistical model for each design. Once
a particular design is identified, the statistical model can be used to program
the analysis in SAS or other software.

19.1 Three-way ANOVA

We will first discuss three-way ANOVA, an analysis which examines how
three different factors influence the means of the different groups. The three
factors may be any combination of fixed or random effects and are typically
referred to a Factors A, B, and C. In this design, there are one or more repli-
cate observations for each combination of the three factors. The statistical
analysis for three-way ANOVA designs may include F tests for the main ef-
fects of the factors as well as the interactions among them. For example, if
the design has replication and all three factors are fixed, there are F tests
for the main effects (Factor A, B, C), each pairwise interaction (A × B, A ×
C, B × C), and even a three-way interaction (A × B × C). The additional
complexity of this design with its many interactions can make interpretation

591
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of the results quite challenging.
As an example of three-way ANOVA, we will analyze data from an ex-

periment by Maestre & Reynolds (2007). This study examined how overall
nutrient and water availability, and nutrient heterogeneity, affected grassland
biomass production (Table 19.1). Nutrient heterogeneity was manipulated by
placing the nitrogen at a particular location within the container vs. an even
distribution. See Chapter 14 for further description of this experiment. We
will use the notation Yijkl to reference the observations in three-way ANOVA
designs. The i subscript refers to the group or treatment within Factor A (in
this case nitrogen heterogeneity), j the treatment within Factor B (nitrogen
levels), k the treatment within Factor C (water levels), while l refers to the
observation within the treatment. For example, Y1134 refers to the fourth ob-
servation in the no nutrient heterogeneity, 40 mg N, 375 ml water treatment,
which is 7.901.
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Table 19.1: Example 1 - Effect of nitrogen heterogeneity, nitrogen availability, and water availability on the
total biomass of grassland plants grown in microcosms (Maestre & Reynolds 2007). The table illustrates
how the subscripts for Yijkl vary across treatments for a portion of the data set (see Chapter 22 for the full
version).

N het. (Y/N) N (mg) Water (ml/week) Yijkl = Biomass i j k l
N 40 125 4.372 1 1 1 1
N 40 125 4.482 1 1 1 2
N 40 125 4.221 1 1 1 3
N 40 125 3.977 1 1 1 4
N 40 250 7.400 1 1 2 1
N 40 250 8.027 1 1 2 2
N 40 250 7.883 1 1 2 3
N 40 250 7.769 1 1 2 4
N 40 375 7.226 1 1 3 1
N 40 375 8.126 1 1 3 2
N 40 375 6.840 1 1 3 3
N 40 375 7.901 1 1 3 4

etc.

Y 120 250 10.731 2 3 2 1
Y 120 250 12.640 2 3 2 2
Y 120 250 10.350 2 3 2 3
Y 120 250 11.550 2 3 2 4
Y 120 375 14.697 2 3 3 1
Y 120 375 17.826 2 3 3 2
Y 120 375 14.711 2 3 3 3
Y 120 375 13.614 2 3 3 4
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19.1.1 Three-way fixed effects model

Suppose that we want to model the observations in a study like Example
1, where there are Factors A, B, and C. Assume the design is factorial with
every possible combination of the three factors, with n > 1 observations of
each one. This design is often called three-way ANOVA with replication. A
common model for the observations Yijkl in such designs (Winer et al. 1991)
is

Yijkl = µ+ αi + βj + γk + (αβ)ij + (βγ)jk + (αγ)ik + (αβγ)ijk + εijkl. (19.1)

Here µ is the grand mean of the observations, while αi is the deviation from
µ caused by the ith level or treatment of Factor A, βj the deviation caused
by the jth level of Factor B, and γk is the deviation caused by the kth level of
Factor C. These terms are the main effects in the model. The terms (αβ)ij,
(βγ)jk, and (αγ)ik are pairwise or first-order interactions among Factors
A and B, B and C, and A and C (A × B, B × C, and A × C). They are
similar to the interaction term in two-way ANOVA, but with three factors in
the design there are more possibilities for interaction among them. The term
(αβγ)ijk models a three-way or second-order interaction (A × B × C)
among all three factors. It can be thought of as an interaction of interactions,
i.e., the interaction between Factors A and B could change across levels of C.
The εijkl term represents the usual random departures from the mean value
predicted by the main effects and interactions due to natural variability.

The objective in three-way ANOVA is to test whether Factor A, B, and
C have an effect on the group means, and whether there are interactions
among these factors. For Factor A this amounts to testing H0 : all αi = 0,
and similarly H0 : all βj = 0 for Factor B and H0 : all γk = 0 for Factor
C. For the A × B interaction, we would test H0 : (αβ)ij = 0, and similarly
H0 : (αγ)ik = 0 for the A × C and H0 : (βγ)jk = 0 for the B × C interactions.
For the three-way interaction, A × B × C, we are interested in testing H0 :
all (αβγ)ijk = 0. The F tests for these hypotheses can be constructed using
various sums of squares and mean squares, similar to two-way ANOVA, and
are also examples of likelihood ratio tests. We will not consider this process
in detail but instead proceed directly to the analysis of the Example 1 data
set using SAS.
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19.1.2 Three-way ANOVA for Example 1 - SAS demo

The first step in the program (see below) is to read in the observations using
a data step, with the first variable (nitrohet) denoting the nitrogen hetero-
geneity treatment, while nitrogen and water represent the nitrogen and water
levels. The variable biomass is then log-transformed before analysis, yield-
ing the dependent variable y = log10(biomass}. Three separate plots then
requested using proc gplot (SAS Institute Inc. 2016), one for every pairwise
combination of nitrohet, nitrogen, and water. These plots will allow us to
examine the main effects and all pairwise interactions among the treatments.
The choice as to whether a particular treatment is plotted on the x-axis or
appears as separate groups (lines) on the graph is arbitrary. Like two-way
ANOVA, if the lines are not parallel in a plot this suggests there is an interac-
tion between the factors. The second set of proc gplot graphs is intended to
illustrate the three-way interaction among the factors. Each plot illustrates
the interaction between nitrogen and water at one level of nitrohet. These
plots will appear different if there is substantial interaction among the three
factors.

The next section of the program conducts the three-way ANOVA using
proc glm (SAS Institute Inc. 2018). The class statement tells SAS that
nitrohet, nitrogen, and water are used to classify the observations into the 18
different treatment groups. The model statement tells SAS the form of the
ANOVA model. Recall that the model for fixed effects three-way ANOVA
(Eq. 19.1). The statement nitrohet|nitrogen|water is SAS shorthand for
this model, and will automatically generate all the possible main effects and
interactions of the three factors.

The lsmeans statement causes proc glm to calculate quantities called least
squares means for each level of nitrohet, nitrogen, and water. When the data
are balanced these are equivalent to the means for each treatment group, but
least squares means have some advantages for unbalanced data and other
statistical models. The option adjust=tukey requests multiple comparisons
among treatments using the Tukey method. This is useful for comparing the
different levels of the main effects. However, tests for the main effects as well
as multiple comparisons should be treated with caution in the presence of
strong interaction (see Chapter 14 for discussion of this issue).

We now examine the results of the tests generated by SAS, examining the
interactions first (Fig. 19.6). We are primarily interested in the results for
Type III sums of squares. We see that the three-way nitrogen heterogeneity
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× nitrogen × water interaction was nonsignificant (F4,54 = 1.39, P = 0.2492).
The two graphs that illustrate this interaction appear similar, further indi-
cating this interaction is weak or absent (Fig. 19.5). Turning to the pair-
wise interactions, we see that the nitrogen heterogeneity × nitrogen inter-
action was nonsignificant (F2,54 = 0.93, P = 0.4017). In agreement with
this result, the corresponding graph for this interaction (Fig. 19.2) sug-
gests these two treatments are additive. The nitrogen × water interaction
(F4,54 = 12.90, P < 0.0001) was highly significant. Examining Fig. 19.3, we
see that the source of this interaction was a reduced effect of watering at
lower nitrogen levels. The nitrogen heterogeneity × water interaction was
also highly significant (F2,54 = 13.10, P < 0.0001). This interaction was
apparently generated by a stronger effect of nitrogen heterogeneity at the
lowest water level (Fig. 19.4). Overall, the significant interactions suggest
that effects of these factors on biomass are not additive (Maestre & Reynolds
2007).

The SAS analysis also found highly significant main effects of nitrogen
heterogeneity (F1,54 = 144.14, P < 0.0001), nitrogen (F2,27 = 129.71, P <
0.0001) and water (F2,27 = 657.00, P < 0.0001) on biomass, as well as sig-
nificant differences among all levels of these treatments (Fig. 19.7). We can
judge the strength of these effects through the interaction plots as well as
the sum of squares values. Watering appears to have the largest effect on
biomass, followed by nitrogen and nitrogen heterogeneity. The heterogeneity
result is particularly intriguing, because more biomass was generated when
this nutrient was heterogeneously distributed in space. Maestre & Reynolds
(2007) suggest this occurred because nutrient patches encourage root pro-
liferation, leading to increased nutrient uptake and overall growth. Even
though there were significant interactions in this analysis, the main effects
were larger and explained most of the variation in these data.
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SAS program

* Maestre_biomass_3way.sas;

title "Three-way ANOVA for biomass";

title2 "Data from Maestre and Reynolds (2007)";

data maestre;

input nitrohet $ nitrogen water biomass;

* Apply transformations here;

y = log10(biomass);

datalines;

N 40 125 4.372

N 40 125 4.482

N 40 125 4.221

N 40 125 3.977

N 40 250 7.400

N 40 250 8.027

N 40 250 7.883

N 40 250 7.769

etc.

Y 120 375 14.697

Y 120 375 17.826

Y 120 375 14.711

Y 120 375 13.614

;

run;

* Print data set;

proc print data=maestre;

run;

proc gplot data=maestre;

plot y*nitrohet=nitrogen y*nitrogen=water y*nitrohet=water / vaxis=axis1

haxis=axis1 legend=legend1;

symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Sort data by nitrohet levels;

proc sort data=maestre;

by nitrohet;

run;

* Plots to show three-way interaction;

proc gplot data=maestre;

by nitrohet;

plot y*nitrogen=water / vaxis=axis1 haxis=axis1 legend=legend1;
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symbol1 i=std1mjt v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* Three-way ANOVA with all fixed effects;

proc glm plots=diagnostics data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water;

lsmeans nitrohet nitrogen water / adjust=tukey cl lines;

run;

quit;

etc.

Figure 19.1: Maestre biomass 3way.sas - proc print
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Figure 19.2: Maestre biomass 3way.sas - proc gplot

Figure 19.3: Maestre biomass 3way.sas - proc gplot
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Figure 19.4: Maestre biomass 3way.sas - proc gplot
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Figure 19.5: Maestre biomass 3way.sas - proc gplot
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Figure 19.6: Maestre biomass 3way.sas - proc glm
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Figure 19.7: Maestre biomass 3way.sas - proc glm
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19.1.3 Tests for main effects with interaction

As discussed in Chapter 14, there are questions as to whether tests of main
effects are appropriate when interaction is significant, and these extend to
three-way designs. As an alternative, we can use the slice option for lsmeans

to avoid tests of the main effects. The modified SAS code is listed below
along with the output. We first fit the full model including all the interactions
(see Fig. 19.8), and observe that the nitrogen heterogeneity × nitrogen ×
water interaction was nonsignificant (F4,54 = 1.39, P = 0.2492), as was the
nitrogen heterogeneity × nitrogen interaction (F2,54 = 0.93, P = 0.4017). We
then drop these interactions and refit the model (Fig. 19.9). The remaining
two interactions were both highly significant in this reduced model (nitrogen
heterogeneity × water, F2,60 = 12.79, P < 0.0001; nitrogen × water, F4,60 =
12.61, P < 0.0001). We skip the tests of the main effects because of these
highly significant interactions, and instead use the slice option to test for a
nitrogen heterogeneity effect at each water level, and vice versa. These tests
were all highly significant, suggesting that nitrogen heterogeneity affected
biomass at every water level, and water affected biomass at every nitrogen
heterogeneity level (Fig. 19.10). Similar tests could be conducted to examine
the effects of nitrogen and water.

SAS Program

* Three-way ANOVA with interaction;

title3 "MODEL WITH ALL FOUR INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet|nitrogen|water / ss2;

output out=resids p=pred r=resid;

run;

* Three-way ANOVA dropping ns interactions;

title3 "MODEL WITH ONLY SIGNIFICANT INTERACTIONS";

proc glm data=maestre;

class nitrohet nitrogen water;

model y = nitrohet nitrogen water nitrohet*water nitrogen*water / ss2;

lsmeans nitrohet*water / slice=water slice=nitrohet;

run;
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Figure 19.8: Maestre biomass 3way new.sas - proc glm (1)
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Figure 19.9: Maestre biomass 3way new.sas - proc glm (2)
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Figure 19.10: Maestre biomass 3way new.sas - proc glm (2)
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19.1.4 Other three-way designs

The Maestre & Reynolds (2007) experiment had four replicate containers for
each treatment combination (n = 4), and so it was possible to fit a model with
a three-way interaction, namely nitrogen heterogeneity × nitrogen × water.
Suppose now there was only observation for each treatment combination
(n = 1). It is still possible to analyze these data using three-way ANOVA,
but the data are not sufficient to fit a model with a three-way interaction.
We would therefore use the model

Yijk = µ+ αi + βj + γk + (αβ)ij + (βγ)jk + (αγ)ik + εijk. (19.2)

The equivalent model statement for proc glm would be

model y = nitrohet nitrogen water nitrohet*nitrogen nitrohet*water

nitrogen*water;

There is no shorthand method of specifying this model. The SAS output
would be interpreted in the same way as the model with replication, except
there would be no test for a three-way interaction.

Another common three-way design could have one or more factors that
are random effects. For example, suppose that one manipulated nitrogen and
water levels similar to Maestre & Reynolds (2007) but conducted the exper-
iment in three different blocks, either different locations in the greenhouse
or points in time. Block could be a random effect in this design, and the
corresponding model would be

Yijkl = µ+αi +βj +Ck + (αβ)ij + (βC)jk + (αC)ik + (αβC)ijk + εijkl. (19.3)

Here C stands for a random block effect, with C ∼ N(0, σ2
C). Note that

every interaction term involving C is also considered a random effect. This
model could be analyzed with proc mixed (SAS Institute Inc. 2018) using the
following SAS statements:

proc mixed cl;

class nitrogen water block;

model y = nitrogen water nitrogen*water / ddfm=kr;

random block block*nitrogen block*water block*nitrogen*water;

run;
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19.2 One-way nested ANOVA

The second design we will examine are called one-way nested designs. There
are two factors in this design, a Factor A that may be a fixed or random
effect, and a random nested Factor B. Nested means that for each level of
Factor A, there are several levels of Factor B that are unique to that level of
A. There are several replicate observations for each combination of Factor A
and B.

As an example of this design, we will examine a genetic study of a minute
parasitic wasp, Anagrus delicatus (Hymenoptera: Mymaridae). This wasp
attacks eggs of the planthopper Prokelisia marginata (Homoptera: Delphaci-
dae), a salt marsh insect that feeds on Spartina plants. Cronin & Strong
(1996) were interested in the genetics of various wasp traits, including the
number of eggs carried by the wasps themselves, ovipositor length, and vari-
ous behavioral traits. They collected female wasps from three separate sites
in San Franciso Bay and established genetically identical isolines from in-
dividual wasps collected from each site. They then measured the traits for
a number of individuals from each isoline. Isolines are the nested factor in
this design, because each isoline was established from a single site. Sites
were classified as a fixed effect because there were essentially only three sites
available for sampling, and so the sites were not randomly selected from a
population of sites. Example 2 below shows a simulated data set based on
this study, with three sites, 14 isolines per site, and eight individuals per
isoline.
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Table 19.2: Example 2 - Fecundity for Anagrus delicatus collected from three
different sites, with 14 isolines per site and eight wasps per isoline. The data
were simulated from results presented in Cronin and Strong (1996). Note
that the values in the site, isoline, and wasp columns also correspond to the
subscripts for Yijk. See Chapter 22 for the full version of this data set.

Site Isoline Wasp Yijk = eggs
1 1 1 37
1 1 2 41
1 1 3 46
1 1 4 44
1 1 5 43
1 1 6 41
1 1 7 38
1 1 8 37
1 2 1 37
1 2 2 28
1 2 3 34
1 2 4 37
1 2 5 35
1 2 6 39
1 2 7 36

etc.

3 13 1 36
3 13 2 39
3 13 3 36
3 13 4 30
3 13 5 37
3 13 6 32
3 13 7 38
3 13 8 39
3 14 1 32
3 14 2 34
3 14 3 41
3 14 4 33
3 14 5 35
3 14 6 35
3 14 7 34
3 14 8 31
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19.2.1 Nested ANOVA models

Suppose that we want to model the observations in a study like Example 2,
where there is a fixed Factor A and a nested Factor B. A common model for
the observations Yijk in such designs (Winer et al. 1991) is

Yijk = µ+ αi +Bj(i) + εijk. (19.4)

Here µ is the grand mean of the observations, αi the deviation from µ caused
by the ith level or treatment of Factor A, and Bj(i) the random deviation
caused by the jth level of Factor B nested within the ith level of Factor
A. Bj(i) is assumed to be normally distributed with mean zero and variance
σ2
B(A), or Bj(i) ∼ N(0, σ2

B(A)), while εijk ∼ N(0, σ2) as usual. Bj(i) and εijk
are assumed to be independent. This model has two variance components,
namely σ2

B(A) and σ2.
The behavior of this model is illustrated in Fig. 19.11, for a = 3 levels

of Factor A and b = 4 levels of Factor B nested within each A. The figure
illustrates how the value of αi shifts the mean of the observations away from
µ, similar to other ANOVA models. The Bj(i) values, which are random
variables, shift the observations for each nested level away from the values
set by µ + αi. The values of Bj(i) are different for each level of Factor A
because they are random quantities.

The usual objectives for this nested ANOVA design are to test for Factor
A effects, and estimate the variance components σ2

B(A) and σ2. For Factor A,
this amounts to testing H0 : all αi = 0. We will not consider this process in
detail but proceed to the analysis and interpretation of the Example 2 data
set. We will use proc mixed for the analysis because this design involves a
mixed model.
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Figure 19.11: Mixed model for nested ANOVA showing the Factor A and B
effects.

19.2.2 Nested ANOVA for Example 2 - SAS demo

The first step in analyzing the Example 2 data is to read the observations
using a data step, with the variables site and isoline denoting the collection
site and Anagrus isoline (see program below), while the dependent variable
is eggs. Although the isolines are numbered similarly across the three sites,
note they are actually unique to each site and so are nested within sites. The
variable wasp refers to a particular wasp within each isoline, but is not used in
the analyses. Two plots are then requested using proc gplot (SAS Institute
Inc. 2016), one showing the mean for each site and so illustrating the site
effect. The second plot shows the individual wasps color-coded by isoline,
allowing for a visual comparison of variation among and within isolines. The
x-axis position of each wasp is jittered to keep the points from overlapping.
This involves adding a small random quantity to the site value, generating
a new variable called site_jit that differs for each wasp.

The next section of the program conducts the nested ANOVA using
proc mixed (SAS Institute Inc. 2018). The class statement tells SAS that
site and isoline are used to classify the observations. Next, the fixed effect
site is listed in the model statement, while the random, nested effect of isoline
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is incorporated in the random statement. SAS uses the syntax isoline(site)

to indicate that isoline is nested within site. An lsmeans statement is used to
compared the different sites using the Tukey method.

There appears to be little difference among the sites in the mean number
of eggs per wasp (Fig. 19.13), and the test of the site effect was non-significant
(F2,39 = 2.3, P = 0.1323) (Fig. 19.16). We next look at the estimates of the
variance components. The variance among isolines within sites (σ̂2

B(A) =

σ̂2
isoline(site) = 10.17) was substantial relative to the variance among wasps

within isolines (σ̂2 = 11.02). This pattern can be observed in Fig. 19.14,
with the observations for each isoline falling into discernable groups.

We can use the two variance components to estimate the heritability of
egg number, which is the proportion of the variance due to genotypic vs.
phenotypic differences among individuals (Falconer & Mackay 1996). The
genotypic variance, VG, is estimated by the variance among isolines within
sites, because each isoline represents a different genetic group. For the wasp
example, we have VG = σ̂2

isoline(site) = 10.17. The environmental variance, VE,
is estimated by the variance among individuals within isolines, and represents
variation among individuals not due to genotype. It is estimated by the
variance among wasps within isolines, or VE = σ̂2 = 11.02. The phenotypic
variance is defined as the sum of the genotypic and environmental variance,
or VP = VG + VE. Heritability is then defined h2 = VG/VP = VG/(VG + VE).
It follows that h2 = 10.17/(10.17 + 11.02) = 0.48 for the number of eggs in
the wasps. This is relatively large value, suggesting that egg number could
readily evolve in response to selection pressure.
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SAS program

* Nested_ANOVA_Anagrus.sas;

title "Nested ANOVA for fecundity";

title2 "Data simulated from Cronin and Strong (1996)";

data anagrus;

input site isoline wasp eggs;

* Apply transformations here;

y = eggs;

* Make jittered data for plots;

site_jit = site + 0.1*rannor(0);

datalines;

1 1 1 37

1 1 2 41

1 1 3 46

1 1 4 44

1 1 5 43

1 1 6 41

1 1 7 38

1 1 8 37

1 2 1 37

1 2 2 28

etc.

;

run;

* Print data set;

proc print data=anagrus;

run;

* Plot means and standard errors for each site;

proc gplot data=anagrus;

plot y*site=1 / vaxis=axis1 haxis=axis1;

symbol1 i=std1jmt v=none height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Plot observations for each site and isoline;

proc gplot data=anagrus;

plot y*site_jit=isoline / vaxis=axis1 haxis=axis1;

symbol1 i=none v=dot height=0.5;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Nested ANOVA mixed model;

proc mixed cl plots=residualpanel data=anagrus;

class site isoline;
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model y = site / ddfm=kr;

random isoline(site);

* Compare levels of fixed effect using Tukey’s HSD;

lsmeans site / diff=all adjust=tukey cl adjdfe=row;

run;

quit;

etc.

Figure 19.12: nested ANOVA Anagrus.sas - proc print
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Figure 19.13: nested ANOVA Anagrus.sas - proc gplot (1)

Figure 19.14: nested ANOVA Anagrus.sas - proc gplot (2)
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Figure 19.15: nested ANOVA Anagrus.sas - proc mixed
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Figure 19.16: nested ANOVA Anagrus.sas - proc mixed
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Figure 19.17: nested ANOVA Anagrus.sas - proc mixed
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19.3 Analysis of covariance

Analysis of covariance, or ANCOVA, is a design that combines elements of
ANOVA and regression. The simplest ANCOVA design is a combination
of one-way ANOVA and linear regression. The Factor A in the design is
typically a fixed effect, such as a treatment. For each observation Y in a
given treatment, a covariate X is also measured. This covariate is thought
to explain some level of variation in Y , and including it in the analysis could
increase the power to detect treatment effects. Y is often assumed to be
linearly related to X, although nonlinear relationships can be accomodated.
More generally, a study might involve a mixture of factors and covariates,
and the covariate effects may be of equal or greater interest than the factors.

As an example of ANCOVA, we will analyze a study of the fitness of
adult Thanasimus dubius, a bark beetle predator, reared on an artificial diet
vs. individuals collected from the wild (Reeve et al. 2003). The fitness
variables measured were the total number of eggs laid (fecundity) and elytral
length (Table 19.3). Body size and fecundity are often related in insects, so
elytral length was used as a covariate in the analysis. This helps control for
natural variation in body size to better see the treatment effect. The three
treatments in the study were (1) artificial diet as larvae and Ips grandicollis
(a bark beetle) as adults (DietIG), (2) artificial diet as larvae and cowpea
weevils (a substitute prey) as adults (DietCPW), and (3) wild adults fed cowpea
weevils (WildCPW). The wild adults were collected from the field and so reared
on natural prey as larvae. We will use the notation Yij to reference the
observations in ANCOVA designs, with the i subscript refering to the Factor
A or treatment group, while j is the observation within the treatment.
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Table 19.3: Example 3 - Fitness of the predator T. dubius, reared on an
artificial diet as larvae vs. wild individuals collected from the field (Reeve et
al. 2003). See Chapter 22 for the full data set.

Yij = Eggs Xij = Length (mm) Treatment i j
290 5.7 DietIG 1 1
99 5.2 DietIG 1 2

340 5.5 DietIG 1 3
271 4.8 DietIG 1 4
200 5.2 DietIG 1 5

etc.

66 4.6 DietCPW 2 1
93 5.0 DietCPW 2 2
9 5.4 DietCPW 2 3

404 5.4 DietCPW 2 4
244 5.1 DietCPW 2 5

etc.

62 4.7 WildCPW 3 1
290 5.0 WildCPW 3 2
488 5.8 WildCPW 3 3
336 5.2 WildCPW 3 4
337 5.8 WildCPW 3 5

etc.
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19.3.1 ANCOVA model

The following model is commonly used for simple ANCOVA designs (Winer
et al. 1991). We have

Yij = µ+ αi + β(Xij − X̄) + εij, (19.5)

where µ is the grand mean and αi is the deviation from µ caused by the ith
level of Factor A. The term Xij is the value of the covariate for observation
Yij, while X̄ is the average of all the covariate values. The parameter β is
the slope of the relationship between Yij and Xij. This slope is assumed to
be the same across all levels of Factor A. We will later see how to test this
assumption. As usual, the model assumes εij ∼ N(0, σ2).

The model can also be written in the form

Y ′ij = Yij − β(Xij − X̄) = µ+ αi + εij. (19.6)

Displayed this way, we can see that ANCOVA is equivalent to carrying out a
one-way ANOVA on values of Yij that have been adjusted for the covariate
X, namely the values of Y ′ij.

Another adjustment of the model is needed by SAS and other statistical
software. Combining some elements, the model can be written as

Yij = µ′ + αi + βXij + εij, (19.7)

where µ′ = µ−βX̄. The quantity µ′ represents a grand mean adjusted for the
effect of the covariate. The objective in ANCOVA is to test whether Factor
A and the covariate have an effect, and so test H0 : all αi = 0 and H0 : β = 0
with separate F tests. However, we will first need to test the assumption
that the slopes across Factor A levels are the same. This is accomplished by
adding a treatment × covariate interaction to the SAS model, which allows
each group to have a different slope. If the test for this effect is significant,
we would have a scenario similar to two-way ANOVA when interaction is
present (see Chapter 14). In particular, if the interaction is significant tests
of the main effects in ANCOVA (Factor A and the covariate X) may not
make sense.

19.3.2 ANCOVA for Example 3 - SAS demo

The first step in the analysis (see program below) is to plot the number of
eggs (y) for each treatment (treat) against elytral length, the covariate (x),
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using proc gplot (SAS Institute Inc. 2016). This gives some idea whether
each treatment group has the same slope, a key assumption of ANCOVA.
The slopes do appear to be similar (Fig. 19.19). We then fit the ANCOVA
model using proc glm, because all the effects in the model are fixed effects
(SAS Institute Inc. 2018). The first step is to fit a model with an interaction
between the treatment and covariate, and examine the test for the interaction
(Fig. 19.20). We see that it was non-significant (F2,35 = 0.02, P = 0.9781),
and so can assume the slopes are the same across treatments. We then rerun
the program using the model without interaction (Fig. 19.21). The covariate
effect was highly significant (F1,37 = 9.99, P = 0.0031), suggesting there is
a relationship between fecundity and body size. The treatment effect was
nonsigificant (F2,37 = 0.52, P = 0.5976), implying the treatments themselves
had no effect on egg numbers. Predators reared on the artificial diet were
apparently similar to wild predators on this measure of fitness, controlling
for elytral length and so body size. The proc glm output also includes a plot
of the fitted model and points (Fig. 19.22).

The program also includes an lsmeans statement to calculate the least
squares means for each treatment group, and test for differences among them
using the Tukey method. Least squares means are means adjusted for the
effect of other variables in the model, and in the case of ANCOVA are the
treatment means adjusted for the covariate. In particular, they have the
form

Ȳi(adj) = Ȳi − β̂(X̄i − ¯̄X). (19.8)

We can see they are composed of two terms, the treatment means and the
adjustment for the covariate. Treatment groups that have covariate means
(X̄i values) far from the overall covariate mean ( ¯̄X) receive a larger adjust-
ment. No significant differences were found among the treatment groups
(Fig. 19.23), which is not surprising given the overall treatment effect was
nonsignificant.
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SAS Program

* ANCOVA_fitness.sas;

title ’ANCOVA for T. dubius fitness’;

data fitness;

input eggs length treat $;

* Choose y and x variables;

y = eggs;

x = length;

datalines;

290 5.7 DietIG

99 5.2 DietIG

340 5.5 DietIG

271 4.8 DietIG

200 5.2 DietIG

etc.

;

run;

* Print data set;

proc print data=fitness;

run;

* Plot data and regression line;

proc gplot data=fitness;

plot y*x=treat / vaxis=axis1 haxis=axis1 legend=legend1;

symbol1 i=rl v=star height=2 width=3;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

* ANCOVA;

proc glm plots=diagnostics data=fitness;

class treat;

* Model with interaction;

*model y = treat x treat*x;

* Model without interaction;

model y = treat x;

lsmeans treat / pdiff=all adjust=tukey cl lines;

run;

quit;
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etc.

Figure 19.18: ANCOVA fitness.sas - proc print

Figure 19.19: ANCOVA fitness.sas - proc gplot
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Figure 19.20: ANCOVA fitness.sas - proc glm (with interaction)
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Figure 19.21: ANCOVA fitness.sas - proc glm (without interaction)
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Figure 19.22: ANCOVA fitness.sas - proc glm (without interaction)

Figure 19.23: ANCOVA fitness.sas - proc glm (without interaction)
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19.5 Problems

1. A limnologist wants to examine the length of a zooplankton species
reared using four different algal growth media (1, 2, 3, and 4). She
is also interested in whether there is variation among the containers
used to rear the organisms. An experiment is conducted where three
containers are used for each rearing medium, for a total of 12 different
containers. The containers were randomly selected from a box of con-
tainers. The length of four animals was determined for each container,
yielding the following data:

Medium Container Lengths 1-4 (mm)
1 1 3.1, 3.0, 3.2, 3.0
1 2 3.3, 3.6, 2.8, 2.5
1 3 3.7, 3.4, 3.4, 3.6
2 1 2.7, 2.9, 3.2, 3.0
2 2 2.9, 3.4, 3.5, 2.9
2 3 3.5, 3.5, 3.7, 4.0
3 1 2.8, 2.7, 1.8, 2.5
3 2 2.6, 2.5, 3.2, 2.4
3 3 2.6, 2.9, 1.8, 2.4
4 1 4.1, 4.6, 3.3, 4.5
4 2 3.7, 3.9, 4.0, 3.9
4 3 4.4, 4.4, 3.9, 4.6

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed, random, and possibly nested.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Is there a significant
difference among the four media in zooplankton length?

(c) Use the Tukey method to compare the media treatments. Inter-
pret your results.

(d) Compare the magnitude of your variance components. Does there
appear to be much variation among containers?

2. An ecologist is interested in the effect of three management treatments
(labeled 1, 2, and 3) on the abundance of an endangered snail. Treat-
ment 2 is a control treatment. Twenty-four plots are established and
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the three treatments assigned at random to the plots. The density of
snails is then measured at a later time, as well as a covariate in the
form of a habitat index. Larger values of the habitat index are thought
to indicate better snail habitat. See data set below.

Treatment Index Snails
1 9.3 23.0
1 9.8 24.9
1 9.9 24.7
1 10.1 24.6
1 8.9 23.4
1 10.8 27.1
1 9.6 25.4
1 10.7 25.4
2 11.9 21.8
2 9.6 18.8
2 10.3 21.0
2 10.8 21.5
2 9.9 20.9
2 10.9 22.6
2 8.9 19.8
2 10.2 22.4
3 11.2 23.4
3 10.3 18.5
3 11.1 22.3
3 9.8 20.5
3 11.2 20.5
3 8.7 18.4
3 8.4 18.7
3 10.5 19.2

(a) Test for equality of slopes among the different treatment groups
using SAS. Is this key assumption of ANCOVA satisfied?

(b) Use ANCOVA and SAS to test for overall treatment and covariate
effects in this experiment, and the Tukey method to compare the
different treatments. Interpret and discuss your results. Is there
a significant treatment and covariate effect? How do the different
treatments compare?
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3. A scientist interested in aquaculture raises fish using three kinds of
treatments in a factorial design. There were two fish diets (A and B),
two strains of fish (1 and 2), and three temperatures (22o, 24o, and
26oC). Two fish were reared for each combination of the treatments.
The following data were obtained:

Diet Strain Temp Weight (lb)
A 1 22 5.5
A 1 22 5.8
A 1 24 5.9
A 1 24 5.7
A 1 26 6.2
A 1 26 5.9
A 2 22 5.2
A 2 22 5.0
A 2 24 5.4
A 2 24 5.6
A 2 26 5.0
A 2 26 4.9
B 1 22 5.4
B 1 22 4.8
B 1 24 5.4
B 1 24 5.4
B 1 26 5.7
B 1 26 5.5
B 2 22 5.2
B 2 22 4.8
B 2 24 5.1
B 2 24 5.1
B 2 26 4.8
B 2 26 4.5

(a) Write an appropriate ANOVA model for this design, stating which
factors are fixed or random.

(b) Use SAS to analyze these data using your ANOVA model, trans-
forming the observations only if necessary. Interpret the results of
your analysis.



Chapter 20

Methods for Categorical Data

Categorical data are observations that fall into two or more discrete cate-
gories, such as female vs. male organisms, age or size classes, or different
phenotypes in genetic studies (Chapter 1). This requires a different type of
statistical model than in previous chapters, where the observations were as-
sumed to have a normal distribution. We will instead use the binomial and
multinomial distributions to model categorical data, and derive likelihood
ratio and chi-square tests of various hypotheses. Recall that the binomial
distribution can be used to model data with two categories (see Chapter 5).
The multinomial distribution is a generalization of the binomial to
data with more than two categories.

One class of test we will examine are called goodness-of-fit tests. These
tests compare the observed frequencies of different categories of observations
with those expected under some null hypothesis. For example, recall the
laboratory rearing study of Thanasimus dubius described in Chapter 3. We
might be interested in whether the sex ratio for these predatory beetles is
close to 1:1 (50% females, 50% males), as occurs in many diploid sexual
organisms. This is our null hypothesis and it implies that the probability
p a sampled individual is female is 0.5, or H0 : p = 0.5. Suppose we have
a sample of n = 130 beetles as in this data set. What are the expected
frequencies of females and males in this sample? Recall that E[Y ] = np for
the binomial distribution, where n is the sample size (Chapter 5). Under
H0, we would therefore expect E1 = np = 130(0.5) = 65 females and E2 =
n(1 − p) = 130(0.5) = 65 males. The observed frequencies are O1 = 60
females and O2 = 70 males for this data set. It is common to organize these
results into following form (Table 20.1):

633



634 CHAPTER 20. METHODS FOR CATEGORICAL DATA

Table 20.1: Observed and expected frequencies of female and male T. dubius
from a laboratory rearing study (Reeve et al. 2003).

Females Males
∑

i 1 2
Oi 60 70 130
Ei 65 65 130

A goodness-of-fit test for H0 : p = 0.5 provides a way of comparing these
observed and expected frequencies, generating a test statistic and P value for
the test. Based on these results we may accept or reject this null hypothesis,
and in this case the result was non-significant (P = 0.3805). We will later
see how goodness-of-fit tests may be applied to data with more categories
and cases where certain model parameters are estimated from the data.

Tests of independence are a second class of tests for categorical data.
Suppose that the observations in a data set can be classified in two different
ways. For example, a sample of amphibians could be classified into differ-
ent species and whether individuals of a given species are infected with a
pathogen. Using a test of independence, we can test whether species and
infection status are independent events (see Chapter 4). Equivalently, we
can test whether the probability of being infected is the same across species.
To make things more concrete, suppose that four amphibian species (A, B,
C, and D) are randomly sampled and scored for infection, yielding Table
20.2. The null hypothesis of independence, or an equal probability of being
infected across all species, can be expressed as follows. Let pA be the overall
probability an individual of species A is sampled (infected or not), while pI is
the probability it is infected (across all four species). If species and infection
status are independent, we would expect by definition that the probability
of sampling an infected individual of species A would be pApI (see Chapter
4). A similar relationship would hold for the other possible outcomes, and
the null hypothesis of independence can be expressed in this form.

Tests of independence also make use of observed and expected frequen-
cies, with the expected frequencies calculated under the null hypothesis of
independence (see Table 20.2). Subscripts are commonly used to indicate the
observed and expected frequencies in particular cells of the table, with the
first subscript indicating the row and the second the column in the table. For
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example, in Table 20.2 we have O11 = 7, O21 = 18, O12 = 12, O22 = 38, and
so forth. We will later see how to calculate the expected frequencies under
the null hypothesis of independence. There appear to be substantial differ-
ences between the observed and expected frequencies in this table, and in
fact the test of independence was highly significant (P = 0.0002), suggesting
that amphibian species and infection status are not independent. We will
focus on two-way tables like the one below, but it is also possible to conduct
tests of independence for three-way or higher tables. However, these prob-
lems are more commonly addressed using loglinear models, which have an
ANOVA-like structure and feel but focus on testing the interactions between
factors, which are equivalent to tests of independence (Agresti 1990).

Table 20.2: Observed frequencies of infected and non-infected individuals
in four amphibian species. Below each observed frequency is the expected
frequency under the null hypothesis of independence.

Species
Infected A B C D

∑
Yes 7 12 15 27 61

10.167 20.333 14.233 16.267
No 18 38 20 13 89

14.833 29.667 20.767 23.733∑
25 50 35 40 150

20.1 Goodness-of-fit tests

As a simple example of a goodness-of-fit test, consider the data set involving
male and female T. dubius. Suppose we want to test the hypothesis that
the sex ratio is 1:1 (50% female, 50% male) in this species. The population
falls into two categories, female or male, which suggests using the binomial
distribution to model the observations. Suppose that we have a sample of
size n from this population and let Y be the number of females in the sample,
a binomial random variable. If p is the probability that a T. dubius adult is
female, then the probability the sample will have y females is given by the
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formula

P [Y = y] =

(
n

y

)
py(1− p)n−y. (20.1)

The null hypothesis that the sex ratio is 1:1 implies that p = 0.5, which
can be written as H0 : p = 0.5. The alternative is that the sex ratio differs
from 1:1, or H1 : p 6= 0.5. More generally, we will be interested in testing
H0 : p = p0 vs. H1 : p 6= p0 where p0 is some probability.

We now develop a likelihood ratio test for H0 : p = p0 vs. H1 : p 6= p0,
assuming the observations have a binomial distribution. It is a goodness-of-
fit test because we will be comparing the observed frequencies of females and
males with that expected under H0, and if observed and expected frequencies
are substantially different we will reject H0. The likelihood ratio test uses
the ratio of the likelihoods under H0 and H1 as the test statistic (see Chapter
10).

Recall that the likelihood function for discrete distributions is just the
probability of the observed data (see Chapter 8). The data are fixed quanti-
ties in this function, while the parameters of the distribution are free to vary.
In this case, the value of y (the number of females in the sample) is the data
while p is the parameter that is free to vary, and so the likelihood function
for binomial data would be

L(p) =

(
n

y

)
py(1− p)n−y. (20.2)

We first need to find the maximum value of the likelihood under H0. Under
the null hypothesis the parameter p is set equal to p0, and so we have

LH0 =

(
n

y

)
py0(1− p0)n−y. (20.3)

This is the only value that can be taken by LH0 , because all the other quan-
tities are fixed, and so this is also its maximum. Under H1, the parameter
p is free to vary in L(p). The maximum value of the likelihood function
occurs at p̂ = y/n, the maximum likelihood estimate of p. This is simply the
proportion of females in the sample. Thus,

LH1 =

(
n

y

)
p̂y(1− p̂)n−y =

(
n

y

)
(y/n)y(1− y/n)n−y. (20.4)
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The test statistic is the ratio of these two likelihoods:

λ =
LH0

LH1

(20.5)

=

(
n
y

)
py0(1− p0)n−y(

n
y

)
(y/n)y(1− y/n)n−y

(20.6)

=
py0(1− p0)n−y

(y/n)y(1− y/n)n−y
(20.7)

=

(
p0

y/n

)y (
1− p0

1− y/n

)n−y
(20.8)

=

(
np0

y

)y (
n(1− p0)

n− y

)n−y
(20.9)

=

(
E1

O1

)O1
(
E2

O2

)O2

. (20.10)

Here O1 and O2 would be the observed frequencies of females and males, while
E1 = np0 and E2 = n(1−p0) are the corresponding expected frequencies (see
Table 20.1). Under H0, the quantity

G2 = −2 lnλ (20.11)

has approximately a χ2 distribution with one degree of freedom, with the
approximation improving as n increases (Agresti 1990). In terms of the
observed and expected frequencies, we have

G2 = −2 lnλ (20.12)

= −2 ln

[(
E1

O1

)O1
(
E2

O2

)O2
]

(20.13)

= −2[O1 ln(E1/O1) +O2 ln(E2/O2)] (20.14)

= 2[O1 ln(O1/E1) +O2 ln(O2/E2)]. (20.15)

Similar to other likelihood ratio tests that utilize the χ2 distribution, the
degrees of freedom are equal to the difference in the number of parameters free
between the H1 and H0 models (see Chapter 14). There is one free parameter
under H1, namely p, but under H0 we have p = p0, a fixed quantity. Thus,
there is a difference of one parameter between the two models, implying one
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degree of freedom. G2 values will become large if the observed and expected
frequencies are different.

Another commonly used statistic for this goodness-of-fit test is the quan-
tity

X2 =
(O1 − E1)2

E1

+
(O2 − E2)2

E2

(20.16)

(Agresti 1990). Under H0, X2 has approximately a χ2 distribution with one
degree of freedom. Although the two test statistics G2 and X2 are different
in form, they usually yield similar values and test results. X2 values also
become large as the observed and expected frequencies diverge. This test is
often called a ‘chi-square’ or ‘χ2’ test, although the likelihood ratio test also
uses the χ2 distribution.

Goodness-of-fit test - sample calculation

We now conduct a goodness-of-fit test for the Table 20.1 data, testing H0 :
p = 0.5. We have

G2 = 2[O1 ln(O1/E1) +O2 ln(O2/E2)] (20.17)

= 2[60 ln(60/65) + 70 ln(70/65)] (20.18)

= 2[−4.803 + 5.188] (20.19)

= 0.770. (20.20)

We next find the P value from Table C and obtain a non-significant result
(G2 = 0.770, df = 1, P < 0.5). Thus, there was no evidence against a 1:1 sex
ratio in this study.

We next calculate the equivalent X2 statistic for these data. We have

X2 =
(O1 − E1)2

E1

+
(O2 − E2)2

E2

(20.21)

=
(60− 65)2

65
+

(70− 65)2

65
(20.22)

= 0.385 + 0.385 (20.23)

= 0.770. (20.24)

The result is identical to G2 and so the P value is the same (X2 = 0.770, df =
1, P < 0.5). The test results are often similar for these two statistics, al-
though seldom identical as in this case.
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Goodness-of-fit test - SAS demo

We can use proc freq in SAS to conduct a goodness-of-fit test for the Table
20.1 data using the X2 statistic (SAS Institute Inc. 2016). This procedure
does not provide the likelihood ratio test involving G2, but there is another
option that is actually better than both. SAS can conduct an exact chi-square
(X2) test where the distribution of the test statistic under H0 is determined
exactly, instead of approximating it with a χ2 distribution. This approach
is computationally intensive and may be impractical for large sample sizes,
but in this case the chi-square (X2) test would be valid and the exact test
unnecessary.

The first step in the analysis is to make a SAS data set using the observed
frequencies in Table 20.1. The variable obsfreq contains this information for
each value of sex (see SAS program below). The data could also have been
entered as individual observations with a single data line for each observation,
as in the original data set (see Chapter 3). We would then use proc freq to
tabulate the data.

Now examine the proc freq portion of the program. The order=data option
asks SAS to use the order of the categories (values of sex) given by the data,
rather than alphabetically. The tables line requests a frequency table for sex.
The next step is to tell SAS the probabilities under H0 for each sex, which
are p = 0.5 for females and 1− p = 0.5 for males. This is accomplished using
the option testp = (0.5 0.5). The order of the probabilities in the testp

statement should match the order of the categories in the data. The weight

command tells proc freq that the data are in the form of frequencies, and
the name of the variable containing these frequencies (obsfreq). An exact
chi-square (X2) test is requested by the command exact chisq.

Examining the SAS output (Fig. 20.2), we find that the exact chi-square
(X2) test was non-significant (X2 = 0.769, df = 1, P = 0.4300). There is no
evidence that the sex ratio differs from 1:1 in this organism.
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SAS Program

* gof_clerids.sas;

title ’Goodness-of-fit test for T. dubius data’;

data elytra;

input sex \$ obsfreq;

datalines;

F 60

M 70

;

run;

* Print data set;

proc print data=elytra;

run;

* Goodness-of-fit test (Chi-square only);

proc freq data=elytra order=data;

tables sex / testp=(0.5 0.5) chisq cellchi2 expected;

weight obsfreq;

* Compute exact test if frequencies low, takes too long for large data sets;

exact chisq;

run;

quit;

Figure 20.1: gof clerids.sas - proc print
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Figure 20.2: gof clerids.sas - proc freq
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20.1.1 Goodness-of-fit tests for a categories

We now examine goodness-of-fit tests for data with a different categories. A
common type occurs in genetic studies where different genotypes are crossed,
such as Mendel’s classic experiments involving pea plants (Mendel 1865).
One of his experiments created hybrids for two genes governing the shape
(round or wrinkled) and color (yellow or green) of the peas, which were then
crossed and the phenotypes of the offspring scored. A total of n = 556 peas
were observed (Table 20.3).

Table 20.3: Observed and expected frequencies for a dihybrid cross (Mendel
1865).

Round Round Wrinkled Wrinkled
∑

yellow green yellow green
i 1 2 3 4
Oi 315 101 108 32 556
Ei 312.75 104.25 104.25 34.75 556

This table has a = 4 categories. If we assume Mendelian genetics, with
the round allele dominant over the wrinkled one and yellow color dominant
over green, we would expect to see these four phenotypes in a 9:3:3:1 ratio.
This forms the null hypothesis for this problem. We can express it in the
form H0 : p1 = 9/16 = 0.5625, p2 = 3/16 = 0.1875, p3 = 3/16 = 0.1875,
and p4 = 1/16 = 0.0625. The alternative H1 is that the probabilities differ
from these values. More generally, we will be interested in testing H0 : p1 =
p10, p2 = p20, p3 = p30, and p4 = p40 vs. some alternative hypothesis H1

where the probabilities differ from these values.

Also shown in Table 20.3 are the expected frequencies under H0, calcu-
lated using the formula Ei = npi. We have E1 = 556(0.5625) = 312.75,
E2 = 556(0.1875) = 104.25 = E3, and E4 = 556(0.0625) = 34.75. These are
the expected numbers of peas for each phenotype assuming that H0 is true.

We need a different distribution to model these observations, a general-
ization of the binomial called the multinomial distribution. Suppose that
n total peas are sampled, and let Y1, Y2, Y3 and Y4 be random variables corre-
sponding to the four phenotypes, with y1 the observed number of round and
yellow peas, y2 the number of round and green, y3 the number of wrinkled
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and yellow, while y4 is wrinkled and green. Because n = Y1 + Y2 + Y3 + Y4

there is some dependence among the four variables (if we know three, the
fourth is determined by this relationship). Let p1 be the probability that
a pea is round and yellow, with p2, p3, and p4 similarly defined. The four
probabilities sum to one (p1 + p2 + p3 + p4 = 1), which implies the distri-
bution really has only three parameters. Then, the probability of observing
y1, y2, y3, and y4 peas of each type is given by the multinomial distribution,
which has the form

P [Y1 = y1, Y2 = y2, Y3 = y3, Y4 = y4] =
n!

y1!y2!y3!y4!
py11 p

y2
2 p

y3
3 p

y4
4 . (20.25)

This distribution can be readily extended to any number of categories.

Using the multinomial distribution as a model for the observations, we
can extend the G2 goodness-of-fit statistic to a categories by adding more
terms of the form Oi ln(Oi/Ei). For a table with a categories, we have

G2 = 2
a∑
i=1

Oi ln(Oi/Ei). (20.26)

Under H0, G2 has a χ2 distribution with a− 1 degrees of freedom. They are
equal to a− 1 because there are a− 1 free parameters (p1, p2, etc.) under H1

but none free under H0. Similarly, the X2 statistic can be generalized as

X2 =
a∑
i=1

(Oi − Ei)2

Ei
. (20.27)

This statistic also has a− 1 degrees of freedom under H0.

Goodness-of-fit test - sample calculation

We illustrate a goodness-of-fit test for a = 4 categories using the pea data,
testing H0 : p1 = 0.5625, p2 = 0.1875, p3 = 0.1875, and p4 = 0.0625. Table
20.3 presents the observed and expected frequencies, from which we can
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calculate G2. We have

G2 = 2
a∑
i=1

Oi ln(Oi/Ei) (20.28)

= 2[315 ln(315/312.75) + 101 ln(101/104.25) (20.29)

+ 108 ln(108/104.25) + 32 ln(32/34.75)] (20.30)

= 2[2.258− 3.199 + 3.817− 2.638] (20.31)

= 0.476. (20.32)

The degrees of freedom for the test are a− 1 = 4− 1 = 3. We next find the
P value from Table C and obtain a non-significant result (G2 = 0.476, df =
3, P < 0.95). The observed frequencies apparently agree with the Mendelian
ratios of 9:3:3:1.

We next conduct a chi-square (X2) test for these data. We have

X2 =
a∑
i=1

(Oi − Ei)2

Ei
(20.33)

=
(315− 312.75)2

312.75
+

(101− 104.25)2

104.25
(20.34)

+
(108− 104.25)2

104.25
+

(32− 34.75)2

34.75
(20.35)

= 0.016 + 0.101 + 0.135 + 0.218 (20.36)

= 0.470 (20.37)

We also obtain a non-significant result with this test (X2 = 0.470, df =
3, P < 0.95).

Goodness-of-fit test - SAS demo 2

The chi-square (X2) test for the Table 20.3 data can also be conducted in
SAS. A data set is first made using the observed frequencies, with proc freq

then used to carry out the test. The testp statement lists the probabilities
under H0 : p1 = 0.5625, p2 = 0.1875, p3 = 0.1875, and p4 = 0.0625. The
order of the probabilities matches the order of the phenotypes in the data
set. See SAS program and output below. An exact chi-square test is also
requested which may take SAS some period of time to calculate.

We see from the SAS output (Fig. 20.4) that the exact chi-square (X2)
test was non-significant (X2 = 0.470, df = 3, P = 0.9272). There is no
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evidence that the ratios of the phenotypes differ from the Mendelian 9:3:3:1
ratio.

SAS Program

* gof_peas.sas;

title ’Goodness-of-fit test for Mendel data’;

data peas;

input phenotype :\$12. obsfreq;

datalines;

round_yellow 315

round_green 101

wrink_yellow 108

wrink_green 32

;

run;

* Print data set;

proc print data=peas;

run;

* Goodness-of-fit test (Chi-square only);

proc freq data=peas order=data;

tables phenotype / testp=(0.5625 0.1875 0.1875 0.0625) chisq cellchi2 expected;

weight obsfreq;

* Compute exact test if frequencies low, takes too long for large data sets;

exact chisq;

run;

quit;

Figure 20.3: gof peas.sas - proc print
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Figure 20.4: gof peas.sas - proc freq



20.1. GOODNESS-OF-FIT TESTS 647

20.1.2 Goodness-of-fit tests with estimated parame-
ters

Another common type of goodness-of-fit test compares the observed frequen-
cies with that expected for some theoretical distribution, such as the Pois-
son. We previously fitted a Poisson distribution to count data and compared
graphically the observed and expected frequencies (Chapter 5). We now
compare these frequencies using a goodness-of-fit test similar to previous ex-
amples. The null hypothesis in this case is that the observations are Poisson
in distribution, while the alternative is that some other distribution describes
them.

There are two additional considerations with these goodness-of-fit tests.
One is that the Poisson parameter λmust be estimated from the observations,
using the estimator λ̂ = Ȳ . This requires an adjustment to the degrees of
freedom for the test (Agresti 1990). In particular, one degree of freedom
is subtracted from the total for every parameter estimated. For the
Poisson distribution we have to estimate λ, and so the degrees of freedom are
a− 1− 1 = a− 2. A second consideration involves the expected frequencies
in the tests. The distributions of both G2 and X2 are approximately χ2

under H0, but this approximation works better if the expected frequencies
are not too small, although there is no universal rule on what constitutes
small (Agresti 1990). One commonly used but overly conservative
rule is Ei ≥ 5 - the expected frequencies must equal or exceed five
for all cells. We have not encountered this problem in previous examples
but it does occur with goodness-of-fit tests for the Poisson and other discrete
distributions. The solution is to combine adjacent cells in the table
until the expected frequencies equal or exceed five. The observed
frequencies are also combined to match the expected ones.

20.1.3 Corn borers - SAS demo

We will use a SAS program to automate most of the calculations for this
goodness-of-fit test. The test cannot be totally automated, however, because
the expected frequencies need to be manually combined at some point. Recall
the corn borers data and SAS program from Chapter 5. The program listed
below is similar, except that some additional quantities needed for the tests
are calculated in the second data step. In particular, the program calculates
the individual terms for the X2 and G2 tests, defined as the SAS variables
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cellchi2 and olnoe, and keeps a running total of these values in the variables
sumchi2 and sumlike. See Fig. 20.6 for the results of these calculations.

As before, define E1 to be the expected frequency for the first cell (y = 0),
E2 the expected frequency for the second cell (y = 1), and so forth. We see
that the expected frequency E8 = 3.2041 < 5, as are the remaining values.
We therefore add them together so that the combined expected frequency is
greater than five. We have

Ecombined = 3.204 + 1.268 + 0.446 (20.38)

+ 0.141 + 0.041 + 0.011 (20.39)

= 5.111. (20.40)

We also need to combine the observed frequencies for these cells, to obtain

Ocombined = 5 + 3 + 4 + 3 + 0 + 1 (20.41)

= 16. (20.42)

We then calculate an overall G2 statistic as follows. First, we calculate the
component of this test statistic for the combined cells, obtaining

Ocombined ln(Ocombined/Ecombined) = 16 ln(16/5.111) = 18.259. (20.43)

We then find the running total of these components (sumlike) prior to the
combined cells from the SAS output, which is 13.078. The overall test statis-
tic is therefore equal to

G2 = 2[13.078 + 18.259] = 62.674. (20.44)

There are a = 8 categories in the test, so the degrees of freedom are a− 2 =
8 − 2 = 6. Using Table C, we find that the test was highly significant
(G2 = 62.674, df = 6, P < 0.001). This result strongly suggests the obser-
vations do not have a Poisson distribution. Instead, they appear to have an
overdispersed pattern with an excess of zeros and large values relative to the
Poisson (Fig. 20.7).

We now calculate a chi-square (X2) goodness-of-fit test for these obser-
vations. We first calculate the component of this statistic for the combined
cells, obtaining

(Ocombined − Ecombined)2

Ecombined

=
(16− 5.111)2

5.111
= 23.199. (20.45)
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The running total of these components (sumchi2) prior to the combined cells
is 80.705, and so the overall test statistic is

X2 = 80.705 + 23.199 = 103.904. (20.46)

The degrees of freedom are a− 2 = 7− 2 = 6, the same as above. The test
was again highly significant (X2 = 103.904, df = 6, P < 0.001).

SAS Program

* Poisson_fit2_gof.sas;

title ’Fitting the Poisson to frequency data’;

data poisson;

input y obsfreq;

* Generate offset y values for plot;

yexp = y - 0.1; yobs = y + 0.1;

datalines;

0 24

1 16

2 16

3 18

4 15

5 9

6 6

7 5

8 3

9 4

10 3

11 0

12 1

;

run;

* Print data set;

proc print data=poisson;

run;

* Descriptive statistics, save ybar, n, and var to data file;

proc univariate data=poisson;

var y;

histogram y / vscale=count;

freq obsfreq;

output out=stats mean=ybar n=n var=var;

run;

* Print output data file;

proc print data=stats;

run;
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* Calculate expected frequencies using ybar;

data poisfit;

if _n_ = 1 then set stats;

set poisson;

poisprob = pdf(’poisson’,y,ybar);

expfreq = n*poisprob;

* Calculate test values for each cell;

cellchi2 = ((obsfreq - expfreq)**2)/expfreq;

sumchi2 + cellchi2;

olnoe = obsfreq*log(obsfreq/expfreq);

sumlike + olnoe;

run;

* Print observed and expected frequencies;

proc print data=poisfit;

run;

* Plot observed and expected frequencies;

proc gplot data=poisfit;

plot expfreq*yexp=1 obsfreq*yobs=2 / overlay legend=legend1 vref=0 wvref=3

vaxis=axis1 haxis=axis1;

symbol1 i=needle v=circle c=red width=3 height=2;

symbol2 i=needle v=square c=blue width=3 height=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 20.5: Poisson fit2 gof.sas - proc print

Figure 20.6: Poisson fit2 gof.sas - proc print
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Figure 20.7: Poisson fit2 gof.sas - proc gplot



20.2. TESTS OF INDEPENDENCE 653

20.2 Tests of independence

We now develop tests of independence for tables in which the observations are
classified in two different ways, known as two-way tables. The test statistics
are similar to previous likelihood ratio (G2) and chi-square (X2) goodness-
of-fit tests, and use the multinomial distribution to model the observations.
Because the null hypothesis is different for tests of independence, however,
the expected frequencies are calculated differently as are the degrees of free-
dom. Further details are provided in Agresti (1990).

We first examine how the expected frequencies are constructed for tests
of independence, but these calculations will require estimates of the proba-
bilities for certain events. Recall the Table 20.2 example where amphibians
were sampled and classified by species and infection status. What is the
overall probability of sampling species A, regardless of infection status? Let
the quantity p+1 stand for this probability, where the + symbol indicates
the overall probability combining infected and uninfected individuals while
‘1’ stands for the first column in Table 20.2, which is species A. We can es-
timate this probability by summing the number of infected and uninfected
individuals for species A and dividing by the sample size n. If we let O+1

stand for this sum, we have

p̂+1 =
O+1

n
=

25

150
= 0.167. (20.47)

This is just the column total for species A divided by the sample size n. We
can similarly calculate the probability of sampling species B, obtaining

p̂+2 =
O+2

n
=

50

150
= 0.333. (20.48)

For species C, we obtain p̂+3 = 0.233, while for species D we have p̂+4 = 0.267.
What about the overall probability of being infected, across all species?

Let the quantity p1+ stand for this probability, where ‘1’ stands for the first
row in Table 20.2, while + indicates the overall probability combining species
A through D. We can estimate this probability by summing the infected
individuals across all four species and dividing by the sample size n. If we
let O1+ stand for this sum, we obtain

p̂1+ =
O1+

n
=

61

150
= 0.407. (20.49)
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This is just the row total of the infected amphibians divided by n. The
overall probability of not being infected, p2+, is estimated using the formula

p̂2+ =
O2+

n
=

89

150
= 0.593. (20.50)

We are now in a position to calculate the expected frequencies under the
null hypothesis of independence. If p11 is the probability of sampling an
individual of species A that is infected, then if species and infection status
are independent we can estimate this probability using

p̂11 = p̂1+p̂+1. (20.51)

The expected frequency for this cell, E11, would be n times this probability,
or

E11 = np̂11 (20.52)

= np̂1+p̂+1 (20.53)

= n
O1+

n

O+1

n
(20.54)

=
O1+O+1

n
. (20.55)

Thus, the expected frequency for this cell is the product of its column and
row totals divided by the sample size. Using the Table 20.2 data, we find
that

E11 =
61(25)

150
= 10.167. (20.56)

All other cells are calculated in a similar manner. For example, we have

E13 =
O1+O+3

n
=

61(35)

150
= 14.233. (20.57)

The remaining expected values are given in Table 20.2. The general formula
for any cell would be

Eij =
Oi+O+j

n
. (20.58)

This formula says that the expected value for any cell is the product
of the row and column totals for that cell, divided by the sample
size n.
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Now suppose a particular two-way table has r rows and c columns. The
likelihood ratio test statistic (G2) for a test of independence is given by the
general formula

G2 = 2
r∑
i=1

c∑
j=1

Oij ln(Oij/Eij). (20.59)

G2 has a χ2 distribution under H0 with (r−1)(c−1) degrees of freedom. The
explanation for the degrees of freedom is as follows (Agresti 1990). Under H1,
where the observations are not independent, the probability of an observation
falling into a particular cell could be anything. Thus, there are rc values of
pij that are free to vary except that they must sum to one, so there are rc−1
free parameters under H1. Under H0 there are r values of pi+ but only r− 1
free to vary because these probabilities also sum to one. Similarly, there
are c − 1 values of p+j free to vary. The difference in the number of free
parameters under H1 vs. H0 is the degrees of freedom for the test, similar to
goodness-of-fit tests. We therefore have

df = rc− 1− (r − 1)− (c− 1) = rc− r − c+ 1 = (r − 1)(c− 1). (20.60)

The chi-square (X2) statistic for a test of independence is given by the
general formula

X2 =
r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
. (20.61)

Under H0, X2 also has a χ2 distribution with (r−1)(c−1) degrees of freedom.

20.2.1 Test of independence - sample calculation

We illustrate these tests of independence using the Table 20.2 data, for which
the expected frequencies have already been calculated. For the likelihood
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ratio test, we have

G2 = 2
r∑
i=1

c∑
j=1

Oij ln(Oij/Eij) (20.62)

= 2[7 ln(7/10.167) + 12 ln(12/20.333) + 15 ln(15/14.233) (20.63)

+ 27 ln(27/16.267) + 18 ln(18/14.833) + 38 ln(38/29.667) (20.64)

+ 20 ln(20/20.767) + 13 ln(13/23.733)] (20.65)

= 2[−2.613− 6.328 + 0.787 + 13.681 (20.66)

+ 3.483 + 9.407− 0.753− 7.825] (20.67)

= 2[9.839] (20.68)

= 19.678. (20.69)

There are r = 2 rows and c = 4 columns in the table, so the degrees of
freedom are (r − 1)(c − 1) = (2 − 1)(4 − 1) = 3. From Table C, we see
that the test was highly significant (G2 = 19.678, df = 3, P < 0.001). This
provides some evidence that species and infection status are not independent.

For the chi-square (X2) version of this test, we have

X2 =
r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
(20.70)

=
(7− 10.167)2

10.167
+

(12− 20.333)2

20.333
+

(15− 14.233)2

14.233
(20.71)

+
(27− 16.267)2

16.267
+

(18− 14.833)2

14.833
+

(38− 29.667)2

29.667
(20.72)

+
(20− 20.767)2

20.767
+

(13− 23.733)2

23.733
(20.73)

= 0.987 + 3.415 + 0.041 + 7.082 + 0.676 + 2.341 (20.74)

+ 0.028 + 4.854 (20.75)

= 19.424. (20.76)

The test was also highly significant (X2 = 19.424, df = 3, P < 0.001), similar
to the likelihood ratio test.

20.2.2 Test of independence - SAS demo

We can carry out the same calculations using SAS and proc freq (SAS Insti-
tute Inc. 2016). See program below. A two-way table of infection status and
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species is requested using the command tables infected*species. Likelihood
ratio (G2) and chi-square (X2) tests are then requested using the chisq op-
tion. Because sample sizes are relatively small in this example, we can also
request an exact version of both tests using the exact chisq option.

The option out=percents outpct requests an output data file called percents

that contains various percentages, including the column percents from the
two-way table. This file is used by proc gchart to generate a vertical bar
chart with species on the x-axis (SAS Institute Inc. 2018). The percentage
of infected and uninfected amphibians shown within each bar are generated
using the option subgroup=infected.

Examining the SAS output in Fig. 20.9, we see that both tests were
highly significant (G2 = 19.618, df = 3, P = 0.0002;X2 = 19.425, df =
3, P = 0.0002). The exact tests gave similar results in this case. The graph
generated by proc gchart suggests that the infection rate is low for species A
and B, intermediate for species C, and highest for species D (Fig. 20.10).



658 CHAPTER 20. METHODS FOR CATEGORICAL DATA

SAS Program

* chytrid.sas;

title "Tests of independence - species vs. infection";

data chytrid;

input species $ infected $ obsfreq;

datalines;

A yes 7

A no 18

B yes 12

B no 38

C yes 15

C no 20

D yes 27

D no 13

;

run;

* Print data set;

proc print data=chytrid;

run;

* Tests of independence;

proc freq data=chytrid order=data;

tables infected*species / chisq cellchi2 expected out=percents outpct;

weight obsfreq;

* Can compute an exact test if frequencies are low;

* Not recommended for large data sets;

exact chisq;

run;

* Print output data file containing percents;

proc print data=percents;

run;

* Generate bar chart showing percentages;

proc gchart data=percents;

vbar species / sumvar=pct_col subgroup=infected width=10 woutline=3

raxis=axis1 maxis=axis2 legend=legend1;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

axis2 label=(height=2) value=(height=2) width=3;

legend1 label=(height=2) value=(height=2);

run;

quit;
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Figure 20.8: chytrid.sas - proc print
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Figure 20.9: chytrid.sas - proc freq
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Figure 20.10: chytrid.sas - gchart
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20.2.3 Test of independence - SAS demo 2

Ecologists often study the age structure of plant or animal populations, be-
cause this can provide clues about their birth and death rates. For example,
a population with a higher proportion of young individuals could indicate
the population is increasing through higher birth rates. Suppose that an
ecologist wants to compare the age structure of three different populations of
a bird species. One hundred individuals from each population are sampled
and classified by age. There are five age classes, beginning with the nestlings
(age 0) and individuals 1, 2, 3, or 4+ years old. See Table 20.4 for the results.

Table 20.4: Observed frequencies of age 0, 1, 2, 3, and 4 year old individuals
for three different populations.

Population
Age class 1 2 3

∑
0 36 48 60 144
1 22 24 21 67
2 18 14 12 44
3 13 10 12 28
4 11 4 2 17∑

100 100 100 300

These data were obtained using a sampling scheme that selected 100 indi-
viduals for each population, so that the column totals are fixed at 100 while
the row totals are free to vary. This differs from the previous example (Ta-
ble 20.2), where amphibians in general were sampled and the number of each
species was a random quantity. It turns out the multinomial distribution can
be used to describe both sampling methods, and the tests for independence
are the same (Agresti 1990).

We will conduct tests of independence for these data using SAS and
proc freq (see program below). As before, we will conduct both the likelihood
ratio (G2) and chi-square (X2) tests. One difference in this program is that
the option for exact tests is turned off, because they are quite time consuming
(and unnecessary) for large data sets. An output file is used by proc gchart

to generate a vertical bar chart with pop on the x-axis, with the divisions
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within each bar the percentages of each age group. These were generated
using the option subgroup=age.

The likelihood ratio test of independence was significant (G2 = 18.920, df =
8, P = 0.0153) as was the chi-square test (X2 = 18.864, df = 8, P = 0.0156)
(see Fig. 20.13). Examining the bar chart, we see that the percentage of
younger individuals was lowest for population 1 and highest for population 3
(Fig. 20.14). One possible explanation is that population 3 has the highest
birth rate while population 1 has the lowest.
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SAS Program

* age_structure.sas;

title "Tests of independence - age structure";

data age;

input pop $ age $ obsfreq;

datalines;

1 0 36

1 1 22

1 2 18

1 3 13

1 4 11

2 0 48

2 1 24

2 2 14

2 3 10

2 4 4

3 0 60

3 1 21

3 2 12

3 3 5

3 4 2

;

run;

* Print data set;

proc print data=age;

run;

* Tests of independence;

proc freq data=age order=data;

tables age*pop / chisq cellchi2 expected out=percents outpct;

weight obsfreq;

* Can compute an exact test if frequencies are low;

* Not recommended for large data sets;

*exact chisq;

run;

* Print output data file containing percents;

proc print data=percents;

run;

* Generate bar chart showing percentages;

proc gchart data=percents;

vbar pop / sumvar=pct_col subgroup=age width=10 woutline=3

raxis=axis1 maxis=axis2 legend=legend1;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

axis2 label=(height=2) value=(height=2) width=3;

legend1 label=(height=2) value=(height=2);
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run;

quit;

Figure 20.11: age structure.sas - proc print
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Figure 20.12: age structure.sas - proc freq
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Figure 20.13: age structure.sas - proc freq

Figure 20.14: age structure.sas - proc gchart
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20.4 Problems

1. An ecologist wants to characterize the spatial distribution of an uncom-
mon plant species in the forest. One hundred quadrats are established
and the number of plants counted in each quadrat. The following data
were obtained:

Plants Frequency
0 42
1 23
2 12
3 8
4 4
5 3
6 3
7 2
8 1
9 1
10 0
11 0
12 0

Test whether these data have a Poisson distribution, using both likeli-
hood ratio (G2) andX2 (χ2) tests, using the program Poisson_fit2_gof.sas

to help with the calculations. Discuss your results. Do the data appear
to be Poisson, overdispersed, or underdispersed?
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2. Some species of snakes can imitate a rattlesnake and thereby avoid
being eaten by predators, a phenomenon known as Batesian mimicry.
Individuals of one such species were randomly selected from locations
where rattlesnakes were absent, at moderate density, and at high den-
sity. Each snake was then scored for whether or not it imitated a
rattlesnake when disturbed. The following results were obtained.

Rattlesnake density
Imitated a rattlesnake? Absent Moderate High
Yes 65 76 82
No 35 24 18

(a) Test if imitation of a rattlesnake is independent of rattlesnake
density using a manual likelihood ratio (G2) test. Show your cal-
culations.

(b) Test if imitation of a rattlesnake is independent of rattlesnake
density using a manual X2(χ2) test. Show your calculations.

(c) Check your above answers by having SAS carry out the same two
tests.

(d) Interpret the results of your tests. Does the frequency of rat-
tlesnake imitation vary significantly with the density of rattlesnakes,
and if so what is the pattern?



Chapter 21

Multiple Regression

Multiple regression is a statistical technique for examining the relationship
between a dependent variable Y and multiple independent variables or regres-
sors X1, X2, . . . , Xk. Like with linear regression, the independent variables or
regressors may be fixed values under experimental control, or random vari-
ables. One purpose of multiple regression is to determine whether changes
in any of the independent variables cause changes in Y . This involves test-
ing whether the slope βj for a given independent variable Xj is significantly
different from zero, for each of the independent variables. There is also an
overall test that examines whether any of independent variables (alone or in
combination) affect Y . Another purpose of multiple regression is prediction,
using a set of values for the independent variable to predict the value of Y
along with a confidence interval. A third use is model selection. The ob-
jective here is to find a model that approximates the data with the fewest
variables, involving a trade-off between model fit and model complexity. We
will examine a popular method of model selection that uses Akaike’s Infor-
mation Criterion or AIC (Akaike 1974; Anderson et al. 2000, Burnham &
Anderson 2002).

We will first illustrate multiple regression using a relatively simple data
set from a study of southern pine beetle, Dendroctonus frontalis (Reeve et al.
1998). We previously used this study to examine the relationship between
the number of beetles added to caged trees and how this affected their attack
density. We now examine how attack density and the density of a competitor,
bluestain fungus, affects the survival rate of beetle offspring (from egg to
emerging adult). High attack densities imply a high density of adult beetles
within the tree, and this crowding could reduce survival of their offspring

671
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(see also Coulson et al. 1976). High levels of bluestain fungus are also
known to reduce survival, by interfering with the beetle’s own symbiotic
fungus (Hofstetter et al. 2006).
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Table 21.1: Example 1 - Effects of attack density and bluestain fungus on the
survival of D. frontalis brood from egg to emergence (Reeve et al. 1998). The
dependent variable was the log-transformed survival rate of the beetle off-
spring, while attack density (attacks per 100 cm2 of bark) and the proportion
of bluestained phloem were the independent variables.

X1i = Attack density X2i = Bluestain Survival Yi = ln(Survival) i
1.250 0.000 0.107 -2.235 1
2.656 0.481 0.715 -0.335 2
7.334 0.171 0.036 -3.324 3
1.603 0.352 0.188 -1.671 4
2.622 0.016 0.438 -0.826 5
1.000 0.000 0.585 -0.536 6
4.342 0.185 0.115 -2.163 7
5.233 0.018 0.257 -1.359 8
2.500 0.410 0.032 -3.442 9
3.250 0.015 0.350 -1.050 10
6.000 0.007 0.161 -1.826 11
4.750 0.000 0.073 -2.617 12
2.500 0.095 0.219 -1.519 13
8.750 0.033 0.028 -3.576 14
6.000 0.015 0.294 -1.224 15
5.000 0.105 0.207 -1.575 16
7.149 0.025 0.227 -1.483 17
6.750 0.015 0.040 -3.219 18
7.500 0.043 0.089 -2.419 19
2.500 0.073 0.176 -1.737 20
5.000 0.055 0.084 -2.477 21
2.250 0.023 0.203 -1.595 22
1.250 0.123 0.074 -2.604 23
4.750 0.035 0.126 -2.071 24
4.500 0.212 0.290 -1.238 25
9.557 0.166 0.010 -4.605 26
5.000 0.338 0.207 -1.575 27
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We will use another data set to illustrate prediction in multiple regression.
Soul et al. (2013) were interested in predicting endocranial volume (brain
size) in extinct mammals, where only the skull length, height, and width are
available. For this purpose, they developed a multiple regression model using
existing species as the observations, with endocranial volume the dependent
variable, and skull length, width and height the independent ones. A portion
of these observations are listed below (see https://datadryad.org for the full
data set). We will fit a multiple regression model to these observations, then
use them to predict endocranial volume for two hypothetical fossils, a mouse
and a bear.
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Table 21.2: Example 2 - Skull length, width, height, endocranial volume, and species name (Soul et al.
2013). The dependent variable was endocranial volume, estimated using the mass of glass beads filling the
skull.

Length (mm) Width (mm) Height (mm) Volume (g) i Common name
15.04 11.29 6.61 0.38 1 Pygmy glider
52.40 30.94 25.68 12.36 2 Rufous kangaroo rat
75.87 52.79 39.45 56.70 3 Howler monkey
41.73 25.70 16.79 5.68 4 Scaley-tailed squirrel
39.71 26.87 17.13 5.92 5 Lord derby’s flying squirrel
18.90 12.62 7.61 0.51 6 Yellow-footed antechinus
15.10 11.69 7.06 0.46 7 Brown antechinus

123.70 73.89 63.93 150.53 8 Pronghorn
46.75 28.70 18.45 6.51 9 Mountain beaver

154.32 103.77 71.95 284.03 10 Antarctic fur seal
133.39 59.75 72.60 128.49 11 Babiroussa

etc.

32.90 19.83 14.73 3.19 185 Tree shrew
32.15 20.33 13.95 3.17 186 Painted tree shrew

200.23 98.99 84.53 358.82 187 Brown bear
179.70 95.48 75.51 302.72 188 Sloth bear
67.48 42.35 29.66 24.79 189 Ruffled lemur
70.78 30.98 28.08 17.91 190 Rasse
67.05 54.15 44.99 56.71 191 Wombat
70.36 45.09 37.72 38.43 192 Arctic fox
80.73 47.96 39.45 48.55 193 Fox
13.54 9.24 7.13 0.36 194 Meadow jumping mouse
13.15 9.05 7.00 - 195 Fossil mouse

190.17 97.32 80.31 - 196 Fossil bear
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21.1 Multiple regression model

Suppose we want to model the observations for a data set like Example
1, where a dependent variable Y is observed along with two independent
variables X1 and X2. Let Yi, X1i, and X2i be the ith set of values. The
multiple regression model takes the form

Yi = β0 + β1X1i + β2X2i + εi, (21.1)

where β0 is the intercept, β1 and β2 are the slopes or regression coefficients
for X1 and X2, and εi ∼ N(0, σ2) (Draper & Smith 1981; Kutner et al. 2005,
Sheather 2009). This equation defines a plane in three dimensions, which we
will later visualize for the Example 1 data.

More generally, the model for k different independent variablesX1, X2, . . . , Xk

takes the form

Yi = β0 + β1X1i + β2X2i + . . .+ βkXki + εi. (21.2)

Here, the parameters β1, β2, . . . , βk are the slopes for each independent vari-
able. While this model appears complicated, there is a simple interpretation
of the regression coefficients. The slope βj can be thought of as the
change in Y per unit change in Xj, while holding all the other
variables constant. There are also specific plots designed to visualize this
model for any number of independent variables.

21.2 Multiple regression in matrix form

We will now show how the multiple regression model can be expressed in
matrix form (Draper & Smith 1981). This will greatly simplify later devel-
opments, and in any event the matrix form of the model is commonly used
in the statistical literature as well as software documentation. If you are
unfamiliar with matrices, there are many online resources that provide an
introduction to matrices and linear algebra. The textbook by Tabachnik and
Fidell (2001) also provides a useful summary of essential concepts (see their
Appendix A). In the following, we will briefly review various matrix opera-
tions and then apply them to multiple regression. Chapter 24 of this text
lists a SAS program that carries out these operations using proc iml (SAS
Institute Inc. 2018a).



21.2. MULTIPLE REGRESSION IN MATRIX FORM 677

A matrix is a rectangular collection of numbers (or other quantities) ar-
ranged in rows and columns, enclosed in a set of parentheses or brackets.
A vector is a simple type of matrix consisting of a single column or row of
numbers. Matrices and vectors can be added, multiplied, transposed, and
even inverted in their own unique way, and these operations allow one to
express the multiple regression model in a compact way as well as estimate
the parameters of this model.

We will first make use of matrix addition and multiplication to write
the multiple regression model. Suppose we have two vectors A and B of the
following form:

A =

ab
c

 and B =

de
f

 . (21.3)

To add these two vectors, we simply add the elements of each one to obtain

A+B =

a+ d
b+ e
c+ f

 . (21.4)

For example, suppose

A =

1
2
3

 and B =

4
5
6

 . (21.5)

Then

A+B =

1 + 4
2 + 5
3 + 6

 =

5
7
9

 . (21.6)

Note that the two vectors (or matrices) must have the same dimensions or
shape for addition to work.

For the multiple regression model, we will also need to multiply a matrix
by a vector. Suppose that we have two matrices C and D of the following
form:

C =

a d
b e
c f

 and D =

(
g
h

)
. (21.7)
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Then

CD =

a d
b e
c f

× (g
h

)
=

ag + dh
bg + eh
cg + fh

 . (21.8)

Note the pattern in the multiplication process. You take the elements in
each row of C and multiply them by the column elements of D, then add
the result to obtain CD. In this case, the multiplication process takes a 3 ×
2 matrix (3 rows and 2 columns) and a 2 × 1 matrix, and produces a 3 × 1
matrix. Thus, the numbers of rows and columns in the product depends on
the number of rows in first matrix and columns in the second – this is true of
matrix multiplication in general. The number of columns in the first matrix
and rows in the second matrix must also match for matrix multiplication to
be possible.

As an example of matrix multiplication, suppose that

C =

1 4
2 5
3 6

 and D =

(
7
8

)
. (21.9)

Then

CD =

1 · 7 + 4 · 8
2 · 7 + 5 · 8
3 · 7 + 6 · 8

 =

39
54
69

 . (21.10)

Another matrix operation we will use later is the transpose of a matrix.
This operation takes the columns of a matrix and turns them into the rows
of a new matrix. For example, suppose we have a matrix

F =


a e
b f
c g
d h

 . (21.11)

The transpose of F (written as F ′) is defined to be

F ′ =

(
a b c d
e f g h

)
. (21.12)

For example, suppose

F =


1 5
2 6
3 7
4 8

 . (21.13)
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Then

F ′ =

(
1 2 3 4
5 6 7 8

)
. (21.14)

Now suppose we have a multiple regression problem with k = 2 indepen-
dent variables and n observations, similar to the Example 1 data set. The
standard model equation for this problem would be

Yi = β0 + β1X1i + β2X2i + εi, (21.15)

for i = 1 to n. If we write out the full system of equations for each observation
or value of i, we would obtain n different equations:

Y1 = β0 + β1X11 + β2X21 + ε1
Y2 = β0 + β1X12 + β2X22 + ε2
Y3 = β0 + β1X13 + β2X23 + ε3

...
Yn = β0 + β1X1n + β2X2n + εn

 . (21.16)

Using the definition of matrix addition, these equations can be rewritten in
matrix form as 

Y1

Y2

Y3
...
Yn

 =


β0 + β1X11 + β2X21

β0 + β1X12 + β2X22

β0 + β1X13 + β2X23
...

β0 + β1X1n + β2X2n

+


ε1
ε2
ε3
...
εn

 . (21.17)

Using the definition of matrix multiplication, a further simplification is pos-
sible: 

Y1

Y2

Y3
...
Yn

 =


1 X11 X21

1 X12 X22

1 X13 X23
...

...
...

1 X1n X2n


β0

β1

β2

+


ε1
ε2
ε3
...
εn

 . (21.18)

As a final step, this equation can be written in the form

Y = Xβ + ε (21.19)
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where

Y =


Y1

Y2

Y3
...
Yn

 ,β =

β0

β1

β2

 , ε =


ε1
ε2
ε3
...
εn

 , and (21.20)

X =


1 X11 X21

1 X12 X22

1 X13 X23
...

...
...

1 X1n X2n

 (21.21)

For an actual data set, these matrices and vectors would contain the values of
Y , X1i, and X2i. The matrix X is often called the design matrix, because
it basically describes the design of the study, including the values of the
independent variables, their number, and the overall sample size.

In general, the multiple regression model for k independent variables or
regressors can be expressed in the same simple form

Y = Xβ + ε (21.22)

where

Y =


Y1

Y2

Y3
...
Yn

 ,β =


β0

β1

β2
...
βk

 , ε =


ε1
ε2
ε3
...
εn

 , and (21.23)

X =


1 X11 X21 . . . Xk1

1 X12 X22 . . . Xk2

1 X13 X23 . . . Xk3
...

...
...

...
...

1 X1n X2n . . . Xkn

 . (21.24)

21.3 Multiple regression and likelihood

We will use maximum likelihood to estimate the parameters in the multiple
regression model, making use of the matrix form of the model. Suppose
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we have k = 2 independent variables similar to the Example 1 data. The
multiple regression model in this case would be

Yi = β0 + β1X1i + β2X2i + εi. (21.25)

This model has four parameters to estimate, in particular β0, β1, β2, and
σ2. Consider the first observation in the Example 1 data, for which Y1 =
−2.235, X11 = 1.250, and X21 = 0.000. For this observation, the model states
that Y1 ∼ N(β0 + β1X11 + β2X21, σ

2), and so the likelihood would be

L1 =
1√

2πσ2
e−

1
2

(Y1−(β0+β1X11+β2X21))
2

σ2 =
1√

2πσ2
e−

1
2

(−2.235−(β0+β11.25+β20.000))
2

σ2

(21.26)

The overall likelihood is then defined as the product of the likelihoods for
each observation, in particular

L(β0, β1, β2, σ
2) = L1 × L2 × . . .× Ln. (21.27)

Finding the maximum likelihood estimates involves maximizing this quantity
with respect to the parameters β0, β1, β2, and σ2. Similar to linear regression,
we can gain some insight into the estimation process by rearranging the
likelihood function. It can be written in the form

L(β0, β1, β2, σ
2) =

(
1√

2πσ2

)n
e−

1
2

∑n
i=1(Yi−(β0+β1X1i+β2X2i))

2

σ2 . (21.28)

Focusing on the sum in this expression, we see that values of β0, β1, and
β2 that minimize the sum of the squared terms will maximize the overall
likelihood. Similar to linear regression, these are also the least squares
estimates because they minimize the sum of these squared terms (Draper &
Smith 1981). We will later see that they minimize the sum of the squared
residuals from the plane defined by β0, β1, and β2.

Now consider the case where there are k independent variables, so that
the model has k + 2 parameters (β0, β1, β2, . . . , βk, σ

2). The likelihood L
would have the same structure as above, but with more parameters and
independent variables. The maximum likelihood estimates can be found by
taking the derivative of L (actually logL) with respect to every parameter,
setting these derivatives equal to zero, then solving for the parameter values
that satisfy these equations. The result is a complex system of equations
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involving the data set and parameters. Using matrix algebra, however, the
equations for β0, β1, . . . , βk can expressed in a very compact form:

X ′Xβ = X ′Y (21.29)

Here X,β, and Y are from the matrix version of the multiple regression
model. The idea then is solve this equation for β using matrix operations.
This set of equations are called the normal equations (Draper and Smith
1981; Kutner et al 2005; Sheather 2009). They look a bit like the simple
equation xb = y, where x and y are known values. You would solve this
equation for b by multiplying both sides by x−1, to obtain x−1xb = x−1y, or
b = x−1y = y/x. What we need is the matrix equivalent of x−1.

Note that the inverse of x has the property x−1x = 1. The inverse of a
matrix has the same property, but the equivalent of the number 1 is called
the identity matrix, written as I. It is defined as a square matrix with ones
on the diagonal and zeroes everywhere else. For example, the 3× 3 identity
matrix is

I =

1 0 0
0 1 0
0 0 1

 . (21.30)

Similar to the number 1, if you multiply a matrix A by I the result is equal
to A. For example, suppose that A is defined by the matrix

A =

1 6 4
3 7 6
4 1 9

 . (21.31)

Then we have

AI =

1 6 4
3 7 6
4 1 9

1 0 0
0 1 0
0 0 1

 (21.32)

=

1 · 1 + 6 · 0 + 4 · 0 1 · 0 + 6 · 1 + 4 · 0 1 · 0 + 6 · 0 + 4 · 1
3 · 1 + 7 · 0 + 6 · 0 3 · 0 + 7 · 1 + 6 · 0 3 · 0 + 7 · 0 + 6 · 1
4 · 1 + 1 · 0 + 9 · 0 4 · 0 + 1 · 1 + 9 · 0 4 · 0 + 1 · 0 + 9 · 1



=

1 6 4
3 7 6
4 1 9

 = A
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Now we can define the inverse of a matrix for a square matrix like A.
The inverse of A, written as A−1, is a matrix for which A−1A = I and also
AA−1 = I. Note that the order of multiplication does not matter in this
case, although it would for other types of matrices. There are a number of
numerical techniques for finding the inverse of a matrix, but we will not be
concerned with these details. The inverse of A is the matrix

A−1 =

−0.934 0.820 −0.131
0.049 0.115 −0.098
0.410 −0.377 0.180

 . (21.33)

Multiplying A−1 and A, we obtain

A−1A =

−0.934 · 1 + 0.820 · 3− 0.131 · 4 . . . . . .
0.049 · 1 + 0.115 · 3− 0.098 · 4 . . . . . .
0.041 · 1− 0.377 · 3 + 0.180 · 4 . . . . . .

 (21.34)

=

 1.002 0.005 0.005
0.002 1.001 0.004
−0.001 0.001 0.998

 ≈ I. (21.35)

The result is not exact because of rounding in the values of A−1.
We are now ready to solve the normal equations for β using matrix op-

erations. Recall that these equations are of the form

X ′Xβ = X ′Y (21.36)

Multiplying both sides of this equation by the inverse of X ′X, denoted by
(X ′X)−1, we obtain

(X ′X)−1X ′Xβ = (X ′X)−1X ′Y (21.37)

or
Iβ = (X ′X)−1X ′Y (21.38)

from which it follows that

β̂ = (X ′X)−1X ′Y (21.39)

Here β̂ is a vector containing the maximum likelihood (or least squares)
estimates β̂0, β̂1, β̂2, . . . , β̂k of the model parameters, except for σ2. This is
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the method used by SAS and other statistical packages to estimate the model
parameters. We will later see how the elements of (X ′X)−1 are also used
to calculate standard errors and confidence intervals. Similar methods are
used to estimate the parameters for ANOVA models. In this case, the design
matrix encodes the various treatment combinations and interactions.

The estimates of the model parameters can be used to generated a pre-
dicted value for each observation in the data set, of the form

Ŷi = β̂0 + β̂1X1i + . . .+ β̂kXki. (21.40)

The residual of each observation is the difference between the observed and
predicted values, namely Yi − Ŷi.

Maximum likelihood also provides an estimator of σ2 similar to linear
regression. Define an error sum of squares by the equation

SSerror =
n∑
i=1

(
Yi − (β̂0 + β̂1X1i + . . .+ β̂kXki)

)2

=
n∑
i=1

(Yi − Ŷi)2. (21.41)

The multiple regression form of MSerror, and an estimator of σ2, is obtained
by dividing SSerror by n− k − 1 degrees of freedom:

MSerror =
SSerror
n− k − 1

= σ̂2. (21.42)

SSregression describes variation in the data explained by the regression
model, similar to linear regression. It is defined as

SSregression =
n∑
i=1

(Ŷi − Ȳ )2 (21.43)

and has k degrees of freedom. We therefore have

MSregression =
SSregression

k
. (21.44)

SSregression and MSregression will be large if Ŷi varies strongly with respect to
one or more of the independent variables (X1i, X2i, . . . , Xki).

The total sum of squares for multiple regression is defined as

SStotal =
n∑
i=1

(Yi − Ȳ )2 (21.45)
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and has n − 1 degrees of freedom. Similar to linear regression, there is an
additive relationship among the different sums of squares:

SSregression + SSerror = SStotal. (21.46)

We can use the two mean squares to construct an overall F test for the
multiple regression, which tests H0 : β1 = β2 = . . . = βk = 0. This null
hypothesis basically says none of the independent variables (X1i, . . . , Xki)
affect the dependent one (Yi). The alternative hypothesis is that one or
more slopes are different from zero (H1 : βj 6= 0 for some j). If this test is
significant, it suggests one or more of the independent variables are affecting
the dependent variable, but not which ones. The test statistic is

Fs =
MSregression
MSerror

. (21.47)

Under H0, Fs has an F distribution with df1 = k and df2 = n − k − 1 the
degrees of freedom. Note that we encountered a similar test in the SAS
output for ANOVA designs, but in ANOVA we were more concerned with
tests of each treatment effect, not in testing the overall model. It is also a
likelihood ratio test using the H0 and H1 models for the data (McCulloch &
Searle 2001).

We can organize the different sum of squares and mean squares into
an ANOVA table for multiple regression (Table 21.3). It lists the different
sources of variation in the data (regression, error, and total), their degrees
of freedom, as well as the overall F test.
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Table 21.3: General ANOVA table for multiple regression, showing formulas for different mean squares and
the overall F test.

Source df Sum of squares Mean square Fs
Regression k SSregression MSregression = SSregression/k MSregression/MSerror
Error n− k − 1 SSerror MSerror = SSerror/(n− k − 1)
Total n− 1 SStotal
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21.4 Tests and confidence intervals for β

We next develop tests and confidence intervals for the parameters of the
multiple regression model, in particular the slope parameters β1, β2, . . . , βk
and also the intercept β0. These will help us evaluate which (if any) of the
independent variables affect the dependent one. These tests and confidence
intervals are based on the maximum likelihood estimates of each βj and its
standard error sβj , given by the formula

sβ̂j =
√
σ̂2dj+1,j+1, (21.48)

for j = 0, 1, . . . , k. Here σ̂2 = MSerror and dj+1,j+1 is the entry in the
(j + 1)th row and column of the matrix (X ′X)−1, i.e., the diagonal entries
of this matrix (Draper & Smith 1981). For example, for β0 and j = 0 we
would use d0+1,0+1 = d11, the entry in the first row and column. It can then
be shown that the quantity

β̂j − βj
sβ̂j

(21.49)

has a t distribution with n−k−1 degrees of freedom, the same as for MSerror.
This fact can be used to derive tests and confidence intervals for each βj.

Suppose we want to test H0 : βj = βj0 vs. H1 : βj 6= βj0, where βj0 takes
some value of interest. We would use the test statistic

Ts =
β̂j − βj0
sβ̂j

. (21.50)

Under H0, Ts has a t distribution with n − k − 1 degrees of freedom, and
we would reject H0 for sufficiently large values of this statistic. The most
commonly used null hypothesis tested is H0 : βj = 0 – if this test is significant
it suggests the slope for Xj differs from zero, and so Xj is causing a change
in Y . Note that this test examines the unique effect of Xj on Y with all the
other independent variables in the model, in effect pitting Xj against all the
other independent variables.

Confidence intervals can also be derived using the t distribution with
n− k − 1 degrees of freedom. The interval

(β̂j − cα,n−k−1sβ̂j , β̂j + cα,n−k−1sβ̂j) (21.51)
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is a 100(1−α)% confidence interval for βj, where cα,n−k−1 could be obtained
from Table T (see Chapter 9 for details). We will let SAS handle the details
for these confidence intervals as well as tests.

Chapter 24 of this text lists a SAS program that carries out a multiple
regression analysis for the Example 1 data using proc iml and matrix opera-
tions. This includes constructing the design matrixX and vector Y from the
observations, estimating β, then calculating MSerror, MSregression, and sβ̂j .
It also conducts the overall F test of the model and t tests for the regression
coefficients.

21.5 Standardized regression coefficients

The regression coefficient βj is the change in Y per unit ofXj (the slope) given
the other independent variables in the model. The magnitude of βj is affected
by the strength of this relationship as well as the units of measurement
for the variables. This can make it difficult to compare the relative effects
of the different independent variables on Y , because their units could be
quite different. Standardized regression coefficients solve this problem by
expressing the slope in units of the standard deviation of Y and Xj (Kutner
et al. 2005). They are calculated using the formula

β̂′j = β̂j
sXj
sY

, (21.52)

where sXj is the sample standard deviation of Xj and sY is the sample stan-
dard deviation of Y . As a result of this scaling the standardized coefficients
are dimensionless, similar to a correlation coefficient (Chapter 18).

21.6 R2 values

We can define an R2 value for multiple regression similar to one for linear
regression. It is the proportion of the total sum of squares explained by the
regression model, or

R2 =
SSregression
SStotal

=
SSregression

SSregression + SSerror
. (21.53)

Large R2 values suggest the regression model explains most of the variation
(sum of squares) in the data, and vice versa for small R2 values.
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21.7 Multiple regression for Example 1 - SAS

demo

We next conduct a multiple regression analysis of the Example 1 data using
proc reg (SAS Institute Inc. 2018b). See program below. It is similar in
structure to previous linear regression and ANOVA programs, but we will
use proc reg rather than proc glm because it has several useful features for
multiple regression. We first input the observations using a data step, apply-
ing transformations if necessary. Theoretical models of competition suggest
a linear relationship between the log of the survival rate and measures of den-
sity like attack density and bluestain levels, so we define y = log(survival)

in the data step. The two independent variables are attack density (defined
as satkden) and bluestain levels (blueden).

As a first step in the analysis, it is often useful to plot the values of
the dependent variables vs. the independent ones, to see their individual
effects. We will use proc gplot (SAS Institute Inc. 2016) for this purpose,
using commands similar to the ones for linear regression (Chapter 17). The
program fits a regression line through the points in each graph, but these are
the lines for linear, not multiple, regression. Special techniques are needed
visualize the fitted model for multiple regression, which we will later examine.

The next section of the program conducts the multiple regression using
proc reg. The plots=diagnostics option generates graphs that are used to ex-
amine the assumptions of multiple regression, similar to ANOVA and linear
regression. The model statement tells SAS the multiple regression model, in-
cluding the dependent variable (y) and the two independent variables (satkden
and blueden). Note the similarity of the model statement to the multiple re-
gression model with two independent variables. The option clb requests con-
fidence intervals for the model parameters while stb displays the standardized
regression coefficients. We will examine the remaining options later.

Examining the two proc gplot graphs, we see that log survival rate ap-
peared to decrease with attack density, while bluestain had no obvious effect
(Fig. 21.2, 21.3). The proc reg output contains the overall F for the multi-
ple regression as well as separate t tests for the independent variables (Fig.
21.4). We see that the overall test was significant (F2,24 = 5.45, P = 0.0112),
suggesting one or more of the independent variables affected survival. The
t test for attack density was highly significant (t24 = −3.30, P = 0.0030)
while bluestain was nonsignificant (t24 = −0.65, P = 0.5243). The slope or
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regression coefficient for attack density was negative (β = −0.2391), indicat-
ing survival decreases with attack density, as was the coefficient for bluestain
(β = −0.8096). This suggests that bluestain actually had a greater effect
than attack density, but this is because their units are quite different. If we
examine the standardized regression coefficients, we see that attack density
had a larger coefficient (β′ = −0.5682) than bluestain (β′ = −0.1113), and
so had a larger effect on survival. The multiple regression model explained
about 31% of the variation in the data (R2 = 0.3122). The usual homo-
geneity of variances and normality assumptions also appear satisfied (Fig.
21.5).
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SAS Program

* SPBsurvival.sas;

title "Multiple regression for SPB survival data";

data SPB;

input satkden blueden survival;

* Apply transformations here;

y = log(survival);

datalines;

1.250 0.000 0.107

2.656 0.481 0.715

7.334 0.171 0.036

1.603 0.352 0.188

2.622 0.016 0.438

etc.

5.000 0.338 0.207

;

run;

* Print data set;

proc print data=SPB;

run;

* Plot y vs. x variables;

proc gplot data=SPB;

plot y*(satkden blueden) / vaxis=axis1 haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Multiple regression analysis;

proc reg plots=diagnostics data=SPB;

* Specify regression model and request residual-residual plots;

model y = satkden blueden / clb stb tol vif partial;

run;

quit;
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etc.

Figure 21.1: SPBsurvival.sas - proc print
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Figure 21.2: SPBsurvival.sas - proc gplot

Figure 21.3: SPBsurvival.sas - proc gplot
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Figure 21.4: SPBsurvival.sas - proc reg
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Figure 21.5: SPBsurvival.sas - proc reg
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Figure 21.6: SPBsurvival.sas - proc reg
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21.8 Visualizing the multiple regression model

We can visualize the model fitted to the Example 1 data using a three-
dimensional scatter plot (Fig. 21.7). The maximum likelihood (and least
squares) process minimizes the squared residuals between the observations
and the plane defined by the multiple regression model. From this graph, we
can see that survival decreased with increasing attack density while bluestain
had a minimal effect. The slope of the plane with respect to attack density
is the same as the estimated slope in Fig. 21.4, and similarly for bluestain.
This kind of graph would not work for more than two independent variables,
because it would have more than three dimensions.

Another type of graph that works for any number of independent variables
are residual-residual plots, or added-variable plots (Kutner et al. 2005).
As the name suggests, they are constructed using two sets of residuals. Sup-
pose we are interested in visualizing the effect of X1 on Y . The first set of
residuals is obtained from a multiple regression of X1 on X2, X3, . . . , Xk, with
X1 the dependent variable. The second set of residuals is from a multiple
regression of Y on X2, X3, . . . , Xk, excluding X1. This procedure essentially
subtracts the effect of X2, X3, . . . , Xk on both Y and X1. If we plot the two
sets of residuals against each other, this would show the unique effect of X1

on Y . If we were to fit a line through these residuals using linear regression,
the slope of the line would be equal to β̂1 from the full multiple regression
(Y vs. X1, X2, . . . , Xk).

Residual-residual plots are requested in SAS using the partial option
in the model statement for proc reg, generating the output in Fig. 21.6.
Besides visualizing the relationships between the dependent and indepen-
dent variables, these plots can be used to identify outliers and observations
that strongly influence the regression lines, known as high leverage points
(Sheather 2009). They can also be used to determine whether the relation-
ship between Y and a given X variable is in fact linear, as assumed by the
multiple regression model. Examining these plots for the Example 1 data,
the relationship between survival rates and attack density (or bluestain) ap-
peared linear and there were no large outliers.
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Figure 21.7: Multiple regression model fitted to the Example 1 data (see SAS
program for variable definitions). The vertical red lines are the residuals for
each observation (Yi − Ŷi). This plot used R code from Chang (2023).
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21.9 Collinearity in multiple regression

In a multiple regression analysis, there may sometimes be strong linear rela-
tionships or correlations among two or more independent variables, a prob-
lem called collinearity. This can cause issues in estimating the regression
coefficients, including large standard errors and confidence intervals, and
potentially large values for the estimates themselves. Another symptom of
collinearity are independent variables that are nonsignificant even though the
overall F test is significant. See Kutner et al. (2005) and Sheather (2009)
for further details.

One diagnostic tool for detecting collinearity are tolerance values. They
are calculated as follows. Suppose we want the tolerance value for the inde-
pendent variable X1. We would run a multiple regression of X1 on X2, . . . , Xk

and find the R2(X1) value for this regression. The tolerance value for X1 is
defined as 1−R2(X1). If X1 is strongly collinear with one or more indepen-
dent variables, it will have a small tolerance value because R2(X1) will be
large. Another common measure is the variance inflation factor, defined
as 1/(1−R2(X1)). This is just the inverse of the tolerance value, and will be
large if there is strong collinearity among the independent variables. A com-
mon rule of thumb is that collinearity is a problem when a variance inflation
factor is sufficient large, say 5 or 10 (Kutner et al. 2005; Sheather 2009)

The tolerance and variance inflation factors are requested using the op-
tions tol and vif the model statement for proc reg. Examining these quan-
tities for the Example 1 data set, we see the variance inflation factors were
small for both independent variables (Fig. 21.4). The variance inflation fac-
tors were the same here because there were only two independent variables
in the model.

21.10 Multiple regression for Example 2 - SAS

demo

We now analyze the Example 2 data set using SAS and proc reg (see program
below). Here the objective is to predict endocranial volume for fossil skulls
using a multiple regression model fitted to existing species. We first log-
transform all the variables in a data step. This makes intuitive sense, because
we would expect endocranial volume to be the product of length, height, and
width. After log-transform this would yield an additive model that can be
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fitted using multiple regression. The dependent variable in the analysis is
then logV, while logL, logH, and logW are the independent ones. Note the
last two observations have missing values for endocranial volume – we will
use multiple regression to predict it for these fossil skulls where endocranial
volume is unavailable.

Plots generated using proc gplot show a strong linear relationship be-
tween logV and all three independent variables (Fig. 21.9-21.11). We then
conduct the multiple regression using proc reg and the same syntax as in
Example 1. Two new options for the model statement are clm and cli. The
clm option generates a 95% confidence interval for the mean of Yi for each
observation, while cli generates a 95% prediction interval for a single Yi
(see Chapter 17). These intervals are calculated for all the observations,
including the two fossil skulls. Examining the output (Fig. 21.12), we see
that the overall F test was highly significant (F3,190 = 8498.88, P < 0.0001),
as were the individual t tests for length (t190 = 3.77, P = 0.0002), height
(t190 = 9.55, P < 0.0001), and width (t190 = 14.11, P < 0.0001). The stan-
dardized regression coefficients suggest that width had the greatest effect on
endocranial volume (β′ = 0.5097), followed by height (β′ = 0.3873) and then
width (β′ = 0.1052). Combined, these three variables explained 99.3% of the
variation in volume (R2 = 0.9926), suggesting the model would be useful for
prediction. The confidence and prediction intervals for the two fossil skulls
are shown at the bottom of Fig. 21.13.

A possible concern with this analysis were large variance inflation factors
for all three independent variables (Fig. 21.12). Despite these large values,
the individual t tests for these variables were all highly significant, suggesting
they each contribute something unique to the model. Kutner et al. (2005)
also argue that collinearity is less important when prediction is primary goal
of the analysis, as in the Example 2 regression.
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SAS Program

* Endocranial4.sas;

title "Multiple regression for endocranial volume in mammals";

data ECVdat;

input Length Width Height Volume Common_name :$30.;

* Apply transformations here;

logV = log(Volume);

logL = log(Length);

logH = log(Height);

logW = log(Width);

datalines;

15.04 11.29 6.61 0.38 Pygmy_glider

52.40 30.94 25.68 12.36 Rufous_kangaroo_rat

75.87 52.79 39.45 56.70 Howler_monkey

41.73 25.70 16.79 5.68 Scaley-tailed_squirrel

39.71 26.87 17.13 5.92 Lord_derby’s_flying_squirrel

etc.

70.36 45.09 37.72 38.43 Arctic_fox

80.73 47.96 39.45 48.55 Fox

13.54 9.24 7.13 0.36 Meadow_jumping_mouse

13.15 9.05 7.00 . Fossil_mouse

190.17 97.32 80.31 . Fossil_bear

;

run;

* Print data set;

proc print data=ECVdat;

run;

* Plot y vs. x variables;

proc gplot data=ECVdat;

plot logV*(logL logH logW) / vaxis=axis1 haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Multiple regression;

proc reg plots=diagnostics data=ECVdat;

* Specify variables in regression model;

model logV = logL logH logW / clb stb tol vif partial clm cli;

run;

quit;
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etc.

Figure 21.8: Endocranial4.sas - proc print
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Figure 21.9: Endocranial4.sas - proc gplot

Figure 21.10: Endocranial4.sas - proc gplot
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Figure 21.11: Endocranial4.sas - proc gplot
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Figure 21.12: Endocranial4.sas - proc reg
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etc.

Figure 21.13: Endocranial4.sas - proc reg
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21.11 Power analysis for multiple regression

The appropriate sample size for a multiple regression study can be deter-
mined through a power analysis. Similar to power analysis in ANOVA, we
must specify the Type I error rate α, the desired power level, and the size of
the effect we wish to detect. The effect size in power analyses for multiple
regression is often expressed in terms of an R2 value, which combines the
effects of the independent variables (through SSregression) and the variability
of the observations (SSerror).

The SAS procedure power can do a power analysis for multiple regression
using the multreg option. We first specify the Type I error rate and desired
power using the alpha and power options (see SAS program below). We
will be interested in the sample sizes needed for the overall F test of H0 :
β1 = β2 = . . . = βk = 0, which is equivalent to testing H0 : R2 = 0.
This value of R2 is specified using the rquaredreduced option. The values
of R2 under the alternative hypothesis (H1 : βj 6= 0 for some j) are then
specified using the rsquarefull option. Some plausible values for ecological
or behavioral data are 0.1, 0.3, and 0.6, but any value can be used. We must
also specify the number of independent variables (k) under H0 and H1, using
the nreducedpredictors and nfullpredictors options. We set the ntotal option
to a missing value, which tells power to solve for the sample size n that gives
the desired power.
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SAS Program

* multreg_power.sas;

title ’Power Analysis for Multiple Regression’;

proc power;

multreg

model = fixed

alpha = 0.05

power = 0.8

rsquarereduced = 0

rsquarefull = 0.1 0.3 0.6

nreducedpredictors = 0

nfullpredictors = 1 2 3 4 5 6 7 8 9 10 20 30 40 50

ntotal = . ;

run;

quit;

Table 21.4 summarizes the result of this analysis, with the entries the
sample size n to obtain the desired power. Note that the effect size (R2

under H1) strongly influences sample size, and that more observations are
necessary to maintain power as the number of independent variables (k) is
increased. For one predictor, the sample size specified is for a simple linear
regression.

The power procedure can be used to find the sample size for other sce-
narios, including tests of the individual regression coefficients (H0 : βj = 0).
The basic idea is to specify an R2 value with and without Xj in the model,
with the number of predictors in the full and reduced model differing by 1.
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Table 21.4: Power for Multiple Regression - Effect of R2 and the number of
independent variables (k) on the sample size n for the overall F test of the
model (H0 : β1 = β2 = . . . = βk = 0). See text for further details.

R2

k 0.1 0.3 0.6
1 73 21 8
2 90 26 11
3 103 30 12
4 113 33 14
5 122 36 16
6 130 39 17
7 137 42 18
8 144 44 20
9 150 46 21
10 156 48 22
20 205 67 34
30 244 82 45
40 278 97 55
50 308 110 66
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21.12 Polynomial regression

In a linear regression, we sometimes saw a nonlinear relationship between Y
and X for some data sets (Chapter 17). This problem could often be fixed
by applying a transformation to Y or X , but this approach sometimes fails.
An alternative solution is to fit a flexible polynomial in X to the data. The
observations would be modeled using the equation

Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + . . .+ εi. (21.54)

This is a polynomial regression model. It is similar in structure to multiple
regression, except the independent variables X1, X2, . . . , Xk are replaced with
increasing powers of X.

As we add more powers of X, the polynomial regression model becomes
increasingly flexible. A model using only X and X2 would fit a quadratic
polynomial (a parabola) to the data, while one with X, X2, and X3 would fit
a cubic one, which is S-shaped. While higher powers of X would allow even
more flexibility, they are seldom needed to obtain an adequate fit. Another
issue is extrapolation beyond the range of X values, where higher order poly-
nomials can generate unrealistic estimates (Kutner et al. 2005). For these
reasons, it is desirable to find the lowest order polynomial that adequately
describes the data.

One issue with using the powers of X in a regression is that they are
collinear with one another. For example, we would expect X, X2, and X3 to
be strongly correlated. A common strategy is to use centered polynomials
to reduce this collinearity. This is accomplished by centering the independent
variable around its mean before finding the power. In particular, we first
define x = X−X̄ and then raise x to the desired power, using these centered
variables in the polynomial regression.

21.13 Population growth experiment - SAS

demo

As an example of polynomial regression, we will analyze data from a hypo-
thetical experiment on a stored grain insect, where varying numbers of adult
insects (N) are added to a container with grain, and then the number of
offspring per adult estimated (R). We would expect that R would decrease
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as N was increased because of intraspecific competition among the insects.
The Ricker model is often used as a simple description of intraspecific com-
petition and could be suitable for these data (Ricker 1954). The model has
two parameters, the intrinsic growth rate r of the organism and its carry-
ing capacity K. For this model, we would expect the following relationship
between logR and N :

logR = r(1− (N/K)) = r − (r/K)N = α− βN, (21.55)

where α = r and β = r/K. This is essentially a linear regression model
for logR vs. N . What we would like to determine is whether this model is
adequate, or whether a more complex nonlinear one is needed. We can answer
this question using a polynomial regression model with different powers of
N . If the tests for these terms are significant, it suggests a more complex
model is needed for these observations.

The SAS program below lists the observations from this hypothetical ex-
periment in a data step. Also listed is the mean of value of N (nbar = 50.455).
This is used in the centering process, which first calculates a centered density
x and then the powers of x (x2, x3). The data are then plotted along with a
smooth line using proc gplot and the symbol1 i=sm70 option. The smooth line
is constructed using cubic splines, which are themselves a kind of polynomial.
This graph helps visualize the relationship between logR and n.

We then use proc glm to conduct the polynomial regression (SAS Insti-
tute Inc. 2018b). We use this procedure rather than proc reg because it
can generate Type I sums of squares and tests. These are produced by se-
quentially fitting the different terms in the model statement, and can be used
to determine the lowest order polynomial needed to describe the data. For
example, the Type I test for x3 tests whether this power is needed with x and
x2 already in the model.

The results from proc glm output suggested a quadratic polynomial pro-
vides an adequate description of these data (see discussion below). The re-
mainder of the program plots the observations with a quadratic polynomial
line plus a confidence interval (proc gplot with the symbol option i=rqclm).
It then uses proc reg to finish the analysis, using syntax similar to previous
multiple regression analyses.
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SAS Program

* Ricker_polynomial.sas;

title "Polynomial regression for Ricker data";

data ricker;

input n logR;

* For centered polynomials, you’ll need the mean X value;

nbar = 50.455;

x = n-nbar;

x2 = x**2;

x3 = x**3;

datalines;

5 0.42

10 0.33

20 0.48

30 0.03

40 -0.18

50 -0.16

60 0.08

70 -1.20

80 -1.45

90 -1.72

100 -2.67

;

run;

* Print data set;

proc print data=ricker;

run;

* Plot data and fit smooth line;

proc gplot data=ricker;

plot logR*n / vaxis=axis1 haxis=axis1;

symbol1 i=sm70 v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

run;

* Polynomial regression;

proc glm data=ricker;

* Look at Type I tests to determine order of polynomial;

model logR = x x2 x3;

run;

* Preceding analysis suggests second-order polynomial adequate;

* Plot the data and second-order polynomial;

proc gplot data=ricker;

plot logR*n / vaxis=axis1 haxis=axis1;

symbol1 i=rqclm v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;
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run;

* Polynomial regression with second-order polynomial;

proc reg data=ricker;

model logR = x x2 / clb stb tol vif partial;

run;

quit;

Examining the first proc gplot graph, we observe logR decreased with
density n, suggesting that reproduction was affected by intraspecific compe-
tition. The relationship appears curved, however, and so the Ricker model
may not be adequate (Fig. 21.15). The Type I tests from proc glm yielded
highly significant results for x (F1,7 = 109.81, P < 0.0001) and x2 (F1,7 =
12.45, P = 0.0096), but a nonsignificant one for x3 (F1,7 = 0.43, P = 0.5328)
(Fig. 21.16). This pattern suggests a quadratic polynomial would be suffi-
cient to describe these data. In addition, the highly significant test for x2

means we can definitively reject the linear Ricker model.
The second proc gplot graph shows that a quadratic provides a reasonable

approximation to the observations (Fig. 21.17). Examining the proc reg

output (Fig. 21.18), we see that overall F test was highly significant (F3,8 =
40.89, P < 0.0001), as were the individual tests for x (t8 = −10.59, P <
0.0001) and x2 (t8 = −3.66, P = 0.0064). The polynomial regression model
explained about 94% of the variation in the data (R2 = 0.943). Due to
centering, the variance inflation factors show no collinearity issues with x

and x2.
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Figure 21.14: Ricker polynomial.sas - proc print

Figure 21.15: Ricker polynomial.sas - proc gplot (1)
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Figure 21.16: Ricker polynomial.sas - proc glm

Figure 21.17: Ricker polynomial.sas - proc gplot (2)
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Figure 21.18: Ricker polynomial.sas - proc reg
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21.14 Model selection using information cri-

teria

There is a substantial literature on problems with hypothesis testing and
P values in scientific research, as well as defenses of this approach. Recent
papers that summarize these issues include Aho et al. (2014), Burnham and
Anderson (2014), Murtaugh (2014), and de Valpine (2014), in an ecological
context. The most common alternative to hypothesis testing is model selec-
tion using Akaike’s Information Criterion, or AIC (Akaike 1974; Anderson
et al. 2000; Burnham and Anderson 2002; Burnham and Anderson 2014).
The basic idea is to formulate a collection of models to describe the data, and
then choose the best one based on AIC values, defined as the model with
the smallest AIC. For example, in a multiple regression setting we might be
interested in determining the best model among different subsets of the inde-
pendent variables. There is no explicit hypothesis testing in this approach,
but confidence intervals can be calculated to describe the magnitude of an
effect.

While the hypothesis testing and AIC approaches seem different, they
often use similar statistical models with the same sets of assumptions. There
is also a common scenario, nested models, where the two approaches would
produce similar results. Models are nested when a simpler model is a special
case of a more complex one, with fewer parameters or variables. Procedures
like ANOVA and multiple regression utilize nested models, with the tests
constructed using a simpler H0 model nested within a more complex H1

model. Murtaugh (2014) showed there is a direct relationship between P
values and changes in AIC under these conditions. Suppose that a test
comparing H0 and H1 was highly significant, favoring the H1 model. The
AIC value for the H1 model would also be substantially smaller than H0, and
so this approach would also select the H1 model. However, it is important
to note there are scenarios where the models are not nested, which precludes
hypothesis testing and P values but where AIC is useful. For example,
Burnham & Anderson (2002) used AIC to compare nine different nonlinear
models of the relationship between the number of bird species and sample
size, with the models of such different forms they could not be nested.

So what is AIC? The AIC uses the concept of Kullback-Leibler in-
formation. We suppose that the data have some probability distribution
f , and we would like to approximate it with another distribution g. These
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two distributions can be thought of as different models for the data, with
f the true one. Kullback-Leibler information is a measure of the distance
between f and g, denoted as I(f, g). In mathematical terms, it is defined as
the expected value of ln(f/g), where the expected value is calculated using
the f distribution:

I(f, g) = Ef

[
ln

(
f(x)

g(x|θ)

)]
. (21.56)

(Akaike 1974; Anderson et al. 2000; Burnham and Anderson 2002). The
notation g(x|θ) is used to emphasize that g has a number of parameters (say
θ1, θ2, etc.) that could affect I(f, g). I(f, g) is always positive unless f = g,
for which I(f, g) = 0. Because the true distribution f and the parameters of
g are typically unknown, I(f, g) is not useful in this form because it cannot
be calculated.

To see how I(f, g) behaves, suppose that f and g are simple continuous
distributions like the normal. Equation 21.56 can then be expressed as an
integral of the form

I(f, g) =

∫
f(x) ln

(
f(x)

g(x|θ)

)
dx. (21.57)

If f and g are quite distinct from each other I(f, g) will be large, because
positive values of ln(f/g) will mostly coincide with f , and so receive more
weight in the integral (Fig. 21.19). This effect is diminished when f and g
are closely overlapping. One can think of I(f, g) as measuring the mismatch
between the two distributions, or more formally as the loss of information
when approximating the true distribution f using g(x|θ).

We can break the expected value in Equation 21.56 into two pieces, using
the fact that ln(a/b) = ln a − ln b and formulas for the expected value of a
sum (see Chapter 7). We have

I(f, g) = Ef [ln f(x)]− Ef [ln g(x|θ)]. (21.58)

The first term in this equation does not involve g, and in any event would
be a constant because f is fixed. This suggests that to minimize I(f, g), we
should compare the relative values of the second term. It can be shown that
smaller values of −Ef [ln g(x|θ)] would make I(f, g) smaller, minimizing the
loss of information (Burnham and Anderson 2002).

The contribution of Akaike (1974) was to find an estimator of−Ef [ln g(x|θ)]
using maximum likelihood, which also provides estimates of the parameters
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of g. Suppose we have a data set that could be used to estimate θ using
maximum likelihood (see Chapter 8). He showed that −Ef [ln g(x|θ)] could
be estimated using

AIC = −2 lnL(θ̂) + 2K, (21.59)

where L(θ̂) is the likelihood function for g at the maximum likelihood esti-
mate of θ, by definition the largest value of L (Akaike 1974; Anderson et al.
2000; Burnham and Anderson 2002). Here K is the number of parameters in
θ. An interesting feature of the AIC is that K is actually a bias correction
for this estimate.

Now suppose we have a number of different g distributions that are models
for our data, with different numbers of parameters. Models with the smallest
value of AIC would also have the smallest I(f, g), and so the smallest loss of
information in approximating f by g. We can gain further insight into this
process by examining the two terms in the AIC formula. Models with more
parameters could potentially fit the data better, generating a larger L and
so smaller −2 lnL, but they would also have larger values of 2K. Thus, the
AIC imposes a tradeoff between the fit of the model and its complexity.

In multiple regression, ANOVA, and other general linear models, −2 lnL
and so AIC are a function of SSerror and the number of parameters in the
model. In particular, for models of this type we have

AIC = n ln(SSerror/n) + 2K (21.60)

where n is sample size. We can see from this expression that better models
will tend to have smaller values of SSerror and also fewer parameters, for a
given sample size. Note that different software packages may count K and
calculate AIC in different ways, so that the values of reported are different.
These differences, while confusing, have no effect on the relative ranking of
models by AIC.

A quantity related to AIC is the Bayesian Information Criterion or BIC
(Schwarz 1978). The BIC was derived using the Bayesian interpretation of
probability as a belief, but is valid outside this framework. BIC is calculated
using the formula

BIC = −2 lnL(θ̂) + ln(n)K (21.61)

where as before n is sample size and K the number of parameters. The only
difference between the formulas for AIC and BIC is the multiplier for K –
it is a constant (2) for AIC but ln(n) for BIC. In terms of regression and
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ANOVA models, BIC can be calculated using the formula

BIC = n ln(SSerror/n) + ln(n)K (21.62)

The BIC is used in the same fashion as AIC, with smaller values indicating
a better model. It is clear from this formula that BIC penalizes complex
models more heavily as sample size increases, because of the ln(n) multiplier.

Which criterion, AIC vs. BIC, performs best in model selection? Brewer
et al. (2016) compared the two methods using simulated data intended to
mimic the hidden heterogeneity likely present in real data sets, where the
data could be mixture of observations with different parameter values. Per-
formance was measured by how well the selected models predicted the obser-
vations of similar data sets, separate from the ones used in model selection.
This tests how well the predictions of the model generalize to new observa-
tions. When heterogeneity was low AIC generally performed best, but BIC
was better when heterogenity was large, so there was no clear winner.

We will use a more complex data set to illustrate model selection using
AIC. Kaul and Wilsey (2020) wanted to determine which factors affect the
success of tallgrass prairie restorations located in Iowa, USA. These prairies
were restored using seed mixes, and as one measure of success they compared
the species diversity of the seed mix with the diversity at the restored site,
using the Bray-Curtis dissimilarity index as the dependent variable. This
index ranges from 0 (all species shared) to 1 (none in common), so larger
values suggest the restoration has failed. The independent variables were
the age of the site and its linearity (shape), soil pH and organic matter,
temperature and precipitation at establishment as well as annual averages,
and exotic species abundance. A subset of these observations is shown in
Table 21.5 (see https://datadryad.org for the full data set).
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Figure 21.19: Graphical illustration of I(f, g) under two scenarios.
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Table 21.5: Example 3 - Site variables for restored prairies and Bray-Curtis dissimilarity (Kaul and Wilsey
2020). Here TE = temperature at establishment, PE = precipitation at establishment, TA = average annual
temperature, and PA = average annual precipitation. See text for further details.

Site Age Linearity pH Organic TE PE TA PA Exotic Bray-Curtis i
3 5 1.29 7.33 12.28 12.25 31.77 9.94 35.61 24.05 0.982 1
4 6 1.39 7.93 8.54 8.69 45.50 8.89 36.80 19.87 0.898 2
5 14 1.21 7.90 7.11 9.31 31.83 9.11 35.52 3.68 0.791 3
7 5 1.24 8.03 6.28 9.42 28.26 8.00 36.48 10.25 1.000 4
8 3 1.28 7.67 5.69 6.61 43.13 8.00 36.48 18.00 0.998 5

etc.

100 17 1.30 7.87 10.42 9.17 33.58 10.72 37.59 25.03 0.970 40
101 3 1.26 7.93 8.64 8.56 40.66 10.72 37.59 15.37 0.772 41
102 11 1.25 8.10 3.61 11.69 40.36 10.00 36.28 9.57 0.972 42
105 13 1.05 7.93 14.54 8.53 35.57 8.00 36.48 13.77 0.718 43
106 10 1.02 6.97 8.19 7.64 47.79 8.00 36.48 14.25 0.624 44
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21.15 Model selection for Example 3 - SAS

demo

We will use AIC to select the best model for the Example 3 data, with
multiple regression the underlying model (see program below). We first input
the observations using a data step, selecting the Bray-Curtis index (bc) as
the dependent variable y. We then plot y vs. all the independent variables
(age, linear, . . ., exotic) using proc gplot.

The next section of the program conducts a standard multiple regres-
sion using proc reg. We will later compare the results of this analysis with
that generated by proc glmselect, a SAS procedure that implements various
types of model selection (SAS Institute Inc. 2018b). The model statement
for proc glmselect is similar to proc reg, but with a class statement it can
also accomodate ANOVA-like factors. Model selection using AIC is imple-
mented using the selection=stepwise(select=AICC) option. Stepwise refers to
the search method, with the procedure adding or dropping individual vari-
ables until it finds the best model. The option AICC requests a version of
AIC corrected for small sample sizes. Model selection using BIC could
be requested using the select=SBC option (Schwarz’s Bayesian Criterion or
BIC).

Examining a subset of proc gplot graphs, we see that the Bray-Curtis dis-
similarity index (y) increased with the linearity of the site (linear) and exotic
species abundance (exotic), and decreased with precipitation during estab-
lishment (PE) (Fig. 21.21-21.23). From the proc reg output (Fig. 21.24), we
see that the overall model was highly significant (F9,34 = 11.11, P < 0.0001)
as were the individual tests for linearity (t34 = 3.43, P = 0.0016), exotic
abundance (t34 = 4.19, P = 0.0002), and precipitation during establishment
(t34 = −3.07, P = 0.0042). These variables also had the largest standardized
regression coefficients. No other variables approached significance.

Model selection using AIC and proc glmselect chose linearity, exotic
abundance, and precipitation during establishment for the best model (Fig.
21.25). These were the same variables that were significant in the multi-
ple regression. Kaul and Wilsey (2020) found these same three variables
in their model search using stepwise regression, a method of model selection
where variables are added or removed based on repeated tests at some α level
(α = 0.15 in this case). The different model selection methods all yielded
the same result, suggesting it is a robust one. These authors conclude that
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high exotic species abundance interfered with the restoration process, so that
the restored site shared fewer species with the seed mix used to restore it.
Linearity also affected restoration, likely because highly linear sites had more
edges for exotic species to invade. Presumably precipitation during estab-
lishment aided the initial success of the seed mix, and so had the opposite
effect.

Note that proc glmselect does not provide P values for the t tests of the
independent variables, because they would not be valid in this context. The
Type I error rates for these tests assume a single multiple regression analysis,
not a selection process where many different models were considered.

SAS Program

* Restored6.sas;

title "Model selection for restored prairie data";

data RPdat;

input site_id $ age linear ph organic TE PE TA PA exotic bc;

* Bray-Curtis (bc) measures dissimilarity of the site vs.

restoration seed mix;

* 0 = all species in common, 1 = none in common;

* Kaul and Wilsey (2020) say similarity in paper;

* Apply transformations here;

y = bc;

datalines;

3 5 1.29 7.33 12.28 12.25 31.77 9.94 35.61 24.05 0.982

4 6 1.39 7.93 8.54 8.69 45.50 8.89 36.80 19.87 0.898

5 14 1.21 7.90 7.11 9.31 31.83 9.11 35.52 3.68 0.791

7 5 1.24 8.03 6.28 9.42 28.26 8.00 36.48 10.25 1.000

8 3 1.28 7.67 5.69 6.61 43.13 8.00 36.48 18.00 0.998

etc.

100 17 1.30 7.87 10.42 9.17 33.58 10.72 37.59 25.03 0.970

101 3 1.26 7.93 8.64 8.56 40.66 10.72 37.59 15.37 0.772

102 11 1.25 8.10 3.61 11.69 40.36 10.00 36.28 9.57 0.972

105 13 1.05 7.93 14.54 8.53 35.57 8.00 36.48 13.77 0.718

106 10 1.02 6.97 8.19 7.64 47.79 8.00 36.48 14.25 0.624

;

run;

* Print data set;

proc print data=RPdat;

run;

* Plot y vs. x variables;

proc gplot data=RPdat;
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plot y*(age linear ph organic TE PE TA PA exotic) / vaxis=axis1

haxis=axis1;

symbol1 i=rl v=star c=black height=2 width=2;

axis1 label=(height=2) value=(height=2) width=3 major=(width=2) minor=none;

symbol1 i=rl v=star c=black;

run;

* Multiple regression;

proc reg data=RPdat;

* Specify variables in regression model;

model y = age linear ph organic TE PE TA PA exotic / clb stb tol vif partial;

run;

* Model selection using AICc (stepwise);

proc glmselect data=RPdat;

* Specify variables in regression model and method of selection;

model y = age linear ph organic TE PE TA PA exotic /

selection=stepwise(select=AICC);

run;

quit;
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etc.

Figure 21.20: Restored6.sas - proc print
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Figure 21.21: Restored6.sas - proc gplot

Figure 21.22: Restored6.sas - proc gplot
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Figure 21.23: Restored6.sas - proc gplot
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Figure 21.24: Restored6.sas - proc reg
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Figure 21.25: Restored6.sas - proc glmselect
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21.17 Problems

1. This problem involves the matrix calculations for linear regression, a
special case of multiple regression. Suppose you have a data set with
four observations:

Yi Xi

4 1
6 2
9 3
10 4

(a) What is the design matrix X and the vector Y for this data set?

(b) What is the transpose of X, or X ′? The answer should be a 2×4
matrix.

(c) Calculate X ′X using matrix multiplication. The answer should
be a 2× 2 matrix.

(d) Show that the matrix below is the inverse of X ′X, by multiplying
them together to obtain I (the identity matrix).

(X ′X)−1 =

(
1.5 −0.5
−0.5 0.2

)
(21.63)

(e) Calculate (X ′X)−1X ′ using matrix multiplication. The answer
should be a 2× 4 matrix.

(f) Finally, calculate β = (X ′X)−1X ′Y using matrix multiplica-
tion. The answer should be a 2 × 1 matrix, with elements equal
to the regression intercept and slope. You can check your answer
by running a linear regression (see Chapter 17).
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2. Ecologists who study predator-prey interactions are often interested in
the mortality inflicted by the predator as a function of prey abundance.
Data were collected on the proportion of prey eaten by a single preda-
tor as the number of prey were increased, in a laboratory experiment
(see table below). The proportion eaten was an average over multiple
replicates.

(a) Fit a flexible model to these observations using polynomial re-
gression and SAS. What order polynomial was needed to describe
these observations? Attach your program and output.

(b) Use the polynomial model to predict the proportion eaten for 35
and 45 prey, including confidence intervals for the predictions.

(c) The proportion eaten vs. prey curve can take different shapes
depending on the functional response of the predator. For ex-
ample, the curve would be flat for a Type I response, strictly
decreasing for a Type II response, and hump-shaped for a Type
III response (Gotelli 2008). How would you classify the response
in this experiment?

Number of Prey Proportion Eaten
1 0.00
2 0.05
3 0.10
4 0.13
5 0.14
7 0.21

10 0.24
15 0.31
20 0.39
25 0.39
30 0.42
40 0.40
50 0.30
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3. Data were collected on the abundance of an insect species (Y ) as a
function of five environmental variables (X1, X2, X3, X4, and X5). See
table below.

(a) Conduct a multiple regression analysis of these data using SAS,
with Y the dependent variable and X1, X2, X3, X4, and X5 the
regressors. Discuss the significance of the overall test of the model
and the tests for each independent variable. Attach your program
and output.

(b) Use standardized regression coefficients to compare the size and
direction of the different effects, especially the significant ones.
Which independent variables have the most effect on insect abun-
dance? Which ones increase or decrease it?

(c) Select the best model for these data using AIC, and write the
answer below. Attach your SAS program and output.
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X1 X2 X3 X4 X5 Y
13.4 10.4 12.7 126 15.4 18.6
11.4 11.9 8.7 115 12.8 21.2
9.2 13.3 10.3 143 11.2 24.1

15.5 11.0 12.6 88 14.9 18.9
13.1 9.9 10.3 156 11.9 26.4
16.3 13.2 9.2 146 14.0 19.8
10.1 15.5 8.9 135 11.3 21.8
7.6 10.0 16.7 128 7.0 26.7

12.9 11.7 16.4 89 13.2 18.6
11.0 11.3 14.8 171 12.3 20.8
11.1 13.3 6.4 128 14.1 21.6
14.3 10.1 9.3 92 15.1 18.4
10.1 13.7 11.3 129 13.0 18.5
12.2 8.9 11.9 143 12.9 24.8
10.9 10.3 12.8 154 12.3 27.9
12.6 13.4 13.7 177 16.1 22.6
12.6 12.4 11.1 165 16.4 26.5
12.4 10.2 7.1 118 13.9 23.9
15.2 13.4 8.1 111 14.2 19.5
13.7 14.0 11.3 123 12.3 16.3
14.1 16.5 7.0 58 7.8 7.1
20.5 8.5 8.1 143 11.9 27.3
5.9 12.0 8.8 149 8.2 27.2

12.7 13.8 19.3 122 12.7 19.7
15.2 9.5 11.9 126 9.2 24.0
17.5 14.0 16.0 130 15.0 19.1
7.7 10.0 10.0 81 9.9 16.0

16.7 13.8 9.3 132 11.2 18.4
14.9 16.9 11.1 124 11.4 17.2
10.6 15.3 13.1 145 15.4 19.4
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22.1 Elytra Length

Elytra length of male and female clerid beetles (Thanasimus dubius) includ-
ing a sample SAS data step. Data drawn from Reeve et al. (2003).

data elytra;

input sex $ length;

datalines;

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

M 4.6

M 3.8

F 5.4

F 4.0

F 4.5

M 4.9

F 5.2

M 4.9

F 4.2

F 5.7

M 4.6

M 3.8

F 5.4

F 4.0

F 4.5

F 5.2

F 4.9

M 5.0

M 4.4

M 5.0

M 5.0

M 4.9

F 4.5

F 4.5

M 5.1

F 5.5

M 4.8

F 4.9

M 4.8

M 4.5
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M 4.5

M 4.4

M 5.2

M 4.1

F 5.0

M 4.4

F 4.9

M 4.7

M 4.4

F 4.8

F 4.5

M 4.0

M 3.4

F 5.5

M 4.7

M 4.8

F 4.8

F 3.7

M 5.3

M 4.6

F 4.8

M 4.5

M 5.0

M 4.4

F 4.6

M 4.4

M 4.9

F 5.3

F 5.0

F 4.7

F 5.2

M 5.0

M 5.0

M 4.8

M 5.8

F 5.7

F 5.2

M 4.9

F 5.1

F 5.3

F 5.3

F 5.9

F 5.3

M 4.5

F 5.2
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M 5.1

F 4.6

M 4.8

M 3.5

F 4.6

F 5.3

M 5.2

F 4.8

M 5.1

M 5.2

M 4.9

M 5.3

M 5.2

F 4.9

F 5.6

M 5.0

M 5.0

F 5.1

M 5.1

F 5.5

M 5.1

F 4.8

F 4.9

F 5.0

M 4.9

M 5.0

F 5.0

M 4.9

M 4.8

F 5.2

F 4.8

M 4.7

F 5.1

M 4.5

M 5.0

F 5.4

F 4.6

M 4.0

M 4.2

F 5.2

F 4.6

M 5.0

M 3.7

M 4.6

M 4.0
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M 5.1

F 4.4

M 4.8

M 4.6

F 3.7

;

run;
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22.2 Development Time

Development times for the clerid beetle Thanasimus dubius The variables
time_pp and time_adult are the development time from the larval to the pre-
pupal stage, and the prepupal to the adult stage, respectively (Reeve et al.
2003).

data devel_time;

input time_pp time_adult;

datalines;

34 65

31 48

29 .

30 55

32 62

32 47

37 44

34 53

31 .

37 53

32 .

31 42

29 .

35 .

39 .

34 43

32 .

34 .

34 113

32 47

32 100

41 .

32 49

29 .

32 53

39 .

39 84

35 .

32 .

35 74

36 43

31 50

34 .
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35 44

35 116

34 .

34 .

37 58

36 101

32 67

34 68

34 61

28 66

31 84

30 68

28 106

28 42

31 58

31 42

28 68

32 55

32 .

30 101

30 99

39 43

30 80

28 52

27 50

28 110

28 42

30 .

28 66

28 147

27 .

37 135

30 119

29 113

30 103

30 95

27 87

29 89

33 .

27 76

27 .

30 .

30 49

30 81

29 85
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27 .

31 104

27 73

27 110

27 .

31 99

31 55

31 59

27 .

30 93

27 .

28 84

28 93

29 .

29 108

31 103

33 .

29 92

;

run;
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22.3 Plant Biomass

Effect of nitrogen heterogeneity, nitrogen availability, and water availability
on the total biomass of grassland plants grown in microcosms (Maestre &
Reynolds 2007).

data maestre;

input nitrohet $ nitrogen water biomass;

datalines;

N 40 125 4.372

N 40 125 4.482

N 40 125 4.221

N 40 125 3.977

N 40 250 7.400

N 40 250 8.027

N 40 250 7.883

N 40 250 7.769

N 40 375 7.226

N 40 375 8.126

N 40 375 6.840

N 40 375 7.901

N 80 125 5.140

N 80 125 3.913

N 80 125 4.669

N 80 125 4.306

N 80 250 9.099

N 80 250 9.711

N 80 250 9.123

N 80 250 9.709

N 80 375 10.701

N 80 375 11.552

N 80 375 11.356

N 80 375 9.759

N 120 125 5.021

N 120 125 4.970

N 120 125 5.055

N 120 125 4.862

N 120 250 9.029

N 120 250 10.791

N 120 250 9.115

N 120 250 10.319

N 120 375 12.189

N 120 375 14.381
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N 120 375 13.153

N 120 375 14.066

Y 40 125 5.458

Y 40 125 5.017

Y 40 125 5.479

Y 40 125 5.714

Y 40 250 8.972

Y 40 250 9.234

Y 40 250 8.032

Y 40 250 8.372

Y 40 375 9.464

Y 40 375 9.563

Y 40 375 9.385

Y 40 375 8.226

Y 80 125 6.616

Y 80 125 6.909

Y 80 125 6.851

Y 80 125 6.098

Y 80 250 10.792

Y 80 250 10.164

Y 80 250 10.947

Y 80 250 9.582

Y 80 375 14.936

Y 80 375 13.607

Y 80 375 14.231

Y 80 375 12.038

Y 120 125 7.389

Y 120 125 6.683

Y 120 125 7.759

Y 120 125 6.752

Y 120 250 10.731

Y 120 250 12.640

Y 120 250 10.350

Y 120 250 11.550

Y 120 375 14.697

Y 120 375 17.826

Y 120 375 14.711

Y 120 375 13.614

;

run;
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22.4 Anagrus fecundity

Fecundity for the parasitoid Anagrus delicatus collected from different sites,
with 14 isolines per site and eight individual wasps per isoline. The data
were simulated from the results presented in Cronin and Strong (1996).

data anagrus;

input site isoline wasp eggs;

datalines;

1 1 1 37

1 1 2 41

1 1 3 46

1 1 4 44

1 1 5 43

1 1 6 41

1 1 7 38

1 1 8 37

1 2 1 37

1 2 2 28

1 2 3 34

1 2 4 37

1 2 5 35

1 2 6 39

1 2 7 36

1 2 8 29

1 3 1 35

1 3 2 37

1 3 3 40

1 3 4 39

1 3 5 37

1 3 6 44

1 3 7 35

1 3 8 38

1 4 1 28

1 4 2 36

1 4 3 31

1 4 4 27

1 4 5 36

1 4 6 33

1 4 7 31

1 4 8 35

1 5 1 34

1 5 2 35
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1 5 3 30

1 5 4 39

1 5 5 42

1 5 6 39

1 5 7 38

1 5 8 32

1 6 1 30

1 6 2 32

1 6 3 35

1 6 4 35

1 6 5 32

1 6 6 31

1 6 7 34

1 6 8 30

1 7 1 30

1 7 2 36

1 7 3 37

1 7 4 30

1 7 5 41

1 7 6 35

1 7 7 34

1 7 8 37

1 8 1 25

1 8 2 31

1 8 3 24

1 8 4 26

1 8 5 30

1 8 6 31

1 8 7 25

1 8 8 24

1 9 1 34

1 9 2 35

1 9 3 29

1 9 4 34

1 9 5 34

1 9 6 40

1 9 7 37

1 9 8 37

1 10 1 38

1 10 2 30

1 10 3 33

1 10 4 32

1 10 5 33

1 10 6 34

1 10 7 35



22.4. ANAGRUS FECUNDITY 749

1 10 8 41

1 11 1 36

1 11 2 33

1 11 3 36

1 11 4 34

1 11 5 37

1 11 6 41

1 11 7 37

1 11 8 31

1 12 1 35

1 12 2 36

1 12 3 35

1 12 4 37

1 12 5 40

1 12 6 34

1 12 7 29

1 12 8 42

1 13 1 33

1 13 2 39

1 13 3 33

1 13 4 37

1 13 5 28

1 13 6 35

1 13 7 34

1 13 8 38

1 14 1 35

1 14 2 33

1 14 3 25

1 14 4 29

1 14 5 29

1 14 6 35

1 14 7 33

1 14 8 29

2 1 1 26

2 1 2 39

2 1 3 36

2 1 4 27

2 1 5 25

2 1 6 31

2 1 7 30

2 1 8 25

2 2 1 42

2 2 2 46

2 2 3 46

2 2 4 42



750 CHAPTER 22. DATA SETS

2 2 5 43

2 2 6 36

2 2 7 36

2 2 8 41

2 3 1 38

2 3 2 36

2 3 3 35

2 3 4 31

2 3 5 36

2 3 6 32

2 3 7 29

2 3 8 34

2 4 1 28

2 4 2 36

2 4 3 33

2 4 4 32

2 4 5 27

2 4 6 31

2 4 7 30

2 4 8 32

2 5 1 30

2 5 2 35

2 5 3 32

2 5 4 31

2 5 5 36

2 5 6 34

2 5 7 29

2 5 8 36

2 6 1 28

2 6 2 34

2 6 3 34

2 6 4 35

2 6 5 32

2 6 6 31

2 6 7 24

2 6 8 31

2 7 1 35

2 7 2 34

2 7 3 44

2 7 4 34

2 7 5 35

2 7 6 36

2 7 7 32

2 7 8 30

2 8 1 37
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2 8 2 32

2 8 3 33

2 8 4 39

2 8 5 30

2 8 6 31

2 8 7 32

2 8 8 34

2 9 1 41

2 9 2 41

2 9 3 43

2 9 4 36

2 9 5 43

2 9 6 42

2 9 7 42

2 9 8 37

2 10 1 34

2 10 2 30

2 10 3 35

2 10 4 27

2 10 5 30

2 10 6 22

2 10 7 31

2 10 8 31

2 11 1 34

2 11 2 36

2 11 3 38

2 11 4 36

2 11 5 34

2 11 6 33

2 11 7 35

2 11 8 29

2 12 1 28

2 12 2 29

2 12 3 27

2 12 4 36

2 12 5 33

2 12 6 32

2 12 7 34

2 12 8 32

2 13 1 40

2 13 2 39

2 13 3 39

2 13 4 34

2 13 5 32

2 13 6 42
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2 13 7 36

2 13 8 39

2 14 1 38

2 14 2 42

2 14 3 37

2 14 4 37

2 14 5 34

2 14 6 33

2 14 7 43

2 14 8 34

3 1 1 30

3 1 2 35

3 1 3 36

3 1 4 37

3 1 5 29

3 1 6 27

3 1 7 39

3 1 8 38

3 2 1 30

3 2 2 37

3 2 3 30

3 2 4 31

3 2 5 27

3 2 6 31

3 2 7 36

3 2 8 40

3 3 1 27

3 3 2 33

3 3 3 31

3 3 4 32

3 3 5 34

3 3 6 31

3 3 7 31

3 3 8 31

3 4 1 26

3 4 2 27

3 4 3 37

3 4 4 30

3 4 5 29

3 4 6 35

3 4 7 34

3 4 8 31

3 5 1 36

3 5 2 32

3 5 3 34
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3 5 4 37

3 5 5 32

3 5 6 34

3 5 7 33

3 5 8 32

3 6 1 33

3 6 2 40

3 6 3 34

3 6 4 38

3 6 5 36

3 6 6 35

3 6 7 41

3 6 8 34

3 7 1 31

3 7 2 33

3 7 3 31

3 7 4 34

3 7 5 29

3 7 6 33

3 7 7 28

3 7 8 33

3 8 1 22

3 8 2 25

3 8 3 29

3 8 4 24

3 8 5 24

3 8 6 26

3 8 7 25

3 8 8 21

3 9 1 32

3 9 2 31

3 9 3 28

3 9 4 28

3 9 5 35

3 9 6 34

3 9 7 33

3 9 8 31

3 10 1 31

3 10 2 32

3 10 3 29

3 10 4 30

3 10 5 28

3 10 6 31

3 10 7 28

3 10 8 36
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3 11 1 32

3 11 2 31

3 11 3 34

3 11 4 35

3 11 5 35

3 11 6 31

3 11 7 41

3 11 8 34

3 12 1 28

3 12 2 27

3 12 3 27

3 12 4 27

3 12 5 27

3 12 6 30

3 12 7 28

3 12 8 28

3 13 1 36

3 13 2 39

3 13 3 36

3 13 4 30

3 13 5 37

3 13 6 32

3 13 7 38

3 13 8 39

3 14 1 32

3 14 2 34

3 14 3 41

3 14 4 33

3 14 5 35

3 14 6 35

3 14 7 34

3 14 8 31

;

run;
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22.5 Fitness of T. dubius

Fitness of adult T. dubius, a bark beetle predator, reared on an artificial diet
as larvae vs. wild individuals collected from the field (Reeve et al. 2003).
The adults were fed either Ips grandicollis or cowpea weevils.

data fitness;

input eggs longevity length treat $;

datalines;

290 78 5.7 DietIG

99 40 5.2 DietIG

340 70 5.5 DietIG

271 67 4.8 DietIG

200 84 5.2 DietIG

405 80 5.2 DietIG

178 80 5.1 DietIG

48 23 5.0 DietIG

146 62 4.8 DietIG

184 82 4.9 DietIG

66 67 4.6 DietCPW

93 45 5.0 DietCPW

9 49 5.4 DietCPW

404 121 5.4 DietCPW

244 114 5.1 DietCPW

195 72 4.9 DietCPW

343 126 5.2 DietCPW

516 138 5.0 DietCPW

215 108 4.6 DietCPW

412 156 5.6 DietCPW

167 79 4.8 DietCPW

316 117 5.2 DietCPW

334 127 5.3 DietCPW

62 221 4.7 WildCPW

290 180 5.0 WildCPW

488 175 5.8 WildCPW

336 177 5.2 WildCPW

337 164 5.8 WildCPW

230 93 5.0 WildCPW

381 155 5.3 WildCPW

192 152 5.5 WildCPW

186 143 5.3 WildCPW

467 140 5.2 WildCPW

59 42 4.9 WildCPW
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323 138 5.7 WildCPW

291 117 4.9 WildCPW

164 112 5.3 WildCPW

142 112 5.3 WildCPW

269 110 5.0 WildCPW

329 91 5.4 WildCPW

235 84 5.0 WildCPW

;

run;
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22.6 Iris flower measurements

Sepal and petal measurements for I. setosa (Fisher 1936).

data iris;

input seplen sepwid petlen petwid;

datalines;

5.1 3.5 1.4 0.2

4.9 3.0 1.4 0.2

4.7 3.2 1.3 0.2

4.6 3.1 1.5 0.2

5.0 3.6 1.4 0.2

5.4 3.9 1.7 0.4

4.6 3.4 1.4 0.3

5.0 3.4 1.5 0.2

4.4 2.9 1.4 0.2

4.9 3.1 1.5 0.1

5.4 3.7 1.5 0.2

4.8 3.4 1.6 0.2

4.8 3.0 1.4 0.1

4.3 3.0 1.1 0.1

5.8 4.0 1.2 0.2

5.7 4.4 1.5 0.4

5.4 3.9 1.3 0.4

5.1 3.5 1.4 0.3

5.7 3.8 1.7 0.3

5.1 3.8 1.5 0.3

5.4 3.4 1.7 0.2

5.1 3.7 1.5 0.4

4.6 3.6 1.0 0.2

5.1 3.3 1.7 0.5

4.8 3.4 1.9 0.2

5.0 3.0 1.6 0.2

5.0 3.4 1.6 0.4

5.2 3.5 1.5 0.2

5.2 3.4 1.4 0.2

4.7 3.2 1.6 0.2

4.8 3.1 1.6 0.2

5.4 3.4 1.5 0.4

5.2 4.1 1.5 0.1

5.5 4.2 1.4 0.2

4.9 3.1 1.5 0.2

5.0 3.2 1.2 0.2

5.5 3.5 1.3 0.2
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4.9 3.6 1.4 0.1

4.4 3.0 1.3 0.2

5.1 3.4 1.5 0.2

5.0 3.5 1.3 0.3

4.5 2.3 1.3 0.3

4.4 3.2 1.3 0.2

5.0 3.5 1.6 0.6

5.1 3.8 1.9 0.4

4.8 3.0 1.4 0.3

5.1 3.8 1.6 0.2

4.6 3.2 1.4 0.2

5.3 3.7 1.5 0.2

5.0 3.3 1.4 0.2

;

run;
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23.1 Table Z: Probabilities for the standard

normal distribution.

Suppose a random variable Z has a standard normal distribution (Z ∼
N(0, 1)). This table gives P [Z < z] = p where the first two digits of z
are given on the left, while the last digit is given in the top row. The values
in the table were generated using the SAS function probnorm (SAS Institute
Inc. 2016).

Figure 23.1: Plot of the standard normal distribution illustrating the prob-
ability shown in the table below.

References

SAS Institute Inc. (2016) SAS 9.4 Functions and CALL Routines: Reference,
Fifth Edition. SAS Institute Inc., Cary, NC.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
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23.2 Table T: Quantiles of the t distribution

Suppose a random variable T has a t distribution. This table gives values of
the quantile q such that P [T < q] = p, where p = 0.75, 0.9, ..., 0.9995. De-
grees of freedom are given on the left. The values in the table were generated
using the SAS function tinv (SAS Institute Inc. 2016).

Figure 23.2: Plot of the t distribution illustrating p and 1 − p in the table
below.
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p 0.75 0.90 0.95 0.975 0.990 0.995 0.9995
1− p 0.25 0.10 0.05 0.025 0.010 0.005 0.0005

2(1− p) 0.50 0.20 0.10 0.050 0.020 0.010 0.0010

df

1 1.000 3.078 6.314 12.706 31.821 63.657 636.619
2 0.816 1.886 2.920 4.303 6.965 9.925 31.599
3 0.765 1.638 2.353 3.182 4.541 5.841 12.924
4 0.741 1.533 2.132 2.776 3.747 4.604 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 6.869
6 0.718 1.440 1.943 2.447 3.143 3.707 5.959
7 0.711 1.415 1.895 2.365 2.998 3.499 5.408
8 0.706 1.397 1.860 2.306 2.896 3.355 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 4.781
10 0.700 1.372 1.812 2.228 2.764 3.169 4.587
11 0.697 1.363 1.796 2.201 2.718 3.106 4.437
12 0.695 1.356 1.782 2.179 2.681 3.055 4.318
13 0.694 1.350 1.771 2.160 2.650 3.012 4.221
14 0.692 1.345 1.761 2.145 2.624 2.977 4.140
15 0.691 1.341 1.753 2.131 2.602 2.947 4.073
16 0.690 1.337 1.746 2.120 2.583 2.921 4.015
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850
21 0.686 1.323 1.721 2.080 2.518 2.831 3.819
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792
23 0.685 1.319 1.714 2.069 2.500 2.807 3.768
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725
26 0.684 1.315 1.706 2.056 2.479 2.779 3.707
27 0.684 1.314 1.703 2.052 2.473 2.771 3.690
28 0.683 1.313 1.701 2.048 2.467 2.763 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.659
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646
31 0.682 1.309 1.696 2.040 2.453 2.744 3.633
32 0.682 1.309 1.694 2.037 2.449 2.738 3.622
33 0.682 1.308 1.692 2.035 2.445 2.733 3.611
34 0.682 1.307 1.691 2.032 2.441 2.728 3.601
35 0.682 1.306 1.690 2.030 2.438 2.724 3.591
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p 0.75 0.90 0.95 0.975 0.990 0.995 0.9995
1− p 0.25 0.10 0.05 0.025 0.010 0.005 0.0005

2(1− p) 0.50 0.20 0.10 0.050 0.020 0.010 0.0010

df

36 0.681 1.306 1.688 2.028 2.434 2.719 3.582
37 0.681 1.305 1.687 2.026 2.431 2.715 3.574
38 0.681 1.304 1.686 2.024 2.429 2.712 3.566
39 0.681 1.304 1.685 2.023 2.426 2.708 3.558
40 0.681 1.303 1.684 2.021 2.423 2.704 3.551
50 0.679 1.299 1.676 2.009 2.403 2.678 3.496
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460
70 0.678 1.294 1.667 1.994 2.381 2.648 3.435
80 0.678 1.292 1.664 1.990 2.374 2.639 3.416
90 0.677 1.291 1.662 1.987 2.368 2.632 3.402
100 0.677 1.290 1.660 1.984 2.364 2.626 3.390
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.291
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23.3 Table C: Quantiles of the χ2 distribution

Suppose a random variable X has a χ2 distribution with df degrees of free-
dom. This table gives values of the quantile q such that P [X < q] = p, where
p = 0.005, ..., 0.999. The values in the table were generated using the SAS
function cinv (SAS Institute Inc. 2016).

Figure 23.3: Plot of the χ2 distribution (df = 5) illustrating p and 1 − p in
the table below.
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p 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999
1− p 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005 0.001

df

1 3.93e−5 1.57e−4 9.82e−4 3.93e−3 0.016 0.102 0.455 1.323 2.706 3.841 5.024 6.635 7.879 10.828
2 0.010 0.020 0.051 0.103 0.211 0.575 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816
3 0.072 0.115 0.216 0.352 0.584 1.213 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266
4 0.207 0.297 0.484 0.711 1.064 1.923 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467
5 0.412 0.554 0.831 1.145 1.610 2.675 4.351 6.626 9.236 11.07 12.833 15.086 16.750 20.515
6 0.676 0.872 1.237 1.635 2.204 3.455 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458
7 0.989 1.239 1.690 2.167 2.833 4.255 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322
8 1.344 1.646 2.180 2.733 3.490 5.071 7.344 10.219 13.362 15.507 17.535 20.09 21.955 26.124
9 1.735 2.088 2.700 3.325 4.168 5.899 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877
10 2.156 2.558 3.247 3.940 4.865 6.737 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588
11 2.603 3.053 3.816 4.575 5.578 7.584 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264
12 3.074 3.571 4.404 5.226 6.304 8.438 11.34 14.845 18.549 21.026 23.337 26.217 28.300 32.909
13 3.565 4.107 5.009 5.892 7.042 9.299 12.34 15.984 19.812 22.362 24.736 27.688 29.819 34.528
14 4.075 4.660 5.629 6.571 7.790 10.165 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123
15 4.601 5.229 6.262 7.261 8.547 11.037 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697
16 5.142 5.812 6.908 7.962 9.312 11.912 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252
17 5.697 6.408 7.564 8.672 10.085 12.792 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790
18 6.265 7.015 8.231 9.390 10.865 13.675 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312
19 6.844 7.633 8.907 10.117 11.651 14.562 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820
20 7.434 8.260 9.591 10.851 12.443 15.452 19.337 23.828 28.412 31.410 34.170 37.566 39.997 45.315
21 8.034 8.897 10.283 11.591 13.240 16.344 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797
22 8.643 9.542 10.982 12.338 14.041 17.24 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268
23 9.260 10.196 11.689 13.091 14.848 18.137 22.337 27.141 32.007 35.172 38.076 41.638 44.181 49.728
24 9.886 10.856 12.401 13.848 15.659 19.037 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179
25 10.520 11.524 13.120 14.611 16.473 19.939 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620
26 11.160 12.198 13.844 15.379 17.292 20.843 25.336 30.435 35.563 38.885 41.923 45.642 48.29 54.052
27 11.808 12.879 14.573 16.151 18.114 21.749 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476
28 12.461 13.565 15.308 16.928 18.939 22.657 27.336 32.620 37.916 41.337 44.461 48.278 50.993 56.892
29 13.121 14.256 16.047 17.708 19.768 23.567 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301
30 13.787 14.953 16.791 18.493 20.599 24.478 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703
31 14.458 15.655 17.539 19.281 21.434 25.390 30.336 35.887 41.422 44.985 48.232 52.191 55.003 61.098
32 15.134 16.362 18.291 20.072 22.271 26.304 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487
33 15.815 17.074 19.047 20.867 23.110 27.219 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870
34 16.501 17.789 19.806 21.664 23.952 28.136 33.336 39.141 44.903 48.602 51.966 56.061 58.964 65.247
35 17.192 18.509 20.569 22.465 24.797 29.054 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619
36 17.887 19.233 21.336 23.269 25.643 29.973 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985
37 18.586 19.960 22.106 24.075 26.492 30.893 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346
38 19.289 20.691 22.878 24.884 27.343 31.815 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703
39 19.996 21.426 23.654 25.695 28.196 32.737 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055
40 20.707 22.164 24.433 26.509 29.051 33.660 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402
41 21.421 22.906 25.215 27.326 29.907 34.585 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745
42 22.138 23.650 25.999 28.144 30.765 35.510 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084
43 22.859 24.398 26.785 28.965 31.625 36.436 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419
44 23.584 25.148 27.575 29.787 32.487 37.363 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750
45 24.311 25.901 28.366 30.612 33.350 38.291 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077
46 25.041 26.657 29.160 31.439 34.215 39.220 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400
47 25.775 27.416 29.956 32.268 35.081 40.149 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720
48 26.511 28.177 30.755 33.098 35.949 41.079 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037
49 27.249 28.941 31.555 33.930 36.818 42.010 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351
50 27.991 29.707 32.357 34.764 37.689 42.942 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661
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p 0.005 0.010 0.025 0.050 0.100 0.250 0.500 0.750 0.900 0.950 0.975 0.990 0.995 0.999
1− p 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005 0.001

df

51 28.735 30.475 33.162 35.600 38.56 43.874 50.335 57.401 64.295 68.669 72.616 77.386 80.747 87.968
52 29.481 31.246 33.968 36.437 39.433 44.808 51.335 58.468 65.422 69.832 73.810 78.616 82.001 89.272
53 30.230 32.018 34.776 37.276 40.308 45.741 52.335 59.534 66.548 70.993 75.002 79.843 83.253 90.573
54 30.981 32.793 35.586 38.116 41.183 46.676 53.335 60.600 67.673 72.153 76.192 81.069 84.502 91.872
55 31.735 33.570 36.398 38.958 42.060 47.610 54.335 61.665 68.796 73.311 77.380 82.292 85.749 93.168
56 32.490 34.350 37.212 39.801 42.937 48.546 55.335 62.729 69.919 74.468 78.567 83.513 86.994 94.461
57 33.248 35.131 38.027 40.646 43.816 49.482 56.335 63.793 71.040 75.624 79.752 84.733 88.236 95.751
58 34.008 35.913 38.844 41.492 44.696 50.419 57.335 64.857 72.160 76.778 80.936 85.950 89.477 97.039
59 34.770 36.698 39.662 42.339 45.577 51.356 58.335 65.919 73.279 77.931 82.117 87.166 90.715 98.324
60 35.534 37.485 40.482 43.188 46.459 52.294 59.335 66.981 74.397 79.082 83.298 88.379 91.952 99.607
61 36.301 38.273 41.303 44.038 47.342 53.232 60.335 68.043 75.514 80.232 84.476 89.591 93.186 100.888
62 37.068 39.063 42.126 44.889 48.226 54.171 61.335 69.104 76.630 81.381 85.654 90.802 94.419 102.166
63 37.838 39.855 42.950 45.741 49.111 55.110 62.335 70.165 77.745 82.529 86.830 92.010 95.649 103.442
64 38.610 40.649 43.776 46.595 49.996 56.050 63.335 71.225 78.860 83.675 88.004 93.217 96.878 104.716
65 39.383 41.444 44.603 47.450 50.883 56.990 64.335 72.285 79.973 84.821 89.177 94.422 98.105 105.988
66 40.158 42.240 45.431 48.305 51.770 57.931 65.335 73.344 81.085 85.965 90.349 95.626 99.330 107.258
67 40.935 43.038 46.261 49.162 52.659 58.872 66.335 74.403 82.197 87.108 91.519 96.828 100.554 108.526
68 41.713 43.838 47.092 50.020 53.548 59.814 67.335 75.461 83.308 88.250 92.689 98.028 101.776 109.791
69 42.494 44.639 47.924 50.879 54.438 60.756 68.334 76.519 84.418 89.391 93.856 99.228 102.996 111.055
70 43.275 45.442 48.758 51.739 55.329 61.698 69.334 77.577 85.527 90.531 95.023 100.425 104.215 112.317
71 44.058 46.246 49.592 52.600 56.221 62.641 70.334 78.634 86.635 91.670 96.189 101.621 105.432 113.577
72 44.843 47.051 50.428 53.462 57.113 63.585 71.334 79.690 87.743 92.808 97.353 102.816 106.648 114.835
73 45.629 47.858 51.265 54.325 58.006 64.528 72.334 80.747 88.850 93.945 98.516 104.010 107.862 116.092
74 46.417 48.666 52.103 55.189 58.900 65.472 73.334 81.803 89.956 95.081 99.678 105.202 109.074 117.346
75 47.206 49.475 52.942 56.054 59.795 66.417 74.334 82.858 91.061 96.217 100.839 106.393 110.286 118.599
76 47.997 50.286 53.782 56.920 60.690 67.362 75.334 83.913 92.166 97.351 101.999 107.583 111.495 119.850
77 48.788 51.097 54.623 57.786 61.586 68.307 76.334 84.968 93.270 98.484 103.158 108.771 112.704 121.100
78 49.582 51.910 55.466 58.654 62.483 69.252 77.334 86.022 94.374 99.617 104.316 109.958 113.911 122.348
79 50.376 52.725 56.309 59.522 63.380 70.198 78.334 87.077 95.476 100.749 105.473 111.144 115.117 123.594
80 51.172 53.540 57.153 60.391 64.278 71.145 79.334 88.130 96.578 101.879 106.629 112.329 116.321 124.839
81 51.969 54.357 57.998 61.261 65.176 72.091 80.334 89.184 97.680 103.010 107.783 113.512 117.524 126.083
82 52.767 55.174 58.845 62.132 66.076 73.038 81.334 90.237 98.780 104.139 108.937 114.695 118.726 127.324
83 53.567 55.993 59.692 63.004 66.976 73.985 82.334 91.289 99.880 105.267 110.090 115.876 119.927 128.565
84 54.368 56.813 60.540 63.876 67.876 74.933 83.334 92.342 100.980 106.395 111.242 117.057 121.126 129.804
85 55.170 57.634 61.389 64.749 68.777 75.881 84.334 93.394 102.079 107.522 112.393 118.236 122.325 131.041
86 55.973 58.456 62.239 65.623 69.679 76.829 85.334 94.446 103.177 108.648 113.544 119.414 123.522 132.277
87 56.777 59.279 63.089 66.498 70.581 77.777 86.334 95.497 104.275 109.773 114.693 120.591 124.718 133.512
88 57.582 60.103 63.941 67.373 71.484 78.726 87.334 96.548 105.372 110.898 115.841 121.767 125.913 134.745
89 58.389 60.928 64.793 68.249 72.387 79.675 88.334 97.599 106.469 112.022 116.989 122.942 127.106 135.978
90 59.196 61.754 65.647 69.126 73.291 80.625 89.334 98.650 107.565 113.145 118.136 124.116 128.299 137.208
91 60.005 62.581 66.501 70.003 74.196 81.574 90.334 99.700 108.661 114.268 119.282 125.289 129.491 138.438
92 60.815 63.409 67.356 70.882 75.100 82.524 91.334 100.750 109.756 115.390 120.427 126.462 130.681 139.666
93 61.625 64.238 68.211 71.760 76.006 83.474 92.334 101.800 110.850 116.511 121.571 127.633 131.871 140.893
94 62.437 65.068 69.068 72.640 76.912 84.425 93.334 102.850 111.944 117.632 122.715 128.803 133.059 142.119
95 63.250 65.898 69.925 73.520 77.818 85.376 94.334 103.899 113.038 118.752 123.858 129.973 134.247 143.344
96 64.063 66.730 70.783 74.401 78.725 86.327 95.334 104.948 114.131 119.871 125.000 131.141 135.433 144.567
97 64.878 67.562 71.642 75.282 79.633 87.278 96.334 105.997 115.223 120.990 126.141 132.309 136.619 145.789
98 65.694 68.396 72.501 76.164 80.541 88.229 97.334 107.045 116.315 122.108 127.282 133.476 137.803 147.010
99 66.510 69.230 73.361 77.046 81.449 89.181 98.334 108.093 117.407 123.225 128.422 134.642 138.987 148.230
100 67.328 70.065 74.222 77.929 82.358 90.133 99.334 109.141 118.498 124.342 129.561 135.807 140.169 149.449
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23.4 Table F: Quantiles of the F distribution

Suppose a random variable Y has an F distribution, with df1 and df2 the
numerator and denominator degrees of freedom. This table gives values of
the quantile q such that P [Y < q] = p, where p = 0.005, ..., 0.999. The values
in the table were generated using the SAS function finv (SAS Institute Inc.
2016).

Figure 23.4: Plot of the F distribution (df1 = 4, df2 = 20) illustrating p and
1− p in the table below.
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 4 4.545 7.709 12.218 21.198 31.333 74.137
2 4 4.325 6.944 10.649 18.000 26.284 61.246
3 4 4.191 6.591 9.979 16.694 24.259 56.177
4 4 4.107 6.388 9.605 15.977 23.155 53.436
5 4 4.051 6.256 9.364 15.522 22.456 51.712
6 4 4.010 6.163 9.197 15.207 21.975 50.525
1 5 4.060 6.608 10.007 16.258 22.785 47.181
2 5 3.780 5.786 8.434 13.274 18.314 37.122
3 5 3.619 5.409 7.764 12.060 16.530 33.202
4 5 3.520 5.192 7.388 11.392 15.556 31.085
5 5 3.453 5.050 7.146 10.967 14.940 29.752
6 5 3.405 4.950 6.978 10.672 14.513 28.834
1 6 3.776 5.987 8.813 13.745 18.635 35.507
2 6 3.463 5.143 7.260 10.925 14.544 27.000
3 6 3.289 4.757 6.599 9.780 12.917 23.703
4 6 3.181 4.534 6.227 9.148 12.028 21.924
5 6 3.108 4.387 5.988 8.746 11.464 20.803
6 6 3.055 4.284 5.820 8.466 11.073 20.030
1 7 3.589 5.591 8.073 12.246 16.236 29.245
2 7 3.257 4.737 6.542 9.547 12.404 21.689
3 7 3.074 4.347 5.890 8.451 10.882 18.772
4 7 2.961 4.120 5.523 7.847 10.050 17.198
5 7 2.883 3.972 5.285 7.460 9.522 16.206
6 7 2.827 3.866 5.119 7.191 9.155 15.521
1 8 3.458 5.318 7.571 11.259 14.688 25.415
2 8 3.113 4.459 6.059 8.649 11.042 18.494
3 8 2.924 4.066 5.416 7.591 9.596 15.829
4 8 2.806 3.838 5.053 7.006 8.805 14.392
5 8 2.726 3.687 4.817 6.632 8.302 13.485
6 8 2.668 3.581 4.652 6.371 7.952 12.858
1 9 3.360 5.117 7.209 10.561 13.614 22.857
2 9 3.006 4.256 5.715 8.022 10.107 16.387
3 9 2.813 3.863 5.078 6.992 8.717 13.902
4 9 2.693 3.633 4.718 6.422 7.956 12.560
5 9 2.611 3.482 4.484 6.057 7.471 11.714
6 9 2.551 3.374 4.320 5.802 7.134 11.128
1 10 3.285 4.965 6.937 10.044 12.826 21.040
2 10 2.924 4.103 5.456 7.559 9.427 14.905
3 10 2.728 3.708 4.826 6.552 8.081 12.553
4 10 2.605 3.478 4.468 5.994 7.343 11.283
5 10 2.522 3.326 4.236 5.636 6.872 10.481
6 10 2.461 3.217 4.072 5.386 6.545 9.926
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 11 3.225 4.844 6.724 9.646 12.226 19.687
2 11 2.860 3.982 5.256 7.206 8.912 13.812
3 11 2.660 3.587 4.630 6.217 7.600 11.561
4 11 2.536 3.357 4.275 5.668 6.881 10.346
5 11 2.451 3.204 4.044 5.316 6.422 9.578
6 11 2.389 3.095 3.881 5.069 6.102 9.047
1 12 3.177 4.747 6.554 9.330 11.754 18.643
2 12 2.807 3.885 5.096 6.927 8.510 12.974
3 12 2.606 3.490 4.474 5.953 7.226 10.804
4 12 2.480 3.259 4.121 5.412 6.521 9.633
5 12 2.394 3.106 3.891 5.064 6.071 8.892
6 12 2.331 2.996 3.728 4.821 5.757 8.379
1 13 3.136 4.667 6.414 9.074 11.374 17.815
2 13 2.763 3.806 4.965 6.701 8.186 12.313
3 13 2.560 3.411 4.347 5.739 6.926 10.209
4 13 2.434 3.179 3.996 5.205 6.233 9.073
5 13 2.347 3.025 3.767 4.862 5.791 8.354
6 13 2.283 2.915 3.604 4.620 5.482 7.856
1 14 3.102 4.600 6.298 8.862 11.060 17.143
2 14 2.726 3.739 4.857 6.515 7.922 11.779
3 14 2.522 3.344 4.242 5.564 6.680 9.729
4 14 2.395 3.112 3.892 5.035 5.998 8.622
5 14 2.307 2.958 3.663 4.695 5.562 7.922
6 14 2.243 2.848 3.501 4.456 5.257 7.436
1 15 3.073 4.543 6.200 8.683 10.798 16.587
2 15 2.695 3.682 4.765 6.359 7.701 11.339
3 15 2.490 3.287 4.153 5.417 6.476 9.335
4 15 2.361 3.056 3.804 4.893 5.803 8.253
5 15 2.273 2.901 3.576 4.556 5.372 7.567
6 15 2.208 2.790 3.415 4.318 5.071 7.092
1 16 3.048 4.494 6.115 8.531 10.575 16.120
2 16 2.668 3.634 4.687 6.226 7.514 10.971
3 16 2.462 3.239 4.077 5.292 6.303 9.006
4 16 2.333 3.007 3.729 4.773 5.638 7.944
5 16 2.244 2.852 3.502 4.437 5.212 7.272
6 16 2.178 2.741 3.341 4.202 4.913 6.805
1 17 3.026 4.451 6.042 8.400 10.384 15.722
2 17 2.645 3.592 4.619 6.112 7.354 10.658
3 17 2.437 3.197 4.011 5.185 6.156 8.727
4 17 2.308 2.965 3.665 4.669 5.497 7.683
5 17 2.218 2.810 3.438 4.336 5.075 7.022
6 17 2.152 2.699 3.277 4.102 4.779 6.562
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 18 3.007 4.414 5.978 8.285 10.218 15.379
2 18 2.624 3.555 4.560 6.013 7.215 10.390
3 18 2.416 3.160 3.954 5.092 6.028 8.487
4 18 2.286 2.928 3.608 4.579 5.375 7.459
5 18 2.196 2.773 3.382 4.248 4.956 6.808
6 18 2.130 2.661 3.221 4.015 4.663 6.355
1 19 2.990 4.381 5.922 8.185 10.073 15.081
2 19 2.606 3.522 4.508 5.926 7.093 10.157
3 19 2.397 3.127 3.903 5.010 5.916 8.280
4 19 2.266 2.895 3.559 4.500 5.268 7.265
5 19 2.176 2.740 3.333 4.171 4.853 6.622
6 19 2.109 2.628 3.172 3.939 4.561 6.175
1 20 2.975 4.351 5.871 8.096 9.944 14.819
2 20 2.589 3.493 4.461 5.849 6.986 9.953
3 20 2.380 3.098 3.859 4.938 5.818 8.098
4 20 2.249 2.866 3.515 4.431 5.174 7.096
5 20 2.158 2.711 3.289 4.103 4.762 6.461
6 20 2.091 2.599 3.128 3.871 4.472 6.019
1 21 2.961 4.325 5.827 8.017 9.830 14.587
2 21 2.575 3.467 4.420 5.780 6.891 9.772
3 21 2.365 3.072 3.819 4.874 5.730 7.938
4 21 2.233 2.840 3.475 4.369 5.091 6.947
5 21 2.142 2.685 3.250 4.042 4.681 6.318
6 21 2.075 2.573 3.090 3.812 4.393 5.881
1 22 2.949 4.301 5.786 7.945 9.727 14.380
2 22 2.561 3.443 4.383 5.719 6.806 9.612
3 22 2.351 3.049 3.783 4.817 5.652 7.796
4 22 2.219 2.817 3.440 4.313 5.017 6.814
5 22 2.128 2.661 3.215 3.988 4.609 6.191
6 22 2.060 2.549 3.055 3.758 4.322 5.758
1 23 2.937 4.279 5.750 7.881 9.635 14.195
2 23 2.549 3.422 4.349 5.664 6.730 9.469
3 23 2.339 3.028 3.750 4.765 5.582 7.669
4 23 2.207 2.796 3.408 4.264 4.950 6.696
5 23 2.115 2.640 3.183 3.939 4.544 6.078
6 23 2.047 2.528 3.023 3.710 4.259 5.649
1 24 2.927 4.260 5.717 7.823 9.551 14.028
2 24 2.538 3.403 4.319 5.614 6.661 9.339
3 24 2.327 3.009 3.721 4.718 5.519 7.554
4 24 2.195 2.776 3.379 4.218 4.890 6.589
5 24 2.103 2.621 3.155 3.895 4.486 5.977
6 24 2.035 2.508 2.995 3.667 4.202 5.550
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 25 2.918 4.242 5.686 7.770 9.475 13.877
2 25 2.528 3.385 4.291 5.568 6.598 9.223
3 25 2.317 2.991 3.694 4.675 5.462 7.451
4 25 2.184 2.759 3.353 4.177 4.835 6.493
5 25 2.092 2.603 3.129 3.855 4.433 5.885
6 25 2.024 2.490 2.969 3.627 4.150 5.462
1 26 2.909 4.225 5.659 7.721 9.406 13.739
2 26 2.519 3.369 4.265 5.526 6.541 9.116
3 26 2.307 2.975 3.670 4.637 5.409 7.357
4 26 2.174 2.743 3.329 4.140 4.785 6.406
5 26 2.082 2.587 3.105 3.818 4.384 5.802
6 26 2.014 2.474 2.945 3.591 4.103 5.381
1 27 2.901 4.210 5.633 7.677 9.342 13.613
2 27 2.511 3.354 4.242 5.488 6.489 9.019
3 27 2.299 2.960 3.647 4.601 5.361 7.272
4 27 2.165 2.728 3.307 4.106 4.740 6.326
5 27 2.073 2.572 3.083 3.785 4.340 5.726
6 27 2.005 2.459 2.923 3.558 4.059 5.308
1 28 2.894 4.196 5.610 7.636 9.284 13.498
2 28 2.503 3.340 4.221 5.453 6.440 8.931
3 28 2.291 2.947 3.626 4.568 5.317 7.193
4 28 2.157 2.714 3.286 4.074 4.698 6.253
5 28 2.064 2.558 3.063 3.754 4.300 5.656
6 28 1.996 2.445 2.903 3.528 4.020 5.241
1 29 2.887 4.183 5.588 7.598 9.230 13.391
2 29 2.495 3.328 4.201 5.420 6.396 8.849
3 29 2.283 2.934 3.607 4.538 5.276 7.121
4 29 2.149 2.701 3.267 4.045 4.659 6.186
5 29 2.057 2.545 3.044 3.725 4.262 5.593
6 29 1.988 2.432 2.884 3.499 3.983 5.179
1 30 2.881 4.171 5.568 7.562 9.180 13.293
2 30 2.489 3.316 4.182 5.390 6.355 8.773
3 30 2.276 2.922 3.589 4.510 5.239 7.054
4 30 2.142 2.690 3.250 4.018 4.623 6.125
5 30 2.049 2.534 3.026 3.699 4.228 5.534
6 30 1.980 2.421 2.867 3.473 3.949 5.122
1 31 2.875 4.160 5.549 7.530 9.133 13.202
2 31 2.482 3.305 4.165 5.362 6.317 8.704
3 31 2.270 2.911 3.573 4.484 5.204 6.993
4 31 2.136 2.679 3.234 3.993 4.590 6.067
5 31 2.042 2.523 3.010 3.675 4.196 5.480
6 31 1.973 2.409 2.851 3.449 3.918 5.070
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 32 2.869 4.149 5.531 7.499 9.090 13.117
2 32 2.477 3.295 4.149 5.336 6.281 8.639
3 32 2.263 2.901 3.557 4.459 5.171 6.936
4 32 2.129 2.668 3.218 3.969 4.559 6.014
5 32 2.036 2.512 2.995 3.652 4.166 5.429
6 32 1.967 2.399 2.836 3.427 3.889 5.021
1 33 2.864 4.139 5.515 7.471 9.050 13.039
2 33 2.471 3.285 4.134 5.312 6.248 8.579
3 33 2.258 2.892 3.543 4.437 5.141 6.883
4 33 2.123 2.659 3.204 3.948 4.531 5.965
5 33 2.030 2.503 2.981 3.630 4.138 5.382
6 33 1.961 2.389 2.822 3.406 3.861 4.976
1 34 2.859 4.130 5.499 7.444 9.012 12.965
2 34 2.466 3.276 4.120 5.289 6.217 8.522
3 34 2.252 2.883 3.529 4.416 5.113 6.833
4 34 2.118 2.650 3.191 3.927 4.504 5.919
5 34 2.024 2.494 2.968 3.611 4.112 5.339
6 34 1.955 2.380 2.808 3.386 3.836 4.934
1 35 2.855 4.121 5.485 7.419 8.976 12.896
2 35 2.461 3.267 4.106 5.268 6.188 8.470
3 35 2.247 2.874 3.517 4.396 5.086 6.787
4 35 2.113 2.641 3.179 3.908 4.479 5.876
5 35 2.019 2.485 2.956 3.592 4.088 5.298
6 35 1.950 2.372 2.796 3.368 3.812 4.894
1 36 2.850 4.113 5.471 7.396 8.943 12.832
2 36 2.456 3.259 4.094 5.248 6.161 8.420
3 36 2.243 2.866 3.505 4.377 5.062 6.744
4 36 2.108 2.634 3.167 3.890 4.455 5.836
5 36 2.014 2.477 2.944 3.574 4.065 5.260
6 36 1.945 2.364 2.785 3.351 3.790 4.857
1 37 2.846 4.105 5.458 7.373 8.912 12.771
2 37 2.452 3.252 4.082 5.229 6.135 8.374
3 37 2.238 2.859 3.493 4.360 5.038 6.703
4 37 2.103 2.626 3.156 3.873 4.433 5.799
5 37 2.009 2.470 2.933 3.558 4.043 5.224
6 37 1.940 2.356 2.774 3.334 3.769 4.823
1 38 2.842 4.098 5.446 7.353 8.882 12.714
2 38 2.448 3.245 4.071 5.211 6.111 8.331
3 38 2.234 2.852 3.483 4.343 5.016 6.665
4 38 2.099 2.619 3.145 3.858 4.412 5.763
5 38 2.005 2.463 2.923 3.542 4.023 5.190
6 38 1.935 2.349 2.763 3.319 3.749 4.790
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 39 2.839 4.091 5.435 7.333 8.854 12.660
2 39 2.444 3.238 4.061 5.194 6.088 8.290
3 39 2.230 2.845 3.473 4.327 4.995 6.629
4 39 2.095 2.612 3.135 3.843 4.392 5.730
5 39 2.001 2.456 2.913 3.528 4.004 5.158
6 39 1.931 2.342 2.754 3.305 3.731 4.759
1 40 2.835 4.085 5.424 7.314 8.828 12.609
2 40 2.440 3.232 4.051 5.179 6.066 8.251
3 40 2.226 2.839 3.463 4.313 4.976 6.595
4 40 2.091 2.606 3.126 3.828 4.374 5.698
5 40 1.997 2.449 2.904 3.514 3.986 5.128
6 40 1.927 2.336 2.744 3.291 3.713 4.731
1 41 2.832 4.079 5.414 7.296 8.803 12.561
2 41 2.437 3.226 4.042 5.163 6.046 8.214
3 41 2.222 2.833 3.454 4.299 4.957 6.562
4 41 2.087 2.600 3.117 3.815 4.356 5.668
5 41 1.993 2.443 2.895 3.501 3.969 5.100
6 41 1.923 2.330 2.736 3.278 3.696 4.703
1 42 2.829 4.073 5.404 7.280 8.779 12.516
2 42 2.434 3.220 4.033 5.149 6.027 8.179
3 42 2.219 2.827 3.446 4.285 4.940 6.532
4 42 2.084 2.594 3.109 3.802 4.339 5.640
5 42 1.989 2.438 2.887 3.488 3.953 5.073
6 42 1.919 2.324 2.727 3.266 3.680 4.677
1 43 2.826 4.067 5.395 7.264 8.757 12.472
2 43 2.430 3.214 4.024 5.136 6.008 8.146
3 43 2.216 2.822 3.438 4.273 4.923 6.503
4 43 2.080 2.589 3.101 3.790 4.324 5.613
5 43 1.986 2.432 2.879 3.476 3.937 5.048
6 43 1.916 2.318 2.719 3.254 3.665 4.653
1 44 2.823 4.062 5.386 7.248 8.735 12.431
2 44 2.427 3.209 4.016 5.123 5.991 8.115
3 44 2.213 2.816 3.430 4.261 4.907 6.476
4 44 2.077 2.584 3.093 3.778 4.308 5.588
5 44 1.983 2.427 2.871 3.465 3.923 5.024
6 44 1.913 2.313 2.712 3.243 3.651 4.630
1 45 2.820 4.057 5.377 7.234 8.715 12.392
2 45 2.425 3.204 4.009 5.110 5.974 8.086
3 45 2.210 2.812 3.422 4.249 4.892 6.450
4 45 2.074 2.579 3.086 3.767 4.294 5.564
5 45 1.980 2.422 2.864 3.454 3.909 5.001
6 45 1.909 2.308 2.705 3.232 3.638 4.608



23.4. TABLE F: QUANTILES OF THE F DISTRIBUTION 777

0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 46 2.818 4.052 5.369 7.220 8.695 12.355
2 46 2.422 3.200 4.001 5.099 5.958 8.057
3 46 2.207 2.807 3.415 4.238 4.877 6.425
4 46 2.071 2.574 3.079 3.757 4.280 5.541
5 46 1.977 2.417 2.857 3.444 3.896 4.979
6 46 1.906 2.304 2.698 3.222 3.625 4.587
1 47 2.815 4.047 5.361 7.207 8.677 12.319
2 47 2.419 3.195 3.994 5.087 5.943 8.030
3 47 2.204 2.802 3.409 4.228 4.864 6.401
4 47 2.068 2.570 3.073 3.747 4.267 5.519
5 47 1.974 2.413 2.851 3.434 3.883 4.958
6 47 1.903 2.299 2.691 3.213 3.612 4.566
1 48 2.813 4.043 5.354 7.194 8.659 12.286
2 48 2.417 3.191 3.987 5.077 5.929 8.005
3 48 2.202 2.798 3.402 4.218 4.850 6.379
4 48 2.066 2.565 3.066 3.737 4.255 5.498
5 48 1.971 2.409 2.844 3.425 3.871 4.938
6 48 1.901 2.295 2.685 3.204 3.601 4.547
1 49 2.811 4.038 5.347 7.182 8.642 12.253
2 49 2.414 3.187 3.981 5.066 5.915 7.980
3 49 2.199 2.794 3.396 4.208 4.838 6.357
4 49 2.063 2.561 3.060 3.728 4.243 5.478
5 49 1.968 2.404 2.838 3.416 3.860 4.919
6 49 1.898 2.290 2.679 3.195 3.589 4.529
1 50 2.809 4.034 5.340 7.171 8.626 12.222
2 50 2.412 3.183 3.975 5.057 5.902 7.956
3 50 2.197 2.790 3.390 4.199 4.826 6.336
4 50 2.061 2.557 3.054 3.720 4.232 5.459
5 50 1.966 2.400 2.833 3.408 3.849 4.901
6 50 1.895 2.286 2.674 3.186 3.579 4.512
1 51 2.807 4.030 5.334 7.159 8.610 12.192
2 51 2.410 3.179 3.969 5.047 5.889 7.934
3 51 2.194 2.786 3.385 4.191 4.814 6.317
4 51 2.058 2.553 3.049 3.711 4.221 5.441
5 51 1.964 2.397 2.827 3.400 3.838 4.884
6 51 1.893 2.283 2.668 3.178 3.568 4.495
1 52 2.805 4.027 5.328 7.149 8.595 12.164
2 52 2.408 3.175 3.963 5.038 5.877 7.912
3 52 2.192 2.783 3.379 4.182 4.803 6.298
4 52 2.056 2.550 3.044 3.703 4.210 5.424
5 52 1.961 2.393 2.822 3.392 3.828 4.867
6 52 1.891 2.279 2.663 3.171 3.558 4.479
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 53 2.803 4.023 5.322 7.139 8.581 12.137
2 53 2.406 3.172 3.958 5.030 5.865 7.892
3 53 2.190 2.779 3.374 4.174 4.793 6.280
4 53 2.054 2.546 3.038 3.695 4.200 5.407
5 53 1.959 2.389 2.817 3.384 3.818 4.852
6 53 1.888 2.275 2.658 3.163 3.549 4.464
1 54 2.801 4.020 5.316 7.129 8.567 12.111
2 54 2.404 3.168 3.953 5.021 5.854 7.872
3 54 2.188 2.776 3.369 4.167 4.783 6.262
4 54 2.052 2.543 3.034 3.688 4.191 5.391
5 54 1.957 2.386 2.812 3.377 3.809 4.836
6 54 1.886 2.272 2.653 3.156 3.540 4.449
1 55 2.799 4.016 5.310 7.119 8.554 12.085
2 55 2.402 3.165 3.948 5.013 5.843 7.853
3 55 2.186 2.773 3.364 4.159 4.773 6.246
4 55 2.050 2.540 3.029 3.681 4.181 5.375
5 55 1.955 2.383 2.807 3.370 3.800 4.822
6 55 1.884 2.269 2.648 3.149 3.531 4.435
1 56 2.797 4.013 5.305 7.110 8.541 12.061
2 56 2.400 3.162 3.943 5.006 5.833 7.834
3 56 2.184 2.769 3.359 4.152 4.763 6.230
4 56 2.048 2.537 3.024 3.674 4.172 5.361
5 56 1.953 2.380 2.803 3.363 3.791 4.808
6 56 1.882 2.266 2.644 3.143 3.523 4.421
1 57 2.796 4.010 5.300 7.102 8.529 12.038
2 57 2.398 3.159 3.938 4.998 5.823 7.817
3 57 2.182 2.766 3.355 4.145 4.754 6.214
4 57 2.046 2.534 3.020 3.667 4.164 5.346
5 57 1.951 2.377 2.798 3.357 3.783 4.794
6 57 1.880 2.263 2.639 3.136 3.514 4.408
1 58 2.794 4.007 5.295 7.093 8.517 12.015
2 58 2.396 3.156 3.934 4.991 5.813 7.800
3 58 2.181 2.764 3.351 4.138 4.746 6.199
4 58 2.044 2.531 3.016 3.661 4.156 5.333
5 58 1.949 2.374 2.794 3.351 3.775 4.781
6 58 1.878 2.260 2.635 3.130 3.507 4.396
1 59 2.793 4.004 5.290 7.085 8.506 11.994
2 59 2.395 3.153 3.929 4.984 5.804 7.784
3 59 2.179 2.761 3.347 4.132 4.737 6.185
4 59 2.043 2.528 3.012 3.655 4.148 5.319
5 59 1.947 2.371 2.790 3.345 3.767 4.769
6 59 1.876 2.257 2.631 3.124 3.499 4.384
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0.900 0.950 0.975 0.990 0.995 0.999 p
0.100 0.050 0.025 0.010 0.005 0.001 1− p

df1 df2
1 60 2.791 4.001 5.286 7.077 8.495 11.973
2 60 2.393 3.150 3.925 4.977 5.795 7.768
3 60 2.177 2.758 3.343 4.126 4.729 6.171
4 60 2.041 2.525 3.008 3.649 4.140 5.307
5 60 1.946 2.368 2.786 3.339 3.760 4.757
6 60 1.875 2.254 2.627 3.119 3.492 4.372
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24.1 Matrix calculations

Examples of various matrix operations using SAS proc iml (SAS Institute Inc. 2018).

* matrix2.sas;

title ’Matrix calculations’;

proc iml;

reset print;

* Define matrix A and B;

A = {1, 2, 3};

B = {4, 5, 6};

* Add A and B;

AplusB = A + B;

* Define matrix C and D;

C = {1 4, 2 5, 3 6};

D = {7, 8};

* Multiply C and D;

CD = C*D;

* Transpose of F;

F = {1 5, 2 6, 3 7, 4 8};

transposeF = t(F);

* Define another matrix A;

A = {1 6 4, 3 7 6, 4 1 9};

* Inverse of A;

Ainv = inv(A);

* Check that Ainv*A = I;

AinvA = Ainv*A;

quit;
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24.2 Multiple regression in matrix form

A multiple regression analysis using matrix operations and proc iml (SAS Institute Inc.
2018). The data are from Reeve et al. (1998).

* multreg.sas;

title ’Multiple regression in matrix form’;

data multdata;

input X1 X2 survival;

* Apply transformations here;

Y = log(survival);

datalines;

1.250 0.000 0.107

2.656 0.481 0.715

7.334 0.171 0.036

1.603 0.352 0.188

2.622 0.016 0.438

1.000 0.000 0.585

4.342 0.185 0.115

5.233 0.018 0.257

2.500 0.410 0.032

3.250 0.015 0.350

6.000 0.007 0.161

4.750 0.000 0.073

2.500 0.095 0.219

8.750 0.033 0.028

6.000 0.015 0.294

5.000 0.105 0.207

7.149 0.025 0.227

6.750 0.015 0.040

7.500 0.043 0.089

2.500 0.073 0.176

5.000 0.055 0.084

2.250 0.023 0.203

1.250 0.123 0.074

4.750 0.035 0.126

4.500 0.212 0.290

9.557 0.166 0.010

5.000 0.338 0.207

;

run;

* Print the data;

proc print data=multdata;

run;
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* Matrix calculations;

proc iml;

reset print;

* Read in data set;

use multdata var {Y X1 X2};

read all;

close multdata;

* Design matrix X;

n = nrow(Y); * Find sample size;

ones = shape(1,n,1);

X = ones||X1||X2;

* Y values;

print Y;

* X’ or X transpose;

Xt = t(X);

* X’X;

XtX = Xt*X;

* X’X inverse;

XtXinv = inv(XtX);

* Show this is the inverse;

test = XtXinv*XtX;

* (X’X inverse)X’;

XtXinvXt = XtXinv*Xt;

* beta = (X’X inverse)X’Y;

beta = XtXinvXt*Y;

* Yhat;

Yhat = X*beta;

* SSerror and MSerror;

SSerror = sum((Y-Yhat)##2);

dfnum = nrow(beta)-1;

dfdenom = n - dfnum - 1;

MSerror = SSerror/dfdenom;

* SSreg and MSreg;

Ymean = mean(Y);

SSreg = sum((Yhat-Ymean)##2);

MSreg = SSreg/dfnum;

* F statistic and P value for overall test;

F = MSreg/MSerror;

P = 1 - probf(F,dfnum,dfdenom);

* Standard errors for beta;

sebeta = sqrt(MSerror*vecdiag(XtXinv));

* t tests for beta_i = 0;

Tvec = beta/sebeta;

Pvec = 2*(1-probt(abs(Tvec),dfdenom));

quit;
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model, 282
one-way random effects
F test, 292
H0, 285
model, 285

three-way
random effects, 608

three-way all fixed effects, 591
H0, 594
interaction, 591, 594
main effects, 594
model, 594
no replication, 608
tests for main effects with

interaction, 604
two-way, 383

interaction, 383
two-way all fixed effects
F tests, 398
H0, 395
interaction, 393
main effects, 393
model, 393
tests for main effects with

interaction, 416
two-way without replication, 423
F tests, 427
H0, 423
model, 423

ANOVA assumptions, 455
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homogeneity of variances, 456
independence, 455
normality, 457
outliers, 457

ANOVA table, 292, 402, 426, 524, 685
association, 517, 561

balanced design, 278, 385
bark beetles, 51, 277, 518, 671
Bayes theorem, 91
Bayesian statistics, 93
bias correction, 211
binomial coefficient, 99
binomial distribution, 98, 460, 633
binomial proportion, 460

biological vs. statistical significance, 295
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bobcats, 504
Bray-Curtis dissimilarity, 720

central limit theorem, 190, 221
applications, 197

chitons, 482
chytrid fungus, 88
coefficient of determination, 571
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completely randomized design, 389, 436
conditional probability, 87
confidence intervals, 219, 343, 354, 361,

363
µ, σ2 estimated, 229
µ, σ2 known, 226
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confidence intervals and hypothesis
testing, 268

correlation, 517, 561
H0, 565
t test, 571
arctanh transformation, 571
model, 564

correlation assumptions, 583
correlation coefficient, 570
covariate, 620
cowpea weevils, 620
critical region, 243
cumulative distribution function, 142
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uniform distribution, 142

data
categorical, 16, 633
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discrete, 16
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degrees of freedom, 222, 224
denominator, 291
numerator, 291

dependent variable, 517, 671
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derivatives, 37
descriptive statistics, 50
distribution-free tests, 481

effect size, 295
elytra, 51
endocranial volume, 674
estimator vs. estimates, 205
events, 79
exact tests, 486
expected frequencies, 633, 634
expected value, 112, 161, 177

linear function, 179
sum, 179

exponents, 21

factorials, 99
false positive, 93
fixed effects, 281
fixed vs. random effects, 281, 609
frequency distribution, 54
frequentist statistics, 94
function, 24

absolute value, 26
exponential, 25
gamma, 108
linear, 25
log, 25
maximum, 39
minimum, 39
normal distribution, 26
quadratic, 25

functional response, 734

general linear models, 518
goodness-of-fit test, 633, 635, 642

H0, 636
χ2 test, 638, 643
combining frequencies, 647
degrees of freedom, 638, 643
estimated parameters, 647

degrees of freedom, 647
likelihood ratio test, 637, 643

grand mean, 287
grassland plants, 384, 592, 745

heteroscedasticity, 457
highly significant, 247
homoscedasticity, 456

independence, 86, 564
independent variable, 517, 671
inequalities, 23
integrals, 44
intersection, 80

Kolmogorov-Smirnov test, 482, 499
D, 499
H0, 499

Kruskal-Wallis test, 482, 494
H, 494
χ2 approximation, 494

kurtosis, 65

least square means, 405
least squares, 523, 681
leptokurtic, 65
likelihood ratio test, 216, 269, 447, 636

ANOVA
one-way, 313
two-way, 402

correlation, 571
linear regression, 523
multiple regression, 685
one-sample t test, 269

likelihood theory, 14
linear equation, 35
linear regression, 517

F test, 525
H0, 521
R2, 535
t test, 531
assumptions, 544
confidence intervals, 530
confidence intervals for µ, 532
model, 521
prediction intervals, 532

loglinear models, 635

Mann-Whitney U test, 487
marginal distributions, 564
matrix
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addition, 677
definition, 677
identity matrix, 682
inverse, 683
multiplication, 677
transpose, 678
vector, 677

maximum likelihood, 129, 203
ANOVA

one-way, 311
asymptotically normal, 216
asymptotically unbiased, 216
binomial data, 636
consistency, 207, 216
correlation, 570
estimates, 203
likelihood function, 203, 522, 636,

681
linear regression, 521
multiple regression, 680
normal data, 211
Poisson data, 205
variance vs. sample size, 216

maximum likelihood estimates, 636
mean squares, 287, 398, 423, 524, 685
median, 52
Mendel’s peas, 642
Mendelian genetics, 642
mixed model, 436
mixture of distributions, 108
mode, 62
Model I, 281
Model II, 281
multinomial distribution, 633, 642
multiple comparisons, 339

DSD, 361
HSD, 354
H0, 340
LSD, 344
all possible pairwise comparisons,

340
Bonferroni, 363
comparisons with a control, 340
Dunnett, 361
EER, 341

EER vs. power, 357
experimentwise error rate, 341
false discovery rate, 342, 374
FDR, 342, 374
least significant difference, 343
lines, 346
multiple range tests, 357
multiplicity problem, 341
per comparison error rate, 340
sequential Bonferroni, 364
Sidak, 364
simultaneous confidence intervals,

353
Tukey, 353

multiple regression, 671
F test, 685
R2, 688
t tests, 687
assumptions, 690, 697
collinearity, 699
confidence intervals, 687
confidence intervals for µ, 700
design matrix, 680
leverage, 697
matrix form, 676
model, 676
model selection, 717
normal equations, 682
polynomial regression, 710

centering, 710
power analysis, 707
prediction intervals, 700
residual-residual plots, 697
standardized regression coefficients,

688
stepwise regression, 723
tolerance, 699
variance inflation factor, 699

negative binomial distribution, 108, 459
nematodes, 504
non-central F distribution, 325
non-central t distribution, 260
nonlinear regression, 544
nonparametric tests, 481

assumptions, 513
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nonsignificant, 247
normal distribution, 149, 762

standard, 149
normal quantile plot, 162
normal quantile plot of residuals, 464
null hypothesis, 241

observed frequencies, 633, 634
one-sample t test, 255
one-sample Z test, 246
one-tailed t test, 264
one-tailed test, 244
outlier detection using residuals, 464
overdispersed, 133, 648

parametric tests, 481
Pearson correlation coefficient, 571
percentiles, 52
pheromones, 384
planthopper, 609
platykurtic, 65
Poisson assumptions, 104
Poisson distribution, 104, 459
positive predictive value, 91
power, 249, 323

factors affecting, 254, 326
power analysis, 249, 323

one-sample t test, 260
one-way ANOVA, 328

prairie restoration, 720
precision, 219, 233
predicted values, 461
predictor, 461, 462
prevalence, 91
probability distribution, 84
probability space, 86
probability theory, 79
prospective power analysis, 323
pseudoreplication, 456

quantiles, 52
quartiles, 52

random assignment of treatments, 389
random effects, 281
random sample, 50, 180, 201

random variable, 97
randomization, 456
randomization distribution, 504, 507
randomization test

H0, 504
randomization tests, 482, 504
randomized block design, 384, 436

F test, 438
H0, 438
model, 438
test for block effect, 447

randomized block in space, 436
randomized block in time, 436
range, 54
ranks, 482
regression coefficient, 521, 676
regressor, 517, 671
rejection region, 243
REML, 313, 438
residual analysis, 455, 460
residual vs. predicted plot, 463
residuals, 462
restricted maximum likelihood, 313, 438
retrospective power analysis, 323
Ricker model, 711
roots, 36

sample covariance, 570
sample mean, 51

E[Ȳ ], 181
V ar[Ȳ ], 181
expected value, 180
theoretical variance, 181

sample size, 51
sample space, 79
sample variance, 53

E[s2], 182
expected value, 182

sampling distribution, 220
SAS

* comment, 27
;, 27
data, 27, 119, 535, 572, 595, 612,

689, 723
$, 55
arsin, 470



792 INDEX

cinv, 767
datalines, 55
do, 27
finv, 770
if-then-delete, 439
if-then-else, 73
input, 55
log10, 295, 595
output, 27
pdf, 100
probchi, 448
probnorm, 153, 762
ranuni, 390
tinv, 764

proc corr

plots=(scatter matrix), 572
spearman, 587
var, 572

proc freq, 74, 116, 639, 656, 662
exact chisq, 639, 657
tables / chisq, 657
tables / out= outpct, 657
tables / testp, 639
tables, 74, 116, 639, 657
weight, 639

proc gchart, 500, 657
vbar / subgroup=, 657

proc gchartvbar / subgroup=,
662

proc genmod, 129
proc glm, 295, 405, 488, 506, 535,

536, 595, 623
by, 506
class, 296, 405, 595
lsmeans / adjust=t pdiff, 376
lsmeans / adjust=tukey, 405,

595
lsmeans / slice, 416, 604
lsmeans, 405, 430, 595, 623
means / bon, 365
means / regwq, 359
means / t, 345
means / tukey, 354
means, 297
model / clm, 536

model / clparm, 536
model / ss2 ss3, 420
model / ss2, 416
model, 296, 405, 536, 595
noprint, 506
outstat=, 506
plots=diagnostics, 296, 470
Type I SS, 711

proc glmselect, 723
model, 723
selection=stepwise(select=AICC),

723
proc gplot, 29, 119, 295, 405, 487,

536, 595, 612, 689
haxis and vaxis, 296
plot / overlay, 536
plot, 29, 296, 405, 536
symbol1, 29, 296, 536

proc mixed, 295, 304, 439, 612
class, 304, 439, 612
lsmeans, 440, 613
method=type3, 304
model / ddfm=kr, 304, 440
model, 304, 440, 612
plots=residualpanel, 464
random, 304, 440, 613

proc multtest, 364, 377
proc nlin, 544
proc nlmixed, 544
proc npar1way, 487
class, 487
edf, 500
exact ks, 500
exact wilcoxon, 487
var, 487
wilcoxon, 487

proc power, 260, 324, 328, 707
multreg, 707
onesamplemeans, 260
onewayanova, 328

proc print, 28
proc reg, 689
model / clb, 689
model / cli, 700
model / clm, 700
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model / partial, 697
model / stb, 689
model / tol, 699
model / vif, 699
model, 689
plots=diagnostics, 689

proc sort, 390
proc ttest, 514
proc univariate, 56, 119, 232, 257
cibasic, 232
class, 56
freq, 119
histogram, 56, 165
mu0, 257
qqplot, 165
var, 56

quit, 29
run, 28
title, 27
macro program, 506
%rand_anl.sas, 506
%rand_gen.sas, 506

macro variable, 205
missing values, 68
programs, 26
Sum of squares

Type I, 297, 406
Type II, 416
Type III, 297, 406, 416, 595

scope of inference, 49
sensitivity, 91
significant, 247
simple events, 79
skewness, 62
spatial distribution, 133
Spearman rank correlation, 585
species-area relationship, 545
specificity, 91
standard deviation, 53
standard error, 181, 220
statistical model, 14, 17, 389
statistical population, 49
statistics of dispersion, 51

statistics of location, 50
studentized range distribution, 353
sum of squares, 287, 398, 423, 524, 685

test statistic, 242
tests of independence, 634, 653

H0, 654
χ2 test, 655
degrees of freedom, 655
likelihood ratio test, 655

theoretical mean, 112, 161, 177
theoretical variance, 114, 161, 178

linear function, 179
sum, 180

tilapia, 241
transformations, 179, 459, 544
transformations when data are limited,

478
two-sample t test, 314, 487
two-tailed test, 244
Type I error, 243
Type I error rate, 243
Type II error, 249
Type II error rate, 249

unbalanced design, 278, 385
unbiased estimator, 181
underdispersed, 133
uniform distribution, 140

random coordinates, 143
union, 80
univariate distribution, 564

variance components, 285, 305, 438, 440,
611

variance-stabilizing transformations,
455, 459

vernal pools, 345

Welch t test, 513
Wilcoxon test, 482, 485

H0, 485
W , 486
normal approximation, 487


